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SUMMARY

This paper discusses marginal regression models for repeated or clustered ordinal mea-
surements in which the coefficients of explanatory variables are allowed to vary as smooth
functions of other covariates. We model the marginal response probabilities and the
marginal pairwise association structure by two semiparametric regressions. To estimate
the fixed parameters and varying coefficients in both models we derive an algorithm
that is based on penalized generalized estimating equations. This allows to estimate the
marginal model without specifying the entire distribution of the correlated categorical
response variables. Our implementation of the estimation algorithm uses an orthonormal
cubic spline basis that separates the estimated varying coefficients into a linear part and
a smooth curvature part. By avoiding an additional backfitting step in the optimization
procedure we are able to compute a robust approximation for the covariance matrix of
the final estimate. We illustrate our method by an application to longitudinal data from a
forest damage survey. We show how to model the dependence of damage state of beeches

on non-linear trend functions and time-varying effects of age.
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1 Introduction

Recently, marginal regression models for correlated ordinal outcomes have been proposed
by several authors, e.g. Heagerty and Zeger (1996), Molenberghs and Lesaffre (1994, 1999),
and Fahrmeir and Pritscher (1996). These models are multivariate extensions of univari-
ate models for ordinal outcomes, e.g. cumulative logistic regression models (McCullagh,
1980). Fahrmeir and Pritscher (1996) developed multicategorical generalized estimating
equations (GEE1) for ordinal responses by extending a generalized estimating equations
approach for binary responses. Their GEE1 approach is defined by two distinct paramet-
ric regressions for marginal means as well as for marginal odds ratios that are measures of
the pairwise association structure. A cumulative logistic model is applied to estimate the
mean structure, whereas the logarithms of global odds ratios are used to construct a link
function for the marginal pairwise association structure. For binary data their approach
reduces to a GEE1 with a marginal logistic parameterization of the mean structure and a
marginal odds ratio parameterization of the association structure (e.g. Lipsitz, Laird and
Harrington, 1991).

In this paper, we extend the parametric marginal model of Fahrmeir and Pritscher (1996)
to a semiparametric marginal model with varying coefficients. This means we allow that
the effects of some or even all covariates in both regressions vary smoothly as functions of

other covariates. For instance in the forest damage study considered in this paper, we allow



that the time-trend and the effect of age of the trees on the damage state depends on the
the observed year. What we get, is a special kind of multiplicative interaction between the
covariates age and calendar time. For the marginal pairwise association of two responses,
we assume a model that specifies the marginal odds ratios as smooth functions of the
time-lag. Models of this type for cross-sectional data have been first considered by Hastie
and Tibshirani (1993). This approach yields a very flexible modeling framework with
semiparametric predictors for both, the mean structure and the association structure. For
joint estimation of fixed effects and varying coefficients in both models, we derive penalized
generalized estimating equations (PGEE1). A PGEE1 approach is a good choice if the
focus of attention is directed to a correct specification of the marginal mean model. This
means for categorical outcomes that we are interested in the influence of covariates on
the marginal probabilities of the response categories. For instance in our application, we
model the marginal probability of trees being in a particular damage class. As in GEE1
for the estimation of fixed effects, PGEE1 approaches require only the parametrization of
first and second order moments. For this reason they allow to estimate the effects even
when large clusters or many repeated measurements are observed. By way of contrast this
is computationally not possible for marginal categorical models based on full likelihoods.
These models with parametric (see Heumann, 1996, 1997) or semiparametric predictors
(see Gieger, 1998) are only suitable for a moderate number of correlated responses.
There are several related models with nonparametric components proposed for correlated
categorical outcomes. Wild and Yee (1996) presented an additive extension of a general-
ized estimating equation approach for correlated binary data. To describe the mean and
association structure they used an additive logit model and an additive model for the

log odds ratios. Their approach for binary outcomes is a special case of our multivariate



