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Abstract

Generalized additive models are a popular class of multivariate nonpara-
metric regression models, due in large part to the ease of use of the local
scoring estimation algorithm. However, the theoretical properties of the local
scoring estimator are poorly understood. In this article, we propose a local
likelihood estimator for generalized additive models that is closely related to
the local scoring estimator fitted by local polynomial regression. We derive
the statistical properties of the estimator and show that it achieves the same
asymptotic convergence rate as a one-dimensional local polynomial regression
estimator. We also propose a wild bootstrap estimator for calculating point-
wise confidence intervals for the additive component functions. The practical
behavior of the proposed estimator is illustrated through simulation experi-

ments and an example.

Keywords: backfitting, bootstrapping, generalized additive models, local

likelihood, local polynomial regression, local scoring, wild bootstrap.



1 Introduction

Generalized additive models (Hastie and Tibshirani, 1990) are a popular approach
for fitting multivariate data with known link functions. The gam() set of fitting
routines and accompanying one-dimensional smoothing methods in S-Plus (Hastie,
1992) are often used for that purpose. These routines implement the local scoring
algorithm described in Hastie and Tibshirani (1990). Local scoring generalizes Fisher
scoring, the most commonly used fitting method for generalized linear models (see,
for instance, McCullagh and Nelder, 1989). First result on backfitting estimates
in additive models with normal response are found in Buja, Hastie and Tibshirani
(1989).

While local scoring as a fitting method is popular in practice, the theoretical
properties of the resulting estimators are not well understood. Even such basic
properties as consistency have not been generally established. The major difficulty
in developing theoretical results for local scoring is that they can only be defined im-
plicitly as the solution to a complicated iterative algorithm. In this sense, the study
of generalized additive models is more complicated than that of additive models,
where a set of normal equations solved by the estimators can be written down (see
Opsomer, 2000). Some results on the properties of local scoring when the univariate

smoothers are local polynomials are in Opsomer and Kauermann (2000).

In this article, we propose a new estimator for generalized additive models based
on local likelihood estimation (Fan et al. 1995). To differentiate it from local scor-
ing, we will refer to this estimator as the local likelihood estimator in what follows.
Similarly to local scoring, the local likelihood estimator is a natural extension the
local polynomial regression backfitting estimator for additive models, discussed in
Opsomer and Ruppert (1997), to the generalized regression model context. For
models with linear link link and Gaussian errors, these estimators are all equiv-
alent. Unlike the local scoring estimator, however, the local likelihood estimator
is the solution to a set of well-defined normal equations, allowing us to study its
statistical properties. In this article, we provide explicit asymptotic bias and vari-
ance approximations for the local likelihood estimator and show that the estimator
avoids the “curse of dimensionality” by achieving the same convergence rates as

one-dimensional nonparametric regression.

Since the normal equations defining the local scoring estimator represent a very

large set of simultaneous nonlinear equations and may be difficult to solve in practice,



we also propose an iterative algorithm whose solution at convergence is consistent
for the “true” local likelihood estimator. Under certain uniqueness conditions, the
local scoring estimator at convergence is similarly consistent for the local likelihood
estimator, so that the asymptotic properties of the local likelihood estimator provide

some insights for the local scoring estimator fitted by local polynomial smoothing.

Linton and Nielsen (1995) introduced a non-iterative fitting method for gener-
alized additive models based on marginal integration, and derived its statistical
properties. Using this estimator as a starting point, Linton (2000) proposed a lo-
cal likelihood procedure to find an fully efficient estimator for individual additive
component functions when the remaining component functions are suitably under-
smoothed (see also Fan, Mammen and Hérdle, 1998). Recently Mammen, Linton
and Nielsen (1999) suggest to improve the efficiency of estimates for additive models
with normal response based on pilot mean estimate by making use of backfitting.
An important difference between these estimation approaches and both local scor-
ing and the local likelihood estimation in the current article is that the latter two

methods estimate all additive components simultaneously.
In this article, we consider the generalized additive model

E(ylz) = h(n) = h{a+m(e) + ...+ 7(7)} (1)
where A(-) is some known link function, & = (zi,...x,) are given covariates and
7 (+) are smooth, unknown functions. The response y (for given @) is assumed to
be distributed according to the exponential family

yo —b()
L et). 2)

where # = 6(n) denotes the natural parameter corresponding to the expectation

Flyl) = exp (

h(n). The dispersion parameter a(¢) is for ease of notation assumed to be known,
as is commonly done in the generalized regression literature. We suppose that a
sample (z;,v;),j = 1,...,n is available, where y; is assumed to be drawn from
(2) and x; = (@1j,...2,) is fixed or distributed according to f,(x). The local
likelihood estimators for the functions 7, (-) based on such a sample are the topic of
this article. We also propose a bootstrap approach for assessing the variability of
the estimates by generalizing the wild boostrap method of Hardle and Marron (1991)
to the generalized additive model.

The remainder of the article is structured as follows. In Section 2, we review uni-

variate local likelihood estimation and introduce the local likelihood estimators for



the generalized additive model (1). Section 3 discusses the asymptotic properties of
the estimators, and Section 4.1 proposes an algorithm whose solution approximates
the local likelihood estimator. In Section 4.2, we explain the relationship between
the local likelihood and local scoring estimators. In Section 5, a bootstrap-based in-
ference method for the estimator is proposed. The practical behavior of the method

is illustrated in simulation experiments and an example in Section 6.

2 Local Likelihood Estimation

2.1 Univariate Local Likelihood Estimation

Before defining the local likelihood estimators for the generalized additive model (1),
we review local likelihood estimation for univariate models. Define the likelthood

contribution of the jth observation as a function of 7:

Li(n) = [y;0(n) — b{0(n)}]/a(e).

If h(-) is the canonical link, then the likelihood contribution takes the simple form
Li(n) = {yjn+b(n)}/a(¢). We define the score for the jth observation by , ;(n) =
dl;j(n)/dn, and drop the parameter argument and write [, ; if [, ;(n;) is evaluated

at the true parameter value for the jth observation. For the canonical link one has
bi(n) = {y; — h(n)}/a(9).

When ¢ = 1 and « = 0 in (1), the local likelihood estimator for the function

n = 7(+) at location z is defined as the maximizer of the local likelihood

max 3 1 (M) 1(6) ®

J=1

for a kernel function K and bandwidth h. The maximizer of (3) is found by solving

the score equation

" Tj—x ~
> K (S ) lg(B) =0
j=1
for B, so that 5(z) = 5. In the Gaussian case with an identity link function, 5(x)

reduces to the familiar Nadaraya-Watson kernel regression estimator.

