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Abstract

Pattern mixture models constitute an alternative to selection mod-
els (Rubin, 1987). Little and Wang (1996) introduced pattern mixture
models for analyzing multivariate normal longitudinal data with missing
values. This paper was the theoretical foundation and the induce to inves-
tigate the small sample properties of pattern mixture models compared
with complete case analysis. The main point of interest, of the simu-
lations, was the mean square error of the estimated model parameters.
Parameters estimated by the pattern mixture model are very satisfying
under ignorable mechanism but they have to be scanned carefully under
nonignorable mechanism.

1 Introduction

In longitudinal data often wave nonresponse occurs. In this case Maximum
Likelihood (ML) is one possibility to deal with nonresponse (Little and Ru-
bin, 1987). To factorize the likelihood two common approaches exist: selection
models (SM) and pattern mixture models (PMM). Where the main interest is
not the marginal mean averaged over the pattern, but the conditional mean of
the completers together with the probability to complete or to drop out of the
study, then PMM is the suitable approach to the problem. The typical feature
of PMM is that the distribution of the missing mechanism only depends on
the covariates and not on the outcome variable. This is caused by the way the
likelihood is factorized.

A new class of pattern mixture models for multivariate incomplete data were
first discussed in Little (1993) where missingness is assumed to depend on an
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arbitrary unspecified function of a linear combination of two variables. Little
(1994) has a look on PMM in the bivariate normal case with no covariates. Little
and Wang (1996) extended this approach to longitudinal data with wave nonre-
sponse for multivariate normal data with fixed covariate matrix. The main focus
is on the theoretical framework for ignorable missing mechanism (IM) and non-
ignorable missing mechanism (NIM) and how to calculate the parameters of the
model in each case. Introduced are ML methods, which were also integrated
into the EM algorithm for over-identified models. In the following years fur-
ther papers were published. Molenberghs, Michiels, Kenward and Diggle (1998)
show that the taxonomy of missing data models can also applied to PMM. Fair-
clough, Peterson, Cella and Bonomi (1998) illustrates the use of several different
model-based methods, including PMM, for different kind of missing mechanism
based on real data. Ekholm and Skinner (1998) discusses the advantage and
disadvantage of the PMM and SM by reanalyzing the set of binary, partially
incomplete data from Woolson and Clarke (1984). Michiels, Molenberghs and
Lipsitz (1999) have a look on the similarities and the differences of modeling
incomplete data with SM and PMM. The main stress is on MAR. A special view
on random-effect models accommodated to a pattern-mixture model is shown in
the papers of Hedeker and Gibbons (1997). A further approach is to combined
SM and PMM. This is discussed in Molenberghs, Michiels and Kenward (1998).
A sensitivity analyze based on location and scale changes is discussed in Daniels
and Hogan (1999)

The aim of this paper is to show how influence factors, which can not be
influenced by the analyst, will influence the estimate of the parameters in the
PMM. The subject of our investigation is the influence of correlation among the
measure points, number of subjects and share of missing values. The survey is
made for the ignorable and nonignorable nonresponse.

In Section 2 we will give an introduction to the theory of PMM. The structure
of the simulation is described in Section 3. In Section 4 we present the results.
A final discussion is given in Section 5.

2 Theory of Pattern Mixture Models

We want to analyze data from a random sample of n independent observations
of T' continuous variables Y = (y1,...,yr)" and p categorical covariates X =
(1,...,2p), where X and a subset Ty of Y, Y1 = (y1,... ,yn)’, is completely
observed for all n subjects and the remaining 75 = T — 77 measure points,
Yo = (Y141, - ,yr)" are observed for ng and missing for ny = n — ng subjects.
Further we want to introduce the indicator variable m, with m = 0 if y;; is
observed for all t = 1,... ;T and m = 1 otherwise. This structure could appear
in longitudinal data with one dropout point, but could also be generalized to a
monotone missing pattern. So we divide our dataset twice with the indicator



vector m. Therefore we have four parts of datasets

VY vy

VoY)
which could be characterized by their moments. The matrices indicated by 0
include all completers and the matrices indicated by 1 include subjects drop-
ping out during the study. To define the different patterns indicated by m we
introduce the scalar g € 0,... ,G — 1 where G is the number of different missing
patterns.

We specify the distribution of the missing mechanism and for every strata
of missing pattern a distribution for Y given X:

(m|X) ~ina Bernoulli(n(X))
(yi | X,m= g) ~ind Nt (Bng Eg)

withi =1,...,n. 7(X) is the probability for m = 1 conditioned on the covariate
strata. 7 is received by a standard logistic regression from m on X. (y; | X,m =
g) is a multivariate regression of Y on X for pattern g with regression coefficient
matrix BY and covariance matrix 9.