semiparametric model. Berhane and Tibshirani (1998) presented a more general additive
model in the context of exponential family models. They discussed how generalizations of
quasi-likelihood methods can be used to estimate additive models for correlated responses.
Semiparametric modeling of predictors in estimating equations based on local regression
techniques has recently been considered by Carroll, Ruppert and Welsh (1998) and more
specifically for longitudinal data with ordinal responses by Kauermann (1999). Fahrmeir,
Gieger and Heumann (1999) discussed semiparametric marginal modeling of dependent
ordinal responses by penalty approaches in the context of a clinical study. They showed
how the model which we present here in detail can be adapted to situations with an
isotonic response pattern. Finally, Heagerty and Zeger (1998) proposed a nonparamet-
ric model for the association if scientific interest is focused on the dependence structure.
Apart from the fact that we consider a very general semiparametric model with varying
coefficients, our model differs from the others in the implementation of the method: The
estimation algorithm is based on an orthonormal cubic spline basis that separates the es-
timated varying coefficients into a linear part and a smooth spline part. This spline basis
was first proposed by Demmler and Reinsch (1975). By avoiding a backfitting step in the
optimization procedure we are immediately able to compute a robust approximation for
the covariance matrix of the final estimate.

In section 2 of this paper we describe the semiparametric model and the PGEE1 ap-
proach for the marginal mean structure. The model for the association structure is con-
sidered in section 3. Section 4 describes a (quasi-)Fisher-Scoring algorithm which al-
lows to estimate both regression models simultaneously. In section 5 the semiparametric
marginal modeling approach is illustrated by an analysis of data from a forest damage

study. Finally, we give a conclusion in section 6. In the following we discuss the idea of



semiparametric marginal modeling in the context of a longitudinal study but extensions

to more general clustered settings are obvious (see Gieger, 1998).

2 Marginal regression models for the mean

2.1 Model specification for the mean

We suppose that a study has been conducted with N subjects. For each subject i we
observe T responses Y;; with ¢+ 1 ordered categories together with covariate information
Tip = (Ti1,- .., Tip)'. Thus the data are given by (Yi,zy), i =1,...,N, t =1,...,T.
Without loss of generality we denote the ordered categories of Y;; by 1,...,¢ + 1. In
addition we assume that the covariates are either non-stochastic or stochastic but external,
i.e. their values are not influenced by outcomes of the response variables.

As in our application, the influence of covariates x; on the marginal probabilities of the
response categories my, = pr (Y = r) with r = 1,... ¢ is often of prime interest, whereas
the association between the responses can be regarded as a nuisance parameter. Conse-
quently, we are mainly interested in a correct specification of the model for the marginal

mean structure of Yj;. As link function for the mean structure, we use a cumulative logistic

link
pr(Yie <r)
1—pr(Yy <r)

logit (pr(Y;; <)) = log ( ) = Nitr; r=1,...,q, (1)

where 7, is the predictor of category r. Instead of a logistic link, one can also use other
link functions known from the analysis of ordinal data with generalized linear models

(see Fahrmeir and Tutz, 1997, and Molenberghs and Lesaffre, 1999 for more detailed



discussions). Inversion of the link function (1) yields the response function

eXP(Um)
1+ exp(ni)

exp(Mir)  exp(Mitr—1)
1 + eXp(nitr) 1 + eXp(T]itrfl) ’

M = and 7y, = r=2,....q, (2)

which allows to compute the marginal probabilities m;,, = pr(Y; = r) in terms of the
predictor 7).
To complete the mean model, we have to specify the functional form of the predictor

Nitr- In this paper, we choose a semiparametric model

Nitr = ’U,;tTOé + wgtrf(vit)a r= 15 <oy g, (3)

where @ = (aq,an,...) is a vector of fixed effects, f(vi) = (f1(vir), fo(viga),...)" is a
vector of unknown smooth functions, and wg,, w;, are category-specific design vectors

constructed from basic covariates in z;. In (3) we have supplemented a parametric pre-

I
itr

dictor u},a by a nonparametric predictor w},, f(vy), which allows that the effects of the
design variables w;, vary in dependence of continuous covariates v;; = (vis1, Via, - - .)'. This
additional set v;; of covariates is formally a subset of x;;. If we delete the nonparametric
part, then (3) reduces to the predictor of a parametric marginal model (e.g. Fahrmeir and
Pritscher, 1996). For v;; = vye = ... =t with time points ¢t = 1,...,T we can regard the
model as a dynamic marginal regression model with parameters changing with time. If
all design variables in wy, are constants, e.g. wy, = (1,1,...)', then we get a (marginal)
additive model in the terminology of Hastie and Tibshirani (1990) or Berhane and Tib-
shirani (1998). If wy, is a vector of 0/1-variables generated by binary coding of a factor
variable, then there is an important way of thinking about the model term w},, f(vy): A
separate curve corresponds to each of the levels (with exception of the reference level)