Similarly to kernel regression, the local likelihood estimator can readily be gener-

alized to a local polynomial likelihood estimator. Specifically, let B = {BO, e BP}T
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represent the maximizer of

max K(J
AP

X

) L(X2,8) ()

with X, ; = {1, (z; —x),..., (z;— x)?}T. The local polynomial likelihood estimator
at location x is defined as 7(z) = elTB = By, with e; = (1,0,...,0)T. The p+1

score equations corresponding to (4) are written jointly as

" Tj—x -
z:lK ( ’ h ) Xz,jln,j(Xg,j,B) =0. (5)
]:

The properties of 7(-) for the simple and local polynomial case have been studied
by Fan et al. (1998), Carroll et al. (1998) and Kauermann, Miiller, and Carroll
(1998). For p = 0, Kauermann and Tutz (2000) extend local likelihood estimation

to varying coefficient models.

Local likelihood estimators are defined as the solution to non-linear equations,
so that in general, no explicit expressions are available for the estimators. However,
asymptotic approximations are available, and are useful in clarifying the statistical
properties of the estimator. In particular, under suitable assumptions on the under-
lying statistical model and for sample size n sufficiently large, we can expand (5)
about X, ;3 and apply series inversion as given e.g. in Barndorff-Nielsen and Cox
(1989) to find

0 = > K <xj ; x) X5 [l (X gB) + by (Xag DX 1,8 — XoyBY + .. ]
J

.’L‘j—.’L‘

#3() = w<x>+{e1F;ZK( ; )Xm,jln,j+b($)}{1+0p(1)} ©

where 1, ; = 0, ;(n)/0n and F, = 3 ; K{(z; — x)/h}va:,:,ijyj is the local Fisher
matrix with v; = —FE(l,,;) and b(z) is the bias component. The bias thereby
decomposes to b(x) = by (x) + by (x) with

.’L‘j—.’L‘

by (@) = P K () Xoguila(a) - X.8) (7

1 o
by () = —5eiF K ()Xo (9(n) — X8 (8)
J

with vj = Jv;(n;)/0n. Under the usual conditions, i.e. assuming ~(-) sufficiently
smooth, it follows that b(;)(z) = O(h?1F#/2]) where |-] denotes the largest integer
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fraction. For the second bias term one finds by (z) = O(h**7/?) for even degree p
while by (z) = O(h?1H7/2142) for odd values of p. Hence, the second bias term (8)
has negligible asymptotic order compared to (7) if p is odd. For more details, see
e.g. Kauermann and Tutz (2000).

We have set @ = 0 in the local likelihoods (3) and (4) and estimated 7 as a
smooth function of a single covariate. When ¢ > 1 and 7 is assumed to be an
additive function of several covariates, the component functions 7,(-) in (1) are not
identifiable without additional constraints. For normally distributed y; and identity

link function, the standard constraints are

Ex{v(z,)} =0 forr=1,... ¢,

where E, denotes the expectation with respect to the design density f,(x), combined
with the inclusion of an intercept, so that E,(n) = «. For the general model (1),
we will generalize this restriction by making use of the Kullback-Leibler discrepancy

measure.

In the univariate case (¢ = 1), suppose that we are interested in uniquely decom-
posing an unrestricted function v°(x) in model E(y|z) = h{y°(z)} into a and ~(z),
such that 7°(z) = a + y(x). This can be done by requiring « to be the minimizer
of the Kullback-Leibler distance K{v°(z), a}=E,[E,{l(a)|n = v°(x)}] + const with
respect to «, where [(-) denotes the log-likelihood function and the inner expectation
is carried out using density (2) with n = v°(x) while the outer expectation uses the
design density f;(-). The intercept is therefore defined as the solution to

0 = E[E{l;(a)ln=7"(z)}], (9)
and we set y(-) =v°(-) — a.

Centered estimators & and 7(+) are found by replacing the expectations in (9) by

empirical moments. The estimating equation for & is given by
0= 3" 1y:(0). (10)
i

Hence, the resulting estimator & is the maximum likelihood estimator in the sim-
plified model E(y|z) = h(a) and (-) = 7°(-) — &, where 7°(-) is the solution to
(5).

This definition is not directly applicable for centering the additive component

functions when ¢ > 1, however. From (9), we get by expanding /,(«) about 7 in
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first order

0 = EE{lymmy(x)ln="(x)}+..., (11)

since E,{l,(n)} = 0. This yields an alternative, asymptotically equivalent identifi-
ability restriction for J(x): by replacing the expectation with respect to z in (11)
by empirical moments once again, one obtains Y-, v;¥(z;) = 0 with v; = —E,({,),.3)-
Hence, 7°(x;) is centered by J(x;) = 7°(x;) — >; viy(2;)/ X vi, where in practice, v;
is substituted by an estimate. This centering adjustment now generalizes readily to
the case ¢ > 1, as will be shown in Section 2.2. For normally distributed y; with
v; = o2, this also yields the standard mean-centered adjustment used in Opsomer
and Ruppert (1998) for the additive model.

Before tackling the estimation of the full generalized additive model (1) in the
next section, we consider the extension of the univariate estimator (4) to the so-called
“oracle estimator”. In this case the model is g-dimensional but all the components
functions except the rth function are assumed to be known. The resulting estimate
of the rth function will be denoted by 74,—(-). This means we consider the function
N—r = &+ Yz k(-) in (1) as known offset and 7,(-) is an unknown univariate
function which has to be estimated by local likelihood. The results from univariate
local polynomial likelihood fitting given above are readily extended to this situation.
In particular, the oracle estimator of 7,(-) at the observation point x,; is 4y (7,;) =

eI B, where 3 solves
n T .
> Wi Xrijly (X358 +1-r5) = 0, (12)
=1

with Wy 45 = K{(l‘rj — l‘ri)/hr}; Xr,ij = {1, (l‘rj — l‘ri);- cy (l‘rj — l‘ri)pT}T and
N-rj = @+ Xz Vi(Tr;). As in (6), expansion of (12) about the true parameter
values 7, (z,;) yields

'A)/r\fr(xri) = Yr(Trs) + {elTFr,z'l Zwr,inT,ijlmj + brlr(xri)} {1+0,(1)} (13)
J

where ln,j = ln,j(nj)a v; = _E(lm];j)7 FT,i = Zj wT,ijvaT,inZ:ij and the bias

b~ (Tri) = brj—r(1)(@ri) + bp—r(2)(2ri) as in (7) and (8). Defining S, as weighted
smoothing matrix with 7j5th element

[Si]i; = wrijel Frj X ;. (14)



we can rewrite (13) more compactly as
Vrimr = (Sply + 5V, + b)) {1+ 0,(1)} (15)

with 7,1, = {Fr=r(@01), - Al e (@)} by = (s -5 )T, Vo= diag(vy, .. 0y),
Y = v (@), (zm)}T and by _po) = {by—r2)(@r1) - - - brj—ri) (@r1) }T, since
br—r1) = 8-V, —v,. As argued above, b, _,() is of negligible asymptotic order if
pr is odd. This is assumed throughout the remaining of the paper. The estimated
function 4,,_,(+) is not centered. Using the same approach as above, this is achieved
by replacing S, in (15) by S = (I — 117V /{3, v;})S,, where I is the identity

matrix and 1 is the n x 1 vector (1,...1)".