Using ML methods we have to factorize the joint distribution of ¥ and m
given X. There are two common approaches: the selection model

fY,m | X)=fY [ X)f(m]|Y,X) (1)
and the pattern mixture model
fY,m | X) = f(m | X)f(Y [ m, X). (2)

In both the joint distribution of Y and the missing mechanism m has to be
specified, but the way of factorizing this joint distribution is different. Pattern
mixture models assume that f(Y | m, X) is a mixture over the missing patterns.
This means that the parameters for the model have to be calculated separately
for each pattern. An additional characteristic feature of this approach is that
the distribution of the missing mechanism depends only on the covariates and
not on Y. In contrast to this the selection model specifies the complete data
distribution f(Y | X) and the missing mechanism f(m | Y, X) depends on Y.

To treat nonresponse in the correct way, we have to distinguish between
ignorable nonresponse and nonignorable nonresponse (Rubin, 1987). Ignorable
nonresponse exits, when missingness depends only on the covariates and the
complete observed measure points:

Pm=1|Y,,Ys,X)=P(m=1]|Y,,X). (3)

In this case ML estimate are straightforward and we are allowed to ignore the
missing mechanism. Nonignorable nonresponse exists, when the missingness
depends on the unobserved outcome variable:

Pim=1|Y1,Y5,X)=P(m=1]|Y,,X). (4)



To get consistent estimates we have to specify the missing mechanism in a
correct way otherwise the ML estimate will be biased.

The aim of PMM is to calculate the moments of the distribution averaged
over the pattern. First the moments from the strata and time points, which
weren’t observed, have to be estimated, namely all those related to Y. After
factorizing the distribution like (2) we are able to estimate f(m | X) but not
FY | m,X). If missing depends on X and Y; (IM), we factorize

f(YthZ|X7m:ga¢g) = f(YvZ|Yv1;XJm:g7¢gl)
Xf(Yl |X7m:gv¢i])7

where ¢f = (BY, ., X7, ,) contains the regression coefficient and the resid-
ual covariance matrix from the multivariate regression: ¥; on X and ¢3, =
(B3, 12+ B3, 1225, 1,) contains the two regression coefficient matrices and the
residual covariance matrix from multivariate regression Y2 on Y7 and X. In this

case (3) is converted to ¢9; = @3 ;. Now we are able to calculate the missing

moments:
Elz.z = (1 _ﬁz)ggzz +ﬁzB%z.z;
St = (1= p0)S0 . + 5eStis
+Pa(1 = Pa)(BY, o — Biy )X X'(BY, , — B, ),
gZz.w = Bgzz + Bgl.lz(glw.w - B?z.z)?
Sote = B9, +B% 1. (S1. -39 ,),
Sare = 95, + B 1S — i3(1)1.95)3(2)11.133- (5)

where p, = P(m = 1| X, #) and 7 is the ML estimate of .
If missing depends on X and Y> (NIM) we have to factorize f(Y | m, X) in
the other way:

Yo | X,m=yg,4") = f(V1|Ye, X,m=g,¢{,)
Xf(Y2 | Xam:ga¢g)

where ¢§ = (B

S s 252 ) contains the regression coefficient and the residual

covariance matrix from the multivariate regression of Y2 on X and ¢{, =
(By 95y BY, 2,29, 5,) contains the two regression coefficient matrices and the
residual covariance matrix from multivariate regression of Y; on Y5 and X. We
convert restriction (4) to ¢? 5, = ¢1 ,.

The structure of ML estimate now depends on the dimension of T7 and T5.
For Ty = T, ML estimate of By,., and ¥1; . are equal to (5) and ML estimates
of the remaining parameters are

BZx.z = ngz + (E?2.21)71(E11~1 - B?zz)?
Sore = 39, + (Blag,) (Z11. — X9 ,),
Yoy = igzx + (3(1)2.136)71(211.90 - i3(1)1.90) (3(1)12293)



This type we want to call NIMED (nonignorable mechanism with equal di-
mensions). For T; > T, we will have an overidentified model, which requires
iterative methods. This type we call NIMUD (nonignorable mechanism with
unequal dimensions). A convenient approach is the EM algorithm. C includes
all subjects with pattern m = 1. The E-step at each iteration estimates the
statistics in C, namely,

Su= Yk Sa= sk Sa= Y vk

ieCy i€Cy ieCy

by their conditional expected values given the observed data and current esti-
mates of the parameters. These quantities are output from the regression of Y5
on X and Y; from cases in C;, with parameters set at their current estimates for
C1. The M-step computes new parameters estimates by a complete-data maxi-
mization subject to the constraints induced by the missing-data assumption. In
particular, for the restrictions of (4), parameters of the regression of Y5 on X
(namely, ¢9 and ¢3) are computed separately for each pattern, and parameters
¢1.0 of the regression of Y7 on Y5 and X are computed pooled over pattern.

