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Abstract

Marginal regression modeling with generalised estimating equations
became very popular in the last decade. While the mean structure is of
primary interest in first-order generalised estimating equations (GEE1),
second-order generalised estimating equations (GEE2) allow the estima-
tion of both the mean and the association structure. It has repeatedly
been shown that the usual robust variance estimator for the GEE1 is con-
servative, especially in small samples. As an alternative, the jackknife
estimator of variance can be used. In this discussion paper, we extend
the different jackknife estimators of variance to GEE2 models. The vari-
ance estimators are compared in a simulation study. While there is only
little difference in the variance estimates of the mean structure across
simulated models, the results differ substantially with respect to the asso-
ciation structure. The fully iterated jackknife estimator seems to be the
most appropriate when focusing on the GEE2.

Keywords: Generalised Estimating Equations, Marginal Models, Jackknife Estima-
tors

1 Introduction

Marginal regression modeling with generalised estimating equations became
very popular in the last decade. The mean structure is of primary interest
in first-order generalised estimating equations (GEE1). There, the association
structure is treated as nuisance. In family studies, however, the association
structure is of primary interest. The mean structure is required to adjust the
association structure for covariates. In this situation, second-order generalised
estimating equations (GEE2) might be applied which simultaneously analyse
the mean and the association structure. An overview on these different models
can be found e.g. in Ziegler, Kastner and Blettner (1998).

The major advantage of GEE compared with likelihood approaches is that
higher order moments need not be correctly specified. The parameters of the
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mean structure for GEE1 models and of the mean and the association struc-
ture for GEE2 models can still be estimated strongly consistently. To correct
for possible misspecification, White (1982) proposed the robust variance esti-
mator of variance, which is also termed sandwich matrix. As an alternative,
the jackknife estimator of variance can be applied (Lipsitz, Laird and Harring-
ton, 1990; Ziegler, 1997). Since the fully iterated Jackknife estimator is compu-
tational very demanding, several approximations have been proposed (Lipsitz
et al., 1990; Ziegler, 1997). In Monte-Carlo simulations, the class of jackknife
estimators was shown to be superior compared with the usual robust variance
estimator when analysing GEE1 models, especially for small samples.

The jackknife estimators of variance have, however, not been applied to
GEE2 models. Therefore, we extend them to GEE2 models in this paper. We
compare the different jackknife estimators of variance and the usual robust
variance estimator in a Monte-Carlo simulation study.

This paper is organised as follows. The theory of the GEE2 and the employed
notation is presented in section 2. In section 3 the design of a the simulation
study is described. In this section, its results are described in detail and also
discussed.

2 Generalized estimating equations for mean and
association structures

Let y;; be the response of observation ¢, t = 1,...,T, from cluster 4, i,1,...,n.
For each y;; a vector of covariates x;; is available, which possibly contains
an intercept. The data are summarised to y; = (yi1,-..,yir) and X; =
(xly,-..,@hp)". The pairs (y;, X;) are assumed to be independent. In our sim-
ulation study we focus on continuous responses. Therefore, we use the identity
link function to connect the conditional mean of y;; given X; and the p x 1
parameter vector 3 of the mean structure:

pit = E(yir| Xi) = E(yit|wa) = @3, 8 (1)

We furthermore assume that the correlation coefficient is a function of the ¢ x 1
parameter vector a of the association structure but independent of the mean
structure parameter 5 . We choose the area tangens hyperbolicus as association
link function so that for ¢ # ¢/

exp{k(&i, x5 ) a} — 1
exp{k(zi, x5 ) a} + 1

pire = Corr(yit, yir| Xi) = (2)
Equation (2) guarantees that the correlation coefficient does not exceed 1 in
absolute values. k is a function that correctly describes the relationship be-
tween the explanatory variables for the association structure Z; and Z;» and
the correlation coefficient (Lipsitz et al., 1990). The GEE proposed by Prentice
(1988) are given by

o= (2)-x(% 5) (0 w) (1) o

where p; is the T x 1 vector of the p;; and p; is the T'(T — 1) /2 x 1 vector of the
piter- zi is the corresponding vector of the product of the standardised residuals



Zige = (Yit — Mat) Wi — par ) [oseos with oy = Var(yi|X;). D; = Opi/08'
and E; = Jp/0a’ are the first derivatives w.r.t. # and «, respectively, while
Vi and W; are the conditional working covariance matrices of y; and z; given
X, respectively. Usually, W; is chosen as the working matrix for applications
(Ziegler et al., 1998) so that W; is a T'(T' — 1)/2 dimensional identity matrix.