Lemma A.1 in the Appendix gives asymptotic bias and variance approximations
for the oracle estimator. These resuls are a direct generalization of those for univari-
ate local likelihood estimators. They will be used in the derivation of the statistical

properties of the full local likelihood estimator in the next section.

2.2 Local Likelihood Estimation for Generalized Additive
Models

We now extend the univariate local polynomial likelihood results from Section 2.1
to the generalized additive model (1), with all ¢ > 1 additive component functions
unknown. Suppose that we are interested in using local polynomial likelihood esti-
mation with odd degrees p,,r = 1,...,q. For all r, the estimators for v, (z,;),i =
1,...,n, are formally defined as 7, (z,;) = G{Bri, where Bm- = {Bri’o, o ,B”-,pT}T is
the maximizer of the local polynomial likelihood

n

max Y wyili (X7 ;8,5 + M-rj), (16)
[ ]:1
with 7_.; = & + Xk Ve(7xj), 5 = 1,...,n. Maximization (16) has to be done
jointly for all covariates, subject to the constraints

n

> 09 () =0 forr=1,...,4q, (17)

i=1
where v; = v;(7;) with 7; = &+ 71:(x1;) +. . ., 74i(2g). These constraints are satisfied
when a solution of (16) is centered by replacing it with 5, (x,;) — >°; 0V (2r4)/ >, Ui-
The intercept estimator & is the solution of

n

> In(@) =0 (18)

i=1



as shown in the previous section.

The local polynomial likelihood estimators for the generalized additive model
solve a n x 3%, (p, + 1) + ¢ + 1 dimensional system of equations composed of the

non-linear score equations

n
> Wi X il i (X1 B + 1rj) =0 (19)
j=1

fori =1,...,n, r = 1,...,q, subject to (17), and the score equation (18) for @.
Solving this system of equations represents a formidable task if attempted directly.
In Section 4.1, we propose a more practical backfitting estimator that approximates
the solution corresponding to these equations. We assume for now that a solution to
(19) can be found and is unique, so that the local likelihood estimator is well-defined,

and we first discuss its statistical properties.

The local likelihood estimator is related to the oracle estimators, in a manner
that will be made precise in Theorem 2.1 below. Before stating the theorem, we
list the assumptions used in this section. Let f, () represent the marginal density of
e, =1,...,¢q, and p,(K) = [ v’ K (u)du.

e Al Forp, odd, the (p,+1)th derivative of ,(-) exist forr =1,...,q and they

are continuous and bounded.

e A2 The kernel K is bounded and continuous, has compact support and for
r=1,...,q, we have p, 1 (K) # 0.

e A3 The marginal design densities f.(-), r = 1,...,q have compact support

and their first derivatives are continuous and bounded.

o A4 The functions v(n) = E{—l,,(n)} and v,(x,) = E,{v(n)|X, = z,} are

positive, continuously differentiable, bounded and bounded away from zero.
e A5 Asn — o0, h, = 0 and nh, — oo forallT=1,...,q.
We define the ng x 1 vectors v, = (v7,...,v)", 7, = (71,...,74 )" and Voo =
(§1T|71, o ,'?:ﬁfq)T, and the ng x ng matrix
I SV ... StV
siv. 1 ... SijV
SV SV . I
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With hy = (h17, ..., h,17)" we denote the vector of bandwidths, where 1 is the
nx 1 vector (1,...,1)7. Finally, with AP we denote the component-wise pth power

of matrix A, i.e. the matrix with ijth element Af;.

Theorem 2.1 Under assumptions A1-Ab, the local likelihood estimator and the

oracle estimator are related through the following asymptotic equality

Voo = ve = M@A, —v) {1+ 0 (B} + O ({M(F. - 7)1)  (20)

where the O(-) terms hold component-wise. If M is invertible, (20) is equivalent to
Yo=Ye = M (A s —v){1+0,(1)}

REMARKS:

1. By Lemma A.1 in the Appendix, we know that the oracle estimators in 7, _,
are consistent for 4, under assumptions A1-A5, so that both sides of (20)
converge to 0. Since the rate of the approximation term on the right-hand
side is faster than that of the leading term, we can conclude that 4, is also

consistent for ~,.

2. The matrix M has the same structure as that used to define the backfitting es-
timators for additive models in Opsomer and Ruppert (1999) and for weighted
additive models in Opsomer and Kauermann (2000). In both applications, the
existence of the estimators was shown to depend on the invertability of this
matrix. Similarly, explicit expressions for the asymptotic properties of the lo-
cal likelihood estimator will require invertability of M. This will be discussed

in the next section.

3. The O (h?]) rate of the approximation in Theorem 2.1 holds for local likeli-
hood estimators of arbitrary degree py,...,p,. It should be noted that this
approximation rate represents a relative rate for the difference between the
convergence rates of the oracle and the local likelihood estimators. Both these

rates indeed depend directly on the p, (see next section).

4. Theorem 2.1 also holds for even degrees p,. However, since the matrix form
(15) for the oracle estimator is disturbed by an additional bias term, we do

not pursue even degrees here.

10



3 Asymptotic Properties

In this section, we use Theorem 2.1 to approximate the conditional bias and variance
of the local likelihood estimators for generalized additive models. For simplicity, we
only discuss the case ¢ = 2 and py,p, odd. As for additive models, the bias and
variance expressions become much more complicated for models with ¢ > 2 (see
Opsomer, 2000).

We write v(z1,22) = v{a + 71(x1) + 72(z2) }, the variance function evaluated at
(21, 22), and v, (z,) = Ex(v(Xy, X3)|X, = z,). Define T, as the n x n matrix whose

17th element is

_ l fo(@1i, 25)  v(@14, 295) L l
—n fiz) fo(agy) vl(%z’)vz(@j)v(hj’m]) -

[Tiz]ij

Finally, let R(K) = [ K(u)?du. We replace assumptions A2-A5 by the following

e A2’ The kernel K is bounded and continuous, it has compact support and its

first derivative has a finite number of sign changes over its support. Also,
iy 1 () # 0 for 7 =1,2.

e A3’ The densities [, f1, fo are bounded and continuous, they have compact
support and their first derivatives have a finite number of sign changes over
their supports. Also, fi(xy), fa(z2) > 0 for all (xq1,29) € supp(f).

e A4’ The functions v,vy,vy for are bounded, continuous and differentiable.

Their first derivatives have a finite number of sign changes. vi(xy),va(x2) > 0
for all (xzq,29) € supp(f).

e A5’ Asn — 00, hy,hs — 0 and nhy/log(n), nhy/log(n) — oc.
e A6’ There exists a matriz norm || - ||, such that ||T7,| < 1.

Theorem 3.1 Under the assumptions A1, A2’ -A6’, the conditional bias of 7, (x1;)

s approximated by

E((w1) — n(20)| X1, Xo) = €] (I —T7y) 7' x
{hpl—H :ulerl(K) ( (p1+1) EI(U(X17X2)7§p1+1)(X1)))

o+ Y N By (v(X1, X2))

11



(p2 +1)! ? E,(v(X1, X3))
"’Ozo(hzfl+1 + h§’2+1).