of the factor variable. In fact, it is often useful to group a continuous covariate into a

number of intervals to explore interactions with other continuous covariates in this special



way. In the case of repeated measurements we can specify nonparametric influences of
covariates which vary over time by this binary coding procedure. In the same way we get
separate predictor components for each category of the response by introducing binary
indicators depending on the actual category. For instance this is the way how we can
specify time-dependent threshold functions, say 6 (t),...,0,(t), for the transition from

one category to the next higher category of the cumulative model.

2.2 Design of the mean model

A complete description of the structural component requires the construction of a design
matrix. We indicate in this section how smoothness assumptions and roughness penalties
for the unknown functions in the semiparametric predictor (3) lead to a finite dimensional
design.

To simplify the description, we first consider the problem of estimating a logistic model

for a single binary response. We assume a logistic mean structure of the form

pl"(Yz't = 1)
1 —pr(Yy;=1)

logit(pr(Yizl)):log< > =a+w, f(v;), i=1,...,N, (4)

where « is a fixed intercept parameter, w; is a design variable, and f is an unknown
function of a covariate v;. A popular strategy to estimate the unspecified function f
nonparametrically is to assume that the function belongs to a class of smooth functions.
In this paper we suppose that the function f has continuous first and second derivatives
f's 1", and f” being quadratically integrable. Then an appropriate estimating function
can be supplemented by an additive roughness penalty which measures the curvature and

penalizes a too rough behavior of f. A natural roughness penalty for our specific space



of smooth functions is the integrated squared second derivative

hO =5 [y )

This penalty assesses the total curvature in f, or alternatively, the degree to which f
departs from a straight line. The smoothing parameter A controls the influence of the
penalty term on the estimating criterion. A large value of A\ gives large weight to the
penalty term, therefore enforcing a smooth function with small variance but possibly
high bias. For a small A\ the penalty term has less influence and we allow more faith with
the data, which is measured by the estimating function. The result is a rough estimate
with possibly high variance but reduced bias. There are several methods to determine
the smoothing parameter A automatically, e.g. crossvalidation (see Gieger,1998). But
these methods typically work only for models with a moderate number of smoothing
parameters. For this reason, we use a more explorative method: In our application we
choose a reasonable value for each smoothing parameter after trying out several alternative
values.

It is well known (e.g. Eubank, 1988) that the solution of a penalized estimating criterion
with roughness penalty (5) is a natural cubic spline with knots at each distinct point of
vi, © = 1,...,N. For the moment we can assume that each observation v; in the sample
is unique. Then the space of natural cubic splines is finite dimensional with dimension N
equal to the number of observations. Consequently, we can write the function f as linear
combination f(v) = ¢(v)"y of spline basis functions ¢(v) = (¢1(v),...,dn(v)). Now the
estimation problem is finite dimensional and we have to estimate the basis coefficients

v = (71,...,7n5) instead of the function f. In this paper, we choose a cubic spline basis



of orthonormal functions ¢ (), k =1,..., N. They are defined by
N
i=1

| d@nw)do = peI(k = m), (™)
with k,;m = 1,..., N. This basis was first considered by Demmler and Reinsch (1975).
It has the property that it decomposes the spline space into a space of linear functions in
v and a curvature part formed by centered cubic splines. To illustrate this behaviour we
assume that the basis functions are ordered by their roughness p = [ {#%(v)}” dv, so
that we get 0 = p; = po < p3 < --- < py. Figure 1 (a) shows for N = 100 and v; = i/100
the functions ¢1(+), ¢2(+), ¢3(+), d5(+), P10(+) and ¢5(+). The first and second basis element
(solid lines) define the linear part of the spline. They are not penalized by the roughness
penalty (5). The remaining functions are natural cubic splines, which oscillate around
the abscissa with increasing frequency. Demmler and Reinsch (1975) indeed showed that
for £ > 3 the number of sign changes in the k-th function ¢(-) is exactly £ — 1. This

behaviour of the Demmler-Reinsch basis results in a clear interpretation of the coefficients