If Th < T>5 then the model is not identified. We would need more restrictions
to identify the model. One approach is P(m = 1 | Y¥1,Y5,X) = f(Ya., X),
where Y5, is a subset of Y2 with dimension T3, < Tj. In this case we can get
the solution by extending the 77 = T5 approach, if 77 = T, and the T} > T,
approach, if Ty > Ts,. Therefore we don’t want to have a closer look to this case,
because we caan transform the structure of the data and treat it like explained
above.

3 A simulation study

Aim of the survey was to investigate small sample properties of PMM compared
with those of the complete case (CC) and the available case (AC) estimator.
Therefore, the conduct of the estimators was investigated by changing the frame
conditions of the data namely correlation structure between time points, number
of subjects, missing mechanism and share of missing values. The second inves-
tigation unit became necessary, due to appearing problems in the nonignorable
case. Further we investigate the small sample properties under misspecification
with regard to the missing mechanism.

A useful tool for multivariate regression is the sweep-operator from Dempster
(1969). Here we followed the suggestion of Little and Wang (1996) to implement
the PMM. The algorithm is implemented using C++ (Stroustrup, 1997). Basic
data structures were supplied by the library of Heumann, Fieger and Kastner
(1998). Random numbers are generated using the DRANDA48 generator, which
is supplied by SunOS 5.5 as a C-library function (SunOS, 1995, man Pages(3C)).

Following the example in Little and Wang (1996) we create datasets with
three treatment groups when we have 250 subjects and two treatment groups
when we have 50 subjects. The regression parameters are dependent on the



time points and the treatment group. The distribution of the error term was
multivariate normal. For details see Storck (1999).

After data generation missing values were produced using the function P(m =
1]Y1,Y2,X) = aY; + bY2 + ¢X. With the right specification of a, b and ¢ the
missing mechanism mentioned above can be simulated. With every simula-
tion adjustment we investigate the three missing mechanisms IM, NIMED and
NIMUD. Every single simulation contains 1000 runs under the same adjust-
ment. We want to give a short view on the different adjustments for the three
investigation units.

Unit one has to compare CC, AC and PMM in regard to the MSE criterion.
For that we combine the adjustments: number of subjects (n € {50,250}), share
of missing value (mis € {30%,60%}), correlation (p € {0.1,0.3,0.5,0.7,0.9}).
Hence we have 60 Simulations in our first unit.

One problem occurring during the simulation was that the NIMED type de-
livered very bad results when correlation was low. So we decided to calculate
NIMED with the EM algorithm of NIMUD. This is subject of our second inves-
tigation with ten simulations. Possibilities of adjustments were n = 250 with
mis = 30% or n = 50 with mis = 60% combine with p € {0.1,0.2,0.5,0.7,0.9}

In the third unit, containing 15 simulations, we were interested in what will
happen if the a priori assumption is wrong. For this case we have chosen fixed
assumptions with n = 250, mis = 30% and p = 0.5 and combine those with
the extent of misspecification. The misspecification will range from 0 (which
means right assumption) to 1 (total wrong assumption). Between this intervall
(namely 0.2, 0.4, 0.6, 0.8), missingness will depend on Y7 and Y5 in different
weights.

We decided to choose the mean square error to compare the three estimators.
This choice is theoretical based on the matrix-valued MSE criterion as discussed
in full detail e.g. Rao and Toutenburg (1999). The MSE will cover as well bias
as variance of the estimates. So we will not assess an estimator higher than
another when he has little bias but too strong variance and the other way
round. To calculate the MSE we used the equation:

E{(B—B) (B—B)'},

where B is the estimated regression parameter and B the known regression
parameter.

4 Results

For AV and PMM there was no reason to complain for the estimate of the
parameters for the completely observed time points, right through all missing
mechanisms. For CC we could see, that only under low correlation and non-
ignorable mechanism the estimate had a MSE equal zero. For the ignorable
mechanism we notified that even at a very low correlation the CC has a high
MSE, which will increase with a stronger correlation (see Figure 1). For the
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Figure 1: MSE of the full observed time points depending on the correlation.
Investigation unit one with 250 subjects and 30% of missing values. line: PMM;
dashed line: CC; circles: AC.

incomplete time points, as one can see in Figure 2, AV and CC deliver only un-
der low correlation and IM assumption estimates with low MSE. If missingness
depends on Y2 (NIMED and NIMUD) AC and CC have a stable high MSE inde-
pendent on the correlation. The share of missing values make it even worse, but
it seems that the number of subjects is not relevant for the height of the MSE
in this case. PMM estimated the parameters of the incomplete time points to
our complete satisfaction under IM. Even a low number of subjects with a high
share of missing values didn’t influence the MSE, it was always near to zero.
In contrast the PMM did disappointingly on the estimates in the NIMED case.
We notified, that the MSE will become close to zero only when the correlation
grows to a particular strength. This was with 250 subjects about 0.3 and with
50 subjects about 0.7, independent on the share of missing values. Under this
correlation barrier the PMM is even worser than the AC and CC model. A
more positive idea of PMM we got under the NIMUD assumption, where the
parameters were estimated via the EM algorithm. Under a low correlation we
could see, that the PMM is of the same quality as the AC or CC estimates. But
with increasing correlation PMM will get much better then the AC or the CC
model. Even though we reached a MSE close to zero only under the very high
correlation of 0.9.