+hz2Jz+1 Mp2+1(K) (E(’y(p2+1)(X2)|X1) _ Ex(U(X1;X2)’Y§p2+1)(X2))) }

The conditional variance of 71(xy;) is approximated by

Var(1(z1:)| X1, X2) = nthR(K)Ul(ﬂ?li)lfl (1) (14 0p(1)). (21)

The proof of Theorem 3.1 as well as two required technical lemmas are in the
Appendix. The results for J5(z9;) and 7); are completely analogous. Recursive ex-
pressions for ¢ > 2 can be derived using the approach of (Opsomer, 2000).

REMARKS:

1. For the identity link and Gaussian errors, the asymptotic bias and variance
in Theorem 3.1 simplify to those found for the additive model described in
Opsomer and Ruppert (1997). In that sense, the local likelihood estimator
proposed here is the direct extension of the local polynomial regression back-
fitting approach of Opsomer and Ruppert (1997) to the generalized additive

model context.

2. The theorem also shows that the local likelihood estimator for generalized addi-
tive models shares the desirable property of dimension reduction with additive
model backfitting: the convergence rates of the estimator of a ¢-dimensional
model are the same as those for a one-dimensional model. Stone (1986) found
the same result for generalized additive models fitted by maximum likelihood

using additive regression splines.

We end this section on the statistical properties of the local polynomial likelihood

estimator with the following corrolary.

Corollary 3.1 If M is invertible and under assumptions A1 and A2’-A5’, the local

likelihood estimator 7, (x.;) has the following asymptotic distribution:

L
’A)’r(xri) — N('Yr(xri) + B(xri)a iR(K)UT(xri)ilfr(xri)il)

with B(z,;) the conditional bias approzimation as given in Theorem 3.1.

12



The result follows easily from the asymptotic normality of the oracle estimates,
which in turn results from standard arguments available from univariate smoothing
(see e.g. Fan and Gijbels, 1996).

4 Estimation algorithms

4.1 Local Likelihood Backfitting

In this section, we propose a backfitting algorithm for generalized additive models
based on local polynomial likelihood estimation. In order to differentiate the solution
of this algorithm from the local likelihood estimator discussed so far, we will refer to
it as the local likelihood backfitting estimator. We will show below that, while both
estimators are not exactly equal, they are asymptotically equivalent under certain

conditions.

The algorithm is displayed in Figure 1. Step 2 is the main step in the algorithm.
It directly results from (15) and it resembles a one-step Fisher scoring for solving
(19), i.e

%H—l)(xri) = 'Y(t)(xm +el Zwrw ryiglni ( rzg:@m + (—1)"])
A( ) ~
= ’y()(l‘” +€1F Zw”] ”] {XM] _’ngt)(ij)}]_F"'
~ elF)) zww w{f“ 0050 (5} (22)

with /F\fntz as plug in estimate of F,, ot = v](n] ) and [ /U = 1,,;(77;). This means
that, instead of solving (19) explicitly, we update fy(t“)( i) by a one-step Fisher

T

scoring only.

Suppose that the local likelihood backfitting algorithm has fully converged, so
(00) 4 —

T

that 'y(tH) = 'y ) for r = 1,...,q, and that this solution is unique. Let ~
1, ..., q denote this estimator. Suppose also that the solutions to the score equations
(19) and the associated identification restrictions exist and are unique. Let 4,,r =
1,...,q denote this estimator. In general, both estimators will not be exactly equal
to each other, but for sufficiently large samples they are asymptotically equivalent,

as the following theorem shows.

13



Generalized Additive Model Local Likelihood Algorithm

1 Initialize the parameters e.g. by some parametric model fit and
denote the resulting preliminary fits by a® and ¥ = ¥, 'A)/gt) +a® .

2 For 1 <r < q update ﬁ/g) in the following way: Calculate S';L(t) and
/V(t) = diag(dy, ..., 0,) by using 7Y as plug-in estimate, and compute

~ RO NP SO (O
S g+ (n )4 §HOP 50

r

where i;t) =1,(7'") is the score with plug-in estimates.

O ()

3 Update @ by setting a0 = P 1" with P

— 1rv"

1) 1.
4 Set T = 3, 4" 4 @t

5 Iterate Steps 2—4 until convergence is achieved.

Figure 1: Local likelihood backfitting algorithm for generalized additive models.

Theorem 4.1 Assuming A.1 to A.5 hold, that the local likelihood estimator de-
fined through (19) is unique and that the local likelihood backfitting estimate '?SOO) =

('Aysoo), . ..,'T/SOO))T resulting from the algorithm in Figure 1 exists and is unique.
Then,

0 = M(F, —3){1+0(h)} (23)
Tria a2 : &~ oo
+0 ({R13, - 56} ) + 0 (355, - 50,
r=1
where the hat notation indicates plug-in estimates. ]f1\7I 18 tnvertible, this is equiv-
alent to 5, = 3°{1 + 0,(1)}.

The proof is similar to the proof of Theorem 2.1, as shown the appendix.

4.2 Relationship with local scoring estimators

There are a number of similarities and important differences between local likeli-

hood backfitting estimation and local scoring as described by Hastie and Tibshirani

14



(1990), page 141. At each iteration step, local scoring calculates

-1
) G _
A = W”%(%ﬁl {vi — h(7")}

and weights 3\ = {8h(7")/on}2Var (y;|7t”) 1, followed by a weighted backfitting,

where

1) = Sgt)/‘}(t)(z(t) —atty =1, g (24)
are iterated to convergence, with z() = (th)a X -Zy(zt))T- Because @z(t)zz(t) = @(t)ﬁz(t) +

lm(AZ(t)), step 2 in the local likelihood algorithm can be rewritten as

o~

A = 5OV 0 - 7).

T

This is very similar to calculating (24) in local scoring. The critical difference is that
at each iteration of the algorithm, local scoring calculates this step to convergence
among the ¢ additive component functions, whereas local likelihood backfitting only
performs a one-step update. Since this calculation is itself done on a first-order ap-
proximation of the data (the z;), it seems reasonable to assume that full convergence
of the additive model step might represent unnecessary precision and slow down the
algorithm. This computational efficiency issue is outside the scope of the current

article.

The same reasoning as in Theorem 4.1 also applies to the fully converged local
scoring estimator, since (24) can be written as (22) when the values for ¢t and ¢ + 1
are identical. Therefore, the asymptotic results of Sections 2 and 3 also hold for

both the local likelihood backfitting and the local scoring estimators.