Y= (ryla .- '7’YN)I'
— Figure 1 about here —

For the computation of the spline we have to give a guidance how to determine the basis
functions ¢ (-) and the roughness measures p;. A well known finite-dimensional represen-
tation of the penalty (5) in terms of function evaluations f = (f(v1),..., f(vy))" is given
by Jy(f) = Af'K f where the N x N penalty matrix K is defined by second differences.
The computation of K has been described for example by Green and Silverman (1994).
The required basis functions ¢(-) are the interpolated eigenvectors of an eigendecompo-

sition of K and the roughness penalties p; are the corresponding eigenvalues.
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To get a finite-dimensional version of the model we insert the evaluated basis functions

bir = ¢r(v;) into the mean model (4) and the penalty (5). This yields the model

logit(pr(Y; = 1)) = 23 (8)
with the design vector z; = (1, w;d;1, - . ., w;¢;n)" and a high—dimensional parameter vector
8= (a,7,--.,7n). Now the penalty term has the finite-dimensional form

/\ N
I(f) = 5 > - (9)
k=1

Figure 1 (b) shows the positive values of the roughness measures py, on a logarithmic scale.
Together with (9) we see that coefficients 7y corresponding to basis functions with a high
frequency are penalized strongly by the estimating criterion. We refer to Hastie (1996)
for a more detailed discussion of this shrinkage behavior of a spline smoother.

Now we can return to the more general problem of finding the finite dimensional design

of the semiparametric predictor (3). First we represent each function in (3) as a linear

combination f;(v;) = ¢;(v;)y;, j = 1,...,p of cubic spline basis functions ¢,(v;) =
(#1(v5), ..., ¢jn;(vy)) and corresponding coefficients v; = (7;1,...,7v;n;)". In general the
dimensions N;, j = 1,..., p, of the spline spaces are different depending on the numbers of

distinct values of the covariates in the sample. In practical use the occurrence of repeated
observations often results in a considerable reduction of the dimension of the estimation
problem.

After defining the design vectors ziy,j = (WitrjPitj1s - - - wz'trj¢ithj)l in terms of evaluated

basis functions ¢ = ¢jk(vitj), we get the finite-dimensional representation
Nitr = u;tra + Z;trlfyl +ot Z;trpq/ln r= 17 - q (10)

of the semiparametric predictor (3). Gathering all vectors together yields the new design
vector Zig = (Ujy, Ziyp1s - - - Zigp) and the parameter vector 3 = (o, 71, ...,7,)". Now we

10
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can write the complete predictor 1m; = (19}y, .-, Mgy - - -, )" With 0 = (is1, - - -, Mizg)" of

the multivariate response Y; = (Yi1,...,Yir) as

0 = Zifp (11)

with the design matrix Z; = (Z},,...,Z},, ..., Z};)" defined by Z;; = (zin1, - - -, zitg)’. What
we get is again a parametric predictor 7; with a high-dimensional parameter vector (3.
Often there are situations where we have to modify the construction of the design matrix

Z; slightly. To illustrate the problem we consider again a simple logit model
logit (pr(Y; = 1)) = a + 71(vi1) + 72(vi2), (12)

with a fix intercept parameter « and two additive functions v;(-) and v»(+). The construc-
tion of the design for this model as described yields a design matrix in which the constant
basis functions of 7;(-) and ~,(-) are redundant. To get an unique solution we have to
reduce the dimensions of the bases, i.e. we have to delete both constant basis functions.
Here it pays off that the linear parts of the splines occur in the Demmler-Reinsch bases as
elements. In general we have to reduce the sets of basis functions which define the linear
parts of the splines until there are no more redundant elements. More formally, Hastie
and Tibshirani (1993) and Wahba (1990) have shown that an unique solution exists if the
corresponding embedded parametric model, where we have restricted each function v;(-)
to be linear, has an unique solution.
Finally, we consider the penalty term
PN [ 2
Tl ) =325 [ {fiw)} do (13)

corresponding to the semiparametric predictor (3). After inserting the finite-dimensional

11



representations sz;‘l pjk’y]?k, j=1,...,p, into (13) we get the penalty in matrix notation

Ty (B) = 50APS, (14)

where the diagonal matrix A contains the smoothing parameters. Furthermore, the diag-
onal penalty matrix P has zeros on the diagonal if the corresponding parameters are not
penalized, i.e. for fixed effects and linear basis functions. Otherwise the diagonal elements

2
of P are equal to the roughness measures p;, = ffooo{ ;-’k(vj)} dv;.