Because of the very bad result in the NIMED case under low correlation
structure in the data, we made the next investigation unit and tried to get
better results, when we calculate the NIMED case with the EM algorithm of the
NIMUD case. Here we just want to have look on the interesting incomplete time
points. The statement we can make is that the EM algorithm is an advantage
only in the case that we have a low correlation. In our model with 250 subjects
and a share of missing values the correlation barrier is about 0.3, then the exact
estimate method will be better than the asymptotic one (see Figure 3).

Another important question was what will happen, when me make the wrong
assumption about the missing mechanism. The estimate of the complete time
points is not affected by this assumption, so we have only a look on the incom-
plete time points. Starting with IM we could see (Figure 4) that the MSE of the
PMM was increasing while we intensified the wrong assumption, nevertheless
the MSE was always smaller than those of AC and CC. At the NIMED case we
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Figure 2: MSE of the incomplete time points depending on the correlation.
Investigation unit one with 250 subjects and 30% of missing values. Line: PMM;
dashed line: CC; circles: AC.
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Figure 3: MSE of the incomplete time points depending on the correlation
using the EM algorithm for NIMED situation. Investigation unit two compares
simulations having 250 subjects and 30% of missing values with 50 subjects and
60% of missing values. Line: PMM; stars: PMM with EM algorithm; circles:
AC.

notified a very strong reaction with respect to the wrong assumption. Already
with a medium misspecification of the missing mechanism we had a worser MSE
than AC and CC. For the NIMUD type of missing we can remark, that a wrong
assumption have YEAR = 1994only a positive effect on the MSE. As these sim-
ulations run under the fixed adjustments of n = 250, p = 0.5 and mis = 0.3
we could proceed from the assumption that an increasing correlation or share
of missing values have the same effects on the estimate quality like described
above.
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Figure 4: MSE of the incomplete time points depending on the extent of misspec-
ification of the missing mechanism. Investigation unit three with 250 subjects
and 30% of missing values. Line: PMM; dashed line: CC; circles: AC.

5 Discussion

Under the IM assumption, the PMM delivers very satisfying estimates. We
could see that the PMM estimator is unbiased independent of the correlation
structure of the data. Problems arise with nonignorable mechanisms. The PMM
under NIMED is only after a correlation barrier better than AC and CC. So
we also discussed the idea to use the EM algorithm for low correlations, what
seems to be reasonable. Not perfect but better is PMM under the NIMUD
assumption, and we notified that the MSE will come close to zero only under
high correlation among the measure points. Nevertheless PMM is always better
than AC or CC in this case.

Another approach to calculate the NIMED case would be to use the probit
selection model (Little and Wang (1996)). Perhaps this estimator would be more
stable for low correlation structures. The disadvantage of probit models is the
difficulty to fit them, because A (from the assumption P(m =1 |Y7,Y2, X) =
f(CY1 + AY;, X)) has, together with the other parameters, to be estimated.
This might be difficult because the information about A, delivered from the
data, is very weak (Brown, 1990).

It should be mentioned, that in the literature selection models are expected
to be more efficient when A is correct specified (Little, 1994). This fact could
be observed during the simulations, but only for the complete observed time
points, because then AC is equal to SM estimator.

With a small number of subjects we could see that the estimate became
increasingly inefficient. This is a reason to think of changing the estimator. It
seems that a Bayesian approach is the right choice for the problem. Little and
Wang suggested the Bayesian analyses on Gibbs sampling.

Another source of error is the prior assumption about the missing mecha-



nism for choosing the right model. At first the analyst should get an idea of
the correlation structure of the data. This is of course not an easy task be-
cause we only can use the complete cases for this analysis. The next step is to
make oneself realize what kind of missing mechanism in the data appears. This
could be managed by plausible causal connections which describe what missing
mechanism is responsible for the dropouts. These first reflections are important
to judge the estimator. If we are sure to have a high correlation among the
measure points, then wrong assumption about the missing mechanism cannot
have a huge effect on the estimates in the IM and NIMUD case. In the NIMED
case we should be more careful. Here the estimator gets very quick worser than
AC or CC estimator. Having shaky assumptions we should think of taking the
EM algorithm at the price of efficiency.

This model holds many worthy extension possibilities. It would be desireable
to handle the PMM with more different kind of data and missing patterns. So
further work has to be done.
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