5 Inference for local likelihood estimators

For point-wise inference about the estimates, local variance bands of the form
Ar(Tir) £ Zay21/ Var(Jr(xir)) are desired, for some distribution with quantiles 2z, /2. In
this type of pointwise bands, the bias is usually ignored and it is customary to use
the Gaussian distribution as an approximation to the true distribution, as done in
Corollary 3.1. In order to use these confidence bands, an estimate for the variance

of ,(z;) is required, and the fully asymptotic approximation in Theorem 3.1 is
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rarely satisfactory in this respect. From Theorem 2.1 and equation (15), it is easy

to derive the first order approximation
~ -1 o+
’Y.NM S.(ln+V77)

with 8T = (STT, . S;T)T. For the rth component,

where Q, = M"™S,(I — VS" ) with M"" as rth n x n block diagonal matrix of
M " and S, =Y., ST,. Hence, the variance equals in first order approximation
Var(7,;) = Q,VQI{l + 0,(1)}. This can be estimated by plugging in estimators
for v;,m; as required. In practice, matrix @, is numerically difficult to calculate
directly, since it requires inverting an nqg x ng matrix. Instead, using the definition
of Q,, it follows directly that @, can be calculated by solving the fixpoint equations

Q = S5 IT-V) Q) (26)

l#£r
for r = 1,...q, which can be applied iteratively in a backfitting fashion. It should
be noted that Hastie and Tibshirani (1990) use an approximation similar to (25) to
derive a variance estimator for local scoring, which is also implemented e.g. in the

gam() procedure in Splus.

An alternative approximation is given by Var(y,) ~ S’:VE':T, based on the fact
that the asymptotic variance of the oracle estimator in Lemma A.1 and that of the
local likelihood estimator in Theorem 3.1 are identical. This can be easily estimated
by plugging in estimators for v;,n;. We will compare both approximations in the

following section.

Even if such asymptotic variance approximations are reasonable, the confidence
intervals based on them ignore the bias and the distribution of the estimators, and
are difficult to generalize to simultaneous intervals. We are therefore interested
in providing an alternative inference approach based on bootstrapping. This will
require the use of different bandwidths to ensure convergence of the bootstrap (Efron
and Tibshirani, 1993). Because of this, we include an additional subscripts {h}
indicating the bandwidth used for fitting, e.g. 'Ayn{h} is the backfitting estimate
calculated with bandwidth h = (hy,...,hy), or 4,_, 1, is the oracle estimate
calculated with bandwidth h,. Moreover S, ;5,} is the smoothing matrix calculated
with bandwidth h, and Qr,{h} solves (26) for S (n,y, k=1,...¢.
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We now apply the bootstrap principle to (25). This means we replace the left
hand side of the equation by bootstrap replicates and replace the parameters on the
right hand side by their corresponding estimates. This leads to the local likelihood
bootstrap

¥r = Q. myhy + Vig) (27)

where plug-in estimates are used for Q, and V, f; (ny 1s a bootstrap sample from
Lyiny = 1;(Myyy) and 7ygy is calculated using a second bandwidth g = (g1, ... g,)
which tends to zero more slowly than the bandwidth h as specified below. In
principle there are various ways to draw i: (ny 0 order to obtain appropriate conver-
gence. A convenient method is to use wild bootstrapping as introduced by Hardle and
Marron (1991) for normal response smoothing models and extended to generalized
smoothing models in Galindo et al. (2000). In wild bootstrapping, the elements
of i:,{h} are drawn independently from a two point distribution with masspoints
Lyama x {(1—5Y2),(14+5Y2)}, i = 1,...n, and corresponding masses (c,1 — c)
where ¢ = (5 + 5/2)/10. This guarantees that the first three bootstrap moments
match the empirical ones. The following theorem shows that the local likelihood

bootstrap 7, 1, converges in distribution.

Theorem 5.1 Under the assumptions A1, A2’ A6’ and for bandwidth g = (g1, - - . g,)
chosen such that the (p,+1)th order derivatives are fitted consistently, i.e. ?g{’fﬁl)(wri)—
'yif’fg’;l)(xri) =0,(1), fori=1,...,nandr =1,...q as n — oo, the local likelihood

bootstrap "Ay:’{h} converges in distribution to 4, (3, i.e.

{34y (@ri) = Aty (@ri)} 5 {Frgny (@) = ()} (28)

In the same fashion one can also expand (18) to derive bootstraps for the intercept

«. This is not further explored here.

In (15), the score vector I, serves as vector of residuals while in (27) we bootstrap
from the fitted scores which mirror fitted residuals. As usual in regression models,
squared residuals underestimate the true squared errors in mean. It is therefore
advisable to increase the components of Zn,{h} by some multiplicator a; > 1, say,
such that

-~

E(aily; ny) = E(ly) (29)
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holds up to the second asymptotic order. In particular one finds for the 7th compo-

nent of ln, h by simple expansion

BB, ) = Bl = 0iQ iy + . F) m 0 = 200Q i + 0Q . V QY v

where Q, = Y/_, Q,, with Q, ; and @, ;; the ith row and the ith diagonal element
of Q.. respectively. Using Q, ~ S (based on Theorem 3.1) and the fact that
S, = O{(nh,)™'}, we find that a; can be chosen as a; = (1 —v; XF | S, +
v /25 F_, ST,Z-.VSZ:Z-,) such that equality (29) holds asympotically up to the second

order.

6 Simulation and Example

Simulation
The behavior of the local likelihood backfitting estimator is illustrated in a simula-
tion experiment and a real application. We generate data from the bivariate additive

logistic model

logit{E(ylx)} = m(w1) + 72(2) (30)

with v (z1) = 71/2 + exp(—42?)/2 and yy(z2) = cos(xm/2), where v;(-) and ,(-)
are centered in the usual way. We consider both a random and a fixed design for
the 21, z5. For the random design case, we draw (x1, z5) from a truncated bivariate
normal distribution with mean 0, variance 1 and correlation levels specified below,
truncated such that (x,, ;) € [—1,1]%. For the fixed design case, we select (1, o)

as a grid of 15% equidistant design points on [—1, 1].

In the random design, we can evaluate how close the asymptotic variance approx-
imations S':FVS':T and Q,V Q! are relative to the real variance of the estimators
for model (30). Figure 2 shows the approximation error when using S’:V,g':T as
variance compared to QTVQf for different correlation among the covariates. It ap-
pears that the simpler approximation behaves unsatisfactory for highly correlated
covariates, while the more complicated one remains close to the true variance of the

estimators.

For each design setting above, we draw now 200 replicates. The estimates are
fitted by local linear likelihood backfitting and in each simulation the bandwidth
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in chosen as minimizer of the Akaike criterion (see Hastie and Tibshirani, 1990)
max 23, 1,(7;) — 2df, where df =1+ Y1, tr(S,V) is chosen as measure for the
degree of freedom. To reduce the computational effort, however, we minimize the
Akaike criterion over the 2 x 2 grid (0.15,0.3)? only. In what follows, we will use the
wild bootstrap for inference around the estimated additive functions, using B = 200
bootstrap replicates. The second bandwidth g = (g1, go) for bootstrapping is chosen
by the rule of thumb g, = h(2Pr+3)/2pr+5)  Figure 3 shows a typical simulation of the
random design setting with corresponding pointwise bootstrap bands. Table 1 gives
the simulated coverage probabilities at selected design points for random design
setting based on the 200 simulations. It appears that the bootstrap behaves rather
satisfactory, though it shows slight undercoverage at the boundaries and at point
x1 = 0 for 71(+), which is at the local peak as seen from Figure 3. In contrast, slight
overcoverage is seen for inner points of 5. The same behavior is found for the fixed
design case as shown in Figure 4. In general, the coverage behavior exhibited in
this simulation is not surprising and is in line with that of bootstrapping in simpler

nonparametric regression settings.