2.3 Penalized generalized estimating equations for the mean

To estimate the unknown parameters and functions of the marginal mean model we pro-
pose using penalized generalized estimating equations (PGEEL). In the following, v;; is
the vector of indicator variables y;,, = I(Y;; = r) for the observed categories r = 1,...,¢
of subject 7 at time ¢ and 7 is the corresponding vector of probabilities 7, = pr(y;, = 1)

derived from model (3). Then the PGEEI for the marginal mean model is

N
u(B) = > ZiDiVi M (yi — mi) — APB = 0. (15)

i=1
with v; = (yiy,...,yp) and m; = (7, ..., 7). The first term in (15) has the common

form of GEE’s, where D; is a blockdiagonal matrix with the first derivatives 0m;/0n;,
t=1,...,T, on the diagonal and V; is a working—covariance matrix. The second term is
the first derivative of the quadratic penalty term §4'APS in (14).

In a PGEEL it is not necessary for V; to be equal to the true covariance matrix, say
Y;, of the multivariate response y;. If V; = X; holds equation (15) is equal to a penalized
estimating equation for the marginal mean derived from a likelihood-based model (see
Gieger, 1998). In general however V; # X; resulting in some loss of efficiency depending

on the degree of misspecification. In the binary case a GEE1 or PGEE1 analysis is often

12



based on the working assumptions of independence. Letting V;; = diag(m;;) — w7}, denote
the covariance matrix of the response y;;, we obtain by setting V; = diag(V;1, ..., Vir) the
simplest model for the covariance structure which assumes independence between the
observations of subject .. We do not use this assumption in our multicategorical setting
because we have found that this model yields a too crude approximation. In contrast to
the binary case where an independence assumption usually has only minor effects on the
point estimates, this is often not true for more than two categories (see also Fahrmeir,
Gieger and Heumann, 1999). Instead of using the independence model, we supplement

the marginal mean model by a second model for the pairwise association structure.

3 Marginal regression models for the association

3.1 Model specification

Common measures for the association between two ordinal responses Y;; and Yj; are
global odds ratios (Dale, 1986, Fahrmeir and Pritscher, 1996). For each pair of categories

l,r=1,...,q they are given by

pr()/is S lai/;:t S T) pr(}/;:s > lai/;:t > T)
pr()/is > la}/;lt S T) pr()/is S laY;t > 7“)‘

"pi,st,lr - (16)

This means that the (¢ + 1) x (¢ + 1) contingency table of probabilities ; g = pr(Yis =
[,Y; = r) is collapsed at each cutpoint (/,7) into a 2 x 2 contingency table. Then common
odds ratios are computed out of these coarser tables. Together with marginal cumulative
probabilities &5 = pr(Y;s < 1) and &, = pr(Yy < r), global odds ratios form an unique
reparametrization of the bivariate distribution of Yjs and Yj;. By solving (16) we can

express the bivariate cumulative probability function &; g, = pr(Yis <[, Y < r) in terms

13



of corresponding global odds-ratios v; 5 ;» and the marginal cumulative probabilities &
and &;,. This yields

fislfitr 71f wi,st,lr = 15

fz’,st,lr - K — \//i2 + 4¢i,st,zr(1 — @bi,st,lr)fiszfitr - 7& 1
2(Yistr — 1) ; istir 7 1,

(17)

where kK = 1+ (&g + &itr) (Wistyr — 1). With this formula we can calculate bivariate
probabilities 7; st1r = E(YisiYitr) = pr(Yis = [, Yy = r) in terms of univariate marginal

cumulative probabilities &5, & and global odds ratios 9; 4, through the relation

;

fi,st,lr ,l =r=1
Sistir — Sistlr—1 Ad=1,r>1
T4, st,lr = { (18)
iystir — Gisti—1r A>1,r=1
L gi,st,lr - gi,st,lr—l - fi,st,l—lr + fi,st,l—lr—l ,l > 17 r> 1.

This means with (17) and (18) it is possible to compute the off-diagonal elements of the
model covariance matrix V; with cov(Yis, Yitr) = Tistir — TisiTitr-

Now we can complete the parametrization of the marginal model by using the logarithms
of the global odds ratios as link function for the marginal association structure of Y;; and

Yi,s<t=1,...,T. We get

log(wi,st,lr) — ﬁi,st,lr ) l; r= 17 -4, (19)

where 7); o is the predictor of the association model. Additionally, with (17) and (18)
we have explicit formulas for the response function.

Again we assume a semiparametric model

ﬁi:St:lT = u;,st,lrd + w;,st,lrf(ﬁiyst) ’ (20)

where U; g1, W; s, are design vectors of the association structure, & = (a4, as,...)" is a

vector of fixed association parameters, and f(ﬁi,st) = (f1(77i,st,1), f2(Vist2),-..) is a vector

14



of unknown smooth functions in terms of covariates @; s = (¥jst.1, ist,2s---)'s Which in
general are constructed from basic covariates x;; and x;;. By using spline representations

of the unspecified functions in (20) we can again construct a finite dimensional predictor

with an appropriate design matrix Z; and a parameter vector 6 of the association structure.

3.2 Penalized generalized estimating equations for the associa-
tion

To estimate the model, we augment the PGEE1 for the mean (15) by a second PGEE1

for the association structure. We get

u(8) = Z ZICUT 5 — vi) — AQS =0, (22)

where §; = (..., Jistirs - --)" is the vector of centered products §; stir = (Yist — Tist) (Yitr —
Tir), Lr=1,...,¢,s<t=1,...,Tand v; = (..., Vistsr,...) is the vector of covariances
Vistir = Tistlr — TisiTitr- Lhe matrix C; is the first derivative of v; with respect to 7; and
U; is a further working covariance matrix. As in the binary case (see Prentice, 1988) a

simple but useful working assumption is U; = diag(var(y;)) with diagonal elements

Var(gi,st,lr) = 71-isl(l - 71-isl)ﬂ-itr(l - 71-itr) - Vth)hn"’ Vi,st,lr(l - 27Tisl)(1 - 27Titr)-

The penalty term of (22) consists of a second diagonal matrix A of smoothing parameters

and a diagonal matrix €2 of penalty terms corresponding to the association model.

15



4 Estimation of the marginal model

To estimate the marginal model we can adapt the Fisher-Scoring procedure for the esti-
mation of a parametric model (see Fahrmeir and Pritscher, 1996) to the nonparametric

case. The (quasi)-Fisher—Scoring step for the PGEE1 approach is

(g: ZZ{DZ(k) (V;(k))_l ngk)’ZZ_ + AP) (ﬁ(k+1) B ﬁ(k)) - (ﬂ(k)) (23)

=1

<§j Zic®) (U}’“))_1 c®' Z, +AQ> (6040 = 6®) = u(5®) . (24)
=1

We get the PGEEL estimates (3,6) by switching between the equations (23) and (24)
until convergence. Note here that the solution of the PGEE]1 for 4 depends on the associ-
ation parameters 0 only through the working covariance V;. Therefore like in parametric
GEEL1 approaches the estimator for the marginal mean model should be robust against a
moderate misspecification of the association structure.

By defining working-observations yi = Z;3+(D; 1) (yi—m;) and § = Zia+(C; V) (Ji—vi)

we can rewrite (23) and (24) as iteratively reweighted penalized least-squares estimators

i

<§: Zp® (V) D 7, + AP) D = 3 Zp® (V) DM g (25)

=1 £

(i Z.e® (U e 7+ AQ) ok = % 7109 (U)o g (26)
=1 ‘

By switching between (25) and (26) we get an estimation procedure which is simple to
implement and numerically stable. The algorithm for the computation of the estimates
(3,6) can be summarized as follows:

1. Compute the basis functions of the natural cubic splines and construct the design

matrices Z; and Z;. Use the eigenvalues to form the penalty matrices P and Q.

2. Obtain initial values (3%, §(®)). One can use 3 resulting from a regression assum-
ing independence and () = 0.

16



3. Use (2), (17), and (18) to obtain the marginal probabilities of first and second order.

These probabilities can be used to get current estimates of Vi(k).

4. Get an update 3*+1 of ) by taking a (quasi-)Fisher-Scoring step (23) or alter-

natively by solving the iterative reweighted penalized least-squares criterion (25).