Example We briefly discuss a data example considering the creditworthiness of cus-
tomers of a bank. The German Hypo-bank provided data of 700 sucessful (y = 1)
and 300 failed credits (y = 0), with explanatory quantities z1: the amount (in DM),
xy: the period of the credit (in months) and z3: the age of the borrower (in years).
Additionally we take x4: the gender of the borrower into account which is included

as parametric fit. The resulting model is

E(ylwy,...24) = M{y(z1) + 72(z2) + 3(23) + 248}

with h(-) as logit link. The data are made public on the webserver

http://www.stat.uni-muenchen.de.

Figure 5 shows the resulting local polynomial backfitting estimates in a logistic
model with pointwise bootstrap confidence intervals. The bandwidth for the first
three plots is chosen as h = (3500, 30,15) by an Akaike criterion, for the gender
effect we fitted single effect for each category, i.e. we chose h, small such that the
resulting weights equal 1 or 0, i.e. the gender effect is fited as factorial effect. It
appears that the period has basically a linear effect while age has a quadratic type

effect, showing young borrowers to be more risky in paying back a credit.
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7 Discussion

In the paper we give a general discussion of asymptotic properties of backfitting
estimates in generalized additive models. We propose the local likelihood backfitting
estimate which shows as a numerically simpler form of the local scoring algorithm.
We proof consistency for both estimates, where our theoretical arguments are based
on properties of the oracle estimate. From a practical viewpoint, the results given in
the paper provide the so far missing theoretical justification for variance expressions
for estimates in generalized additive models based local scoring. For practioneers
this means, that confidence bands as e.g. plotted by the gam() in Splus result from

a rigorous theoretical reasoning.

Moreover a bootstrap procedure is suggested which extends available bootstrap

approaches to generalized additive models.

A Proof of Theorems

Proof of Theorem 2.1:

Let Xzijﬁr,i be a Taylor approximation of 7,(z,;) and define 6,;; = v, (z,j) —
XvT,ij'B = P+ (2,.) (25 — 200)P T/ (pr + 1)! + ... as approximation bias, where
Orij=0{(xr; — ;)" }. Note that 3; w0,/ S wra = O(R*1HP/2). The local

likelihood estimate Bm is obtained from (19) while the oracle estimate B solves

(12). To avoid confusion in the following we use brackets of the type‘ () if we
refer to parameter arguments while brackets {-} and [-] are used for arithmetic
reasons. We define 7),;; = XZZ-]-BM + 7 and gy = Xzijﬁm + n_r; with
Nrj = @+ Ypzr Vi(Trj), s0 that m; = @ + vj + Y—rj = N@)ij + Orj- Expansion

of the local estimating equation (19) about the oracle estimate B and the true

r|—ryi

parameters 7_, ; yields

0 = ZwﬁinT,ijlnyj(XvT,ijBr,i+77—T,j)

j=1
n T —~
= > Wi X il i (X758 i+ M)
j=1
n T T ~ ~
- Z wr:inT:ij'Uj(Xr,ij/ﬂﬂ—r,i + nfryj)[Xr,ij{lBr\—r,i - /Br,i} - {ﬁfr,j - 774,1‘}]
7=1
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1 & -~ - - R 9
B Z wr,inr,ijU;‘(XZ:ij:Br\fr,i + n*T,j)[XrT,ij{/Bﬂfr,i - 181",2'} — {0y = g7+
j=1
. . n
= 0+ FT,i{lBr\—r,i - /Br,i} - Z wr,inT,ij'Uj{ﬁ*T,j - n*T,j} (31)
7=1

+ 3w X i [ XA B i = Brit — v i XL iABr i = Brit — (liryis — 1r).gs)]

i=1

12 ~ R 2
5 Z wr,inT,ijv;‘ [XZ:z'j{/Brkr,i - /31",1'} - (W(r),ij - n(r),jj)] +...
j=1

We now group terms in (31) to obtain a polynomial equation in B — B, We

r|—ry

define the p, dimensional vector
. n
A = —F{B =Bt — Y wrii X i vy — n-rj}
j=1
n
/ ~
+ 2 WiV X ijrig{ ey as — Mg b
j=1
> WiV X iy — M, 1

1
2:3

+

the p, X p, dimensional matrix

n
e ! T
B,ni = Fr,i + Z wT‘,ij,Uj6’I‘,in’I',in

) 4]
i=1

and the p, X p, X p, dimensional array
1 n
Crifotw) = 5 22 Wrigi X rii ()X ris ) X ri ()
j=1

where the bracketed subscripts here and in the following indicate the element of the
array with 0 < s,t,u < p,, e.g. X, 5 = (Tri — z,;)*~". This allows us to write the
sth element of (31) as

(1)
0 = AT:i:(S) + Z BT;i;(St){IBr\fT,i - 161(3} (32)

t

~(t) ~(s) 5
+ Z Cr,i,(stu){ﬁﬂ—r,i - /37("2}{/37"|—r,i - /31(",2')} Tt
tau

(®)

r|—r, Tefers to the ¢th element of B We show now that

where superscript 3 =7yt

B, = Frien{l+ O(hgmpr/%)} (33)
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Considering F',; one finds

O(nhstt=1)  for s+t even
rist) = { (34)

O(nh:tt) for s +1 odd

For the second component in B,.; one obtains

n
[Z wr,inr,ijvgér,inZ:z’j] (st)

7=1
_ TL/K <$m’ - $r> (x”_ - ajr)s+t+prflvl (l‘r){#')/(pwrl)(m”) 4. -}fr(ffr)dffr
h, " (pr+ 1)1
S S — 1
= nhyt /K(z)z Ty (2 — Zh){m'y?(ﬂpﬂ)(zr,i) + . e — zhy)dz

O(nhgtttrr) for s + ¢+ p, odd
O(nhstHPr+1)y  for s + ¢ + p, even

where v](z,) = [V (Ve (2rs) + n-r(x_) + @) f(2_|z,)dx_,. Comparing these quan-
tities with (34) immediately shows (33). In the same fashion one can show that all
components involving 4, ;; are of negligible asymptotic order. Defining Bfnsf ) as the
(s,t)th element of the inverse of B, ;, we find by standard series inversion of (32)

(see e.g. McCullagh, 1987[chapter 7])