5. Repeat step 3 to obtain updated estimates for the marginal probabilities. These

probabilities can be used to get current estimates of Ui(k) and l/i(k)

6. Get an update 6 1) of §*) by taking a (quasi-)Fisher-Scoring step (24) or alter-

natively by solving the iterative reweighted penalized least—squares criterion (26).
7. Iterate steps 3 to 6, until a convergence criterion is fulfilled.

A rigorous asymptotic theory for models using roughness penalty approaches is still
not available. To get a robust approximation for the covariance matrix of the final
PGEEL estimate B we use a nonparametric version of the well-known sandwich matrix
Vioo(3) = H'W*H™" with H = YN | Z; D!V, * D, Z!+ AP and with an empirical covariance
estimator V* = YN Z,D!V, ™ (y; — 7;) (yi — 71)' V' D; Z! . The empirical covariance V* is
a correction term in the case of a misspecification of the association structure (see Royall,
1986). As McCullagh in a discussion of an article by Fitzmaurice, Laird and Rotnitzky
(1993), we take the view that in the case of a clear misspecification of the association
structure which is indicated by a distinct correction of the naive covariance approxima-
tion V(3) = H ', we should look for a better model for the association. This means

that we compare the model-based or naive standard error based on V() and the robust

standard error based on Vmb(ﬁA), and interpret the difference as degree of misspecification.
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5 Application to a forest damage study

Since 1983 a yearly visual forest damage inventory is carried out in a forest district in
the northern part of Bavaria. There are 80 observation points with occurrence of beeches
spread over the whole area. In this damage study we analyze the influence of covariates,
e.g., age of the trees, pH value of the soil, and canopy density at the stand, on the
defoliation of beeches at the stand. A detailed survey and data description can be found
in Gottlein and Pruscha (1996).

We use the degree of defoliation as an indicator for damage state of the trees. Due to the
survey design, responses must be assumed to be serially correlated. The ordinal response
variable, Y}, “damage state” at time ¢ is measured in 3 categories: none (Y; = 1), light
(Y; = 2), and distinct/strong (Y; = 3 = reference) defoliation. Figure 2 shows the relative

frequencies of the damage categories in the sample for the years 1983 to 1994.
— Figure 2 about here —

Due to the ordinal scale of the response, we can use a cumulative logistic model to relate

the marginal probabilities of “damage state” to the following covariates:

A Age of the trees at the beginning of the study with categories: below 50 years (=1),

between 50 and 120 years (=2), and above 120 years (=reference).

PH PH value of the soil in 0-2 cm depth. The measures range from a minimum of 3.3

to a maximum of 6.1.

CD Canopy density at the stand with categories: low (=1), medium (=2), and high

(=reference).
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The covariates pH value and canopy density vary for each stand over time, while the
variable age is constant over time by construction. In particular, we assume for the
marginal cumulative probabilities of no damage (r = 1) and none or light damage (r = 2)

the following model
logit(pr(Y; < 1)) = 0,(t) + f3() AV + f,()AD + fs(PH,) + aCD" + a7;C D,

where A1, AR C’Dt(l), CDt(2) are dummy variables for the categorical covariates A and
CD. To capture the time trend in the data we allow the threshold functions and the
effects of the time constant variable age to vary smoothly with time ¢. Due to a lack of
information about the form of the influence, it is reasonable to model the effect of pH
value nonparametrically by an unspecified smooth function. The effects of canopy density

are assumed to be fixed like in an ordinary parametric model.
— Figure 3 about here —

Figures 3 shows the estimated threshold functions 6y (¢) (left plot) and 6y(¢) (right plot).
Both curves decrease up to the year 1988 with a more pronounced decrease of the first
threshold 6, (t). This indicates a shift to higher probabilities for the categories light and
distinct /strong damage up to this year. After an improvement, i.e. a shift to the none
damage category, up to 1992 there is another increase in damage up to 1994. This result
is true for beeches above 120 years, i.e. for the reference category of age. For the other
two categories of age we have in addition to consider the effects of the corresponding
dummy variables A and A®). Both effects are positive over the 12 years (Figure 4, left
plot). This indicates a positive influence on minor damage, i.e. younger beeches are less
damaged. The positive effect of the category with below 50 years old trees (upper curve)

is greater and the increase of the effect after 1988 corrects the change to the worse after
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1992 indicated by the threshold functions. These interpretations are further illustrated
by Figure 5, where the estimated distributions stratified by age are plotted against time.
While the state of the younger tree population is very well recovered after a period with

light damage, the state of older trees stays on a bad level.