~(s) s s
{:81"\77",1' - /37(",1)} = - Z BS‘,;)AT,i,(t) (35)

t
— ¥ BB B Criwn AvimAri) -

t,u,v,w,z
~(1
We are interested in the approximation for 4, —r; — v, = Bv("l)—m' — ,Bsi). Using (33)
and the definition of A, ; we find that the first component in (35) decomposes to

n
Y B A = [T it e FL Y we Xegui{i ey =g} (36)
1 j=1

{1+ O(hHe/2)}

n

el Tl [ D wrii X rijv)0,.50 (i — My i) (37)
=1
+ > wri; X 13 05O {7y i5 — Ny }o) + - -]-(38)
=1

The components in (36) are equal to ¥,; — v,; + S,;. V{n_, —n_,}, where S,

denotes the i-th row of S,. For the centered estimate 4, the smoothing matrix S,
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is replaced by the centered version S;". Since (37) involves the approximation bias
dy,ij, this component is of negligible order, using similar arguments as applied above.
Finally, (38) results from quadratic terms, e.g. from the latter component in A,

one gets

I . 2
elFT,il Z wTaijv;XTaZ][ r Z]{/B’I”L /Br,i} + {U—r,j - 77—7%]'}] (39)

j=1
O ({3rs = i} + Sri VA, = 0 HAri — i} + 8 VAR, =1, }7)

where V' = diag(v},...,v)). From A4 we get v} = O(v;) for i = 1,...n and it is
easily seen that O(S, ;. V'{n_, —n_.}?]) = O([S,;. V{n_, —n_,}]?). Similar terms
as in (39) result from the second component in (35), which together with (39) are

contained in the correction components in (20).

The components containing quadratic terms can jointly be written as a quadratic
form 7% _, D DY )(’Y-( )~ Yo.i) Ve,(h) = Vo)) With indie(zs J and k refering to the
corresponding element of v, and 4,, respectively. Here Dfnjl )is an array of dimension
(ng) x (ng). Combining this, we can write (36) jointly for all ¢ = 1,...,n and
r=1,...,q as matrix form

n

Voo =Y = MA =)+ D D(jk)ﬁ’-,(j) ~Ye,5) Aoy = Vo)) (40)
Gk=1
with D as (ng)® dimensional array build from M and D, ; so that (20) follows. If
M is invertible, we can invert (40) and find
(k)
(¥

:7\/0_70 = Mﬁl(?o‘—o_70)+ Z D
Jk=1

Vel—oii) = Yo.)) Vo|—a sty = Yo, (t))

with B(jk) as (nq)? dimensional array build from M and D. Since Yo/ Is consistent

by Lemma A.1 below, the second part of Theorem 2.1 follows.
[

Lemma A.1 Under assumptions A1-A5, the conditional bias of the centered oracle
estimator Y|, (x,;) is approximated by
E(:)\/r\fr(xm) ’Yr (:I:m)|X17-X2)

hpTHM ,y(pT+1)($ ) —
" (pr +1)! ' "

B, (s(n)y (X))
£, (o () )*017”” - D
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The conditional variance of 'Ayr‘_,n(x”-) 15 approximated by

R(K)vy (i) frl@es) (1 + 0p(1))

~ 1
Va"r(%"\—r(xri”Xla X2) - nh

The conditional covariance of Yy (2,i) and 3y (xrj), © # j, is approzimated by

Tyj — Tri

COU(:)\/TPT(:L'M);:)\/r\fr(xrj”Xl;X2) — h

1
K*K(

nhy ) ()™ ) (Lo, (1)

where K x K denotes the convolution of K with itself. Finally, the conditional

covariance of Vy—r(¥ri) and Ys—s(2s5), v # 5, is approzvimated by

1 Urs(xriaxsj)frs(xriaxsj)

n O (@) Vs (T55) fr (T0i) fs (2 55)

where f.s denotes the bivariate marginal density for (X,, Xs) and ves(x,,x5) =
E.(v(n)|X, =z, Xs = x4).

COU(&T\—T(Z‘M): ﬁ/s|—s(xsj) |X17 X2) =

(14 0,(1)),

Proof of Lemma A.1:
The approximations follow from (15) and the asymptotic results in Opsomer and

Kauermann (2000) for weighted local polynomial regression.

Lemma A.2 Under assumptions A2'-A6’,
Pr{there exists N such that M is invertible for alln > N} =1

and

(I-8STVvS;v)™' = (I-T) "' +o(11"/n) a.s.
= I+0(11%/n) a.s.

Proof of Lemma A.2:

This lemma is a direct generalization of Lemmas 3.1 and 3.2 in Opsomer and Rup-
pert (1997) for the weighted local polynomial smoothers discussed in Opsomer and
Kauermann (2000). M is invertible if (I — STV S5 V)=t exists. The approximation

STVSIV =T, +0(117/n) as. (42)
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follows from assumptions A2'-A5’, using standard kernel moment approximations
and the uniform convergence theory from Chapter 2 of Pollard (1984). Assumption
A6’ and (42) then lead to the invertability of M.

Assume now that (I — STV SFV) ™! exists. As in the proof of Lemma 3.2 in
Opsomer and Ruppert (1997), the two approximations from the lemma follow if
we can show that Y2 Ttk = O(117/n) a.s. Using Corollary 5.6.13 in Horn and
Johnson (1985) and assumption A6’, we know that there exist € > 0 and C' > 0,
such that

C
xk k
max [T < (1 - o)
Hence, max; ; | Y252, [T4]i;] < K/n as desired.
|
Proof of Theorem 3.1:

For ¢ = 2, the matrix M ! exists for sufficiently large n and can be approximated
by

(I-T})™" —(I-T5)"'SV

Sa-Ty) sV ey | e

|

using the formula for the inverse of a partitioned matrix (Horn and Johnson, 1985,

p.18) and Lemma A.2. Now, using Lemma A.1,

I - TT2)_1E('A71|71 — 7| X1, Xo) =

' Eo{o(n)}

(p1+1)
p1+lﬂp1+1(K) o -1 (p1+1)_Ea:{U(77)'71 (z1)} p1+1
hy (pr + 1) (I —T) +0p(h'T)
since T,1 = 0. Similarly,

(I - TTQ)_ISTVE(’AYze — 7| X1, Xo) =

K ‘ E, (p2+1)
e )<<I—T1<2>-1E{v§““><xz>|xl}— b () o, g,

(p2 +1)! Eo{o(n)}

leading directly to the desired bias approximation.

The variance-covariance matrix of 4, is

Var(7,[ X1, X»2) = (I - TTz)_l X {Var(?)’nq) - STVCOV(’%\A/A&\Q)
—Cov(F1-1,F2 ) VST + STV Var(Fy o) VST } x (I = T7,) (1 + 0,(1)).
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Using Lemmas A.1 and A.2 and standard kernel moment approximations, it can be
shown that the terms involving Cov(7y_1, %, _5) and Var(4,_,) are o,(1/nhy), and
that

Var(y,| X1, X2) = Var(’?”,l)(l + 0p(1)),

proving the variance approximation in the theorem.