— Figure 4 about here —

The estimated function for the influence of pH value is more or less linear over the
range of observed pH values (Figure 4, right plot). Stands with low pH values have a
negative influence on damage state compared to stands with less acid soils, i.e. low pH
values aggravate the condition of the trees. But due to the flat course of the estimated
curve, there is some doubt that pH-value has an influence at all. Finally, we get the
following parameter estimates for the effects of canopy density together with model based

and robust standard errors:

Covariate Estimate SE SE p-value p-value

(model) (robust) (model) (robust)

cD 12822  0.3587  0.3104  0.0003  0.0000

CcD® 05318 0.2481  0.2196  0.0320  0.0153

Both estimates are negative. This means that stands with low (C.D{") or medium (C D)
canopy density have an increased probability for high damage compared to stands with

a high canopy density. The reason could be that lower canopy densities result in rougher
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conditions for the tree population connected with stronger physiological, aerodynamic

and physical stress.
— Figure 5 about here —

With T' = 12 measures per stand we have 66 time pairs at which we measure the pairwise
association by global odds ratios. A preliminary descriptive analysis with empirically
estimated global odds ratios indicates different values of the odds ratios for each cutpoint
(I,7) and a decline in association with the time distance between the visits to the stand.
Thus the association structure is parameterized by a logarithmic global odds ratio model

of the form
log(")) = fullt—s))  Lr=1,2,

i.e. we do not force the dependence on the time lag |t — s| into a specific parametric form.
The estimates for the association functions (Figure 6) are quite similar in their global
shape but the levels are different. We also recognize a distinct temporal structure. There
is a decrease in the association between two responses as the time distance increases.
Remarkable is the outlier for combination (I = 2,7 = 1) which is caused by a very
irregular filled table. This value can not be covered by the association model but in
total the serial structure seems to be appropriate modeled. The model based and robust
standard errors for the curves and fixed parameters of the marginal mean model are close
together. If we interpret the difference between both estimates as indicator for the degree
of misspecification of the association structure then we have found an appropriate model

for the association.

— Figure 6 about here —
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This application shows that compared to purely parametric modeling, a semiparametric
approach allows a refined and more flexible specification of the mean structure and a gain
in efficiency due to an improved working association. We have found non-linear trend
functions which would have been difficult to recognize and to model with parametric
approaches. Time-dependent modeling of the age effects showed us a distinct different
behaviour over calendar time of the age categories. Concering the influence of PH value

our model allowed us to let the data decide about the appropriate form.

6 Conclusions

Inclusion of nonparametric predictors is an important aspect for adequate modelling in
marginal regression. We discussed it for a PGEE1 approach but extensions to other set-
tings are conceptually immediate. In particular, PGEE2 and full likelihood approaches
(see Gieger, 1998) are interesting topics. But an important limitation is that these meth-
ods even in the parametric case only work for a moderate number of correlated observa-
tions. These means in practice that time-series like in our application with 12 observations

per unit are computationally not manageable.
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Figure 1: Demmler-Reinsch basis functions ¢1, ¢o, @3, ¢s5, P10, and ¢s5¢ for z; = 1/100,

i=1,...,100 (a) and positive roughness measure p; of ¢, k= 3,...,100 (b).
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Figure 2: Damage class distribution by time.
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Figure 3: Estimated thresholds 6 (¢) (left plot) and 6y(t) (right plot) with pointwise

standard error bands (model based - dashed line, robust - boundary of shaded region).
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Figure 4: Estimated effects of age (left) with A" (upper curve), A® (lower curve), and
pH value (right) with pointwise standard error bands (model based - dashed line, robust

- boundary of shaded region).
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Figure 5: Estimated probabilities pr(Y; = 1), pr(Y; = 2), and pr(Y; = 3) for age. From

top to bottom: up to 50 years, between 50 and 120 years, above 120 years.
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Figure 6: Estimated global odds ratios (lines) and empirically observed global odds ratios

(points). Note that there is a different scale for combination [ = 2,r = 1.
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