Proof of Theorem 4.1:

As above we use brackets (-) to refer to parameter arguments while brackets {-}
and [-] are used for arithmetic reasons. Moreover we use the hat notations to refer
to plug-in estimates. Taylor expansion and simple calculation allows to derive from

(22) at convergence

n

~ ()

0 = DXl + 3 0 X0 G - XT,8T)
= J 1

_ ~(0) o ~(00) =
— Z Wy K7 rz] n,J Z Wy K7 T’L]U] ('Yr] 'Yr,j + nfr,j - 7771",]')

7=1

Z Wr,ij rzj'U '75] %) - '71",] + 77( r,; ﬁ*T,j)2

l\')lr—A

~ ~(00)
+Zwr,inr,ijvj(7§,j) X7Bri)
j—l

(00)\  ~(c0)  ~ (o0 _
+Zwrz] rz]v '7( ) XT/B )(%E,j)_’yT,j+77(—r,;_77*T,j)+“‘

n
S0 = Fi— A7+ eF S w g X iU (7 — 7))

j=1
1 g N ~ ~(o0) ~ ~
—gelF YN w0 X i 0 X i (B — Bry )+ T—rg — 15}
j=1
e ~(00)y | ~
+e F Z Wr,ij X 130 Y TZ]{XT Z]( - /Br,i )+ -rj — 77(—023} (43)
j—l
B 1500 44
+ 61 Zwrl] rijUs0p 0 e (44)
where gm’j = Ypj — m;ﬁr i; and analogous definition for (5r ij - Since 7, is assumed

to be sufficiently smooth the component (43) are of negligible order. This follows

since d,,; — 0,,;; and as shown above, components including 9, ;; vanish with order
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O(h?). Finally, (44) is decomposed to

-1 I
Z Wr,ijAr ZJU]6T ij

A(oo) ~

= elFil{Z wr,z’j 7,ij J 1"1] +Zwrw 7,ij ] rzy{’yr] r/}\/T,j_'—XT,ij(/Br,i _:Bm')}
$ - S(0) 5 12
+ 3 W X B0 = Arg + X (B = Bra) Y

The first two terms are of negligible order using the same arguments as above. The

last component builds the extra correction term given in (23).

Proof of Theorem 5.1:
As will be shown below, the bootstrap (27) is directly obtained from the “oracle
bootstrap”

;7\/7*"|_7‘ = Srr{h‘}ln:{h} + ST’{h}V’/yrr{g}' (45)

Note that (45) results from applying the bootstrap principle to (15), i.e. replacing
the parameters by estimates, and the estimates by bootstrap replicates. We show
first that the oracle bootstrap converges in distribution to 4,_, (3. Let G7 ()
denote the distribution function of (nhy)*{7; _, (1 (@ir) = () (i) } and Gyi(-) be
the distribution function of (nh,)"2{7,_, (n.} (xir) =7 (x:r) }. We show by expansion
of Gy ;(-) about G, ;(-) that

Gri(1) = Gra() (46)
forn — oc. Let &}, [ =1,2,... denote the cumulants of Gy ;(-). For &} we find with

the definition of the wild bootstrap and by using (20) and (41), assuming p, to be
odd,

. T _
Rl = () {8010 VAt — Ve HL + 0p(1)}

_ 1271 pr+12a@r+1) tp,+1(K)
= (nhy)/°h} Tr{g} (ri) (pr+1)!{1+op(1)}

where 377t o) )( ) is the p, + 1-th order derivative of the estimated function 4, (,(*),

T
and S, (5,},. is the ith row of the smoothing matrix. Moreover, the second order

cumulant results by
oy ~ . ~2 ~T
Ky = nh.S, n,yidiagly, 4y) Sy 1,41+ 0p(1) }

27



and in close analogy we obtain higher order cumulants, where it is not difficult to
check that the third order cumulant has negligible order O,(n=*/2h1/2). With &,

we denote the cumulants of G, ;(-) which are found as
_ 1/27 pr+1, (pr+1) fp,+1(K)
mio= (nhy) VPR (1) SR {14 0,(1))
(pr +1)!
Ky = nheSpiny Vil +op(1)},

and k3 = O(n~Y/2h~'/2). Finally, we define &, := &} — k, and &y = &% — Ky + 0,0,
and 83 = Ky — K3 + 36201 + gi” and similar definitions for higher order terms (see
McCullagh (1987, page 144) for more details). Considering 8, we find

b= OO (i) = AP ()}

Taking p, as odd with h, = O(n="/®P*3) as optimal bandwidth (see Fan and

Gijbels, 1996), we find &, = 0,(1) if 3% (2;r) — 7P+ (2;,) = 0,(1). This means

&, vanishes asymptotically if the (p,.+1)-th order derivative is estimated consistently.
This holds if g tends slower to zero than h (see e.g. Fan and Gijbels (1996) or Gasser
and Miiller (1984)). Similarly, for 6, we find by standard arguments

~

.2 ~ o
oy = nh,S, n,yi{diag(l,) — V}Sz{hr}7i, + 0,01
= Op(”_l/zhr_lp) + Op(g%)

which is 0,(1) if 8, vanishes. Finally, &5 = O,(n 'h™1) + O,(n 2L "Y2)O(5,) +
0,(8%). Making now use of an Edgeworth series as given for instance in (McCullagh,
1987, chapter 5) (see also (Davis, 1976)) we find

G:,z() - + Z Grz 6 /l' (47)

where Gﬁlz() denotes the I-th derivative of G, ;(:). The second component in (47) is

0,(1), as shown above, which in turn proves (46).

Using (20), we defines the bootstrap equation

Feicony — Yot = Muy(Ve 0y — oty (48)

and inserting (45) in (48) leads with simple matrix algebra to (27). Hence, if M is
invertable, the local likelihood bootstrap results by a linear combination from the

consistent oracle bootstrap which finally proves the results.
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Y1(21) Yo(w2)
nominal level nominal level
T 090 0.95 To 0.90 0.95

-0.75 885 935 |-0.75 .840  .890
-0.5 910 945 -0.5 .880  .945
-0.25 905 940 |-0.25 .940 .970

0 780 .890 0 985 990
0.25 955 980 | 0.25 .935  .955
0.5 .910  .950 0.5 .887  .950
0.75 .895 .955 | 0.75 .840  .905

Table 1: Simulated pointwise coverage probability for uniform design (b)
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Figure 2: Calculated standard deviations using the approximative formula
T

(S’:VS’: )12 (lines) compared to (Q,VQY)Y? (dots) for different values for the
correlation p among the covariates (upper row p = 0.45, lower row p = 0.9) and
bandwidths h; = hy — 0.3.
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Figure 3: Simulated local backfitting estimate (solid line) and pointwise .05, .5 and

.95 bootstrap quantiles (dashed lines). Dotted line shows true curve.
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Figure 4: Simulated pointwise coverage probability for fixed design, nominal level

.90 as solid line, nominal level .95 as dotted line.
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Figure 5: Backfitting estimates in credit data (solid line) with pointwise .05, .5 and
.95 bootstrap quantiles (dashed lines).