The GEE (3) for # and a may be solved separately by an alternating modified
Fisher scoring algorithm because they can be separated in two independent
estimating equations. Equation (3) can be derived from the generalised method
of moments (Ziegler, 1995). Thus, 6= (/3”, @) is a strongly consistent estimator
of § = (f',a’) under suitable regularity conditions (Hansen, 1982), if egs. (1)
and (2) are correctly specified. Furthermore, 3 and @& are jointly asymptotic
normal. The robust variance matrix, also termed Huber or sandwich variance
matrix, is given by

A A11 0 ! Bi1 Bi» All 0 -
Cov(#) = < —As1 As > < Bi, B > < —Az Az >

with the matrices A11 = 3 DjV; "Dy, Aot = 3 BjW; 1334, Avy = 3 EjW, 1 E;
By =Y. DV Cov(y;)Vi ' Dy, Bya = 5. DIV, Cov(yi, 2:)W; ' E; and Byy =
S EW; ! Cov(z)W, ' E;.

In the framework of GEE1, Paik (1988) recommended to use jackknife es-
timators of variance instead of the robust variance matrix in small samples
because the robust variance matrix yielded biased estimates. Lipsitz and col-
leagues (1990; 1994) showed for the GEE1 that the unweighted deletion-1 jack-

knife estimator of variance

(552) 3 (5-0-5) (5--5)

i=1

is asymptotically equivalent to the corresponding robust variance matrix. This
property can be easily extended to the GEE2 of eq. (3). Here, *—£ is replaced

by %. Furthermore, the jackknife now involves both § and «. Deletion-
1 jackknife estimators are usually obtained by a modified Fisher scoring with
starting value § = (f',&'), where each family is successively omitted in a loop.
Instead of the fully iterated (FIJ) jackknife estimator, a ‘one-step’ approxima-
tion (1-SJ) might be used by stopping the algorithm after one Fisher scoring
step (Lipsitz et al., 1990). For GEEL, the ‘one-step’ approximation gave better
coverage probabilities than the fully iterated jackknife estimator in Monte-Carlo
simulations (Lipsitz et al., 1990). The jackknife estimator of variance can also
be approximated without successively leaving out each cluster during the cal-
culations as shown by Ziegler (1997) for GEE1l. This generally increases the
computation speed. The approximation of the jackknife estimator of variance
(AJS) for Prentice’s GEE2 is given for T > 2 by

n—(p+q)

ACA

with =
A= A11 0
—As1 As



and

n !
—1/2 [ Yi — Wi Yi — i —1/2
¢ lZ{F;KWi / <Z:—pi><zi—ﬂz>vi /KiFil}

i=1

Here, F; is the (T + T(T — 1)/2) x (p + q) block diagonal matrix of (V; */2D;,
W[l/in). Analogously, ‘7[1/2 is the block diagonal matrix of (V[l/z, W[l/2),
and, finally, K; = Iipyipr—1)exr+rr-1)2 + L@em(r—1) /25 (T+T(T—-1)/2 —
F,A7'F))='F,A='F]. For T = 1, the estimation can be performed by letting
z; — p; = 0 and a adding a row and column of 0 to Fj, so that

([ F 0
n=(%0)

3 Simulation study

In order to compare the properties of the three jackknife estimators with the
usual robust estimator of variance, we perform a simulation study using a con-
tinuous response variable, the identity link function and the area tangens hy-
perbolicus association link function.

The jackknife was shown to be superior to the classic robust variance for
small sample sizes (Paik, 1988; Lipsitz et al., 1990). Thus, 50 clusters (families)
of size 3 were simulated with 1,000 replicates for each model. The simulation
proceeds as follows. First, the design matrix X is generated for each cluster.
Second, the response vector y is simulated for each cluster using a multivariate
normal distribution. The estimation is done by MAREG (Kastner, Fieger and
Heumann, 1997).

Mancl and Leroux (1996) have shown that the efficiency of GEE estimates is
quite sensitive to the between- and within-cluster variation of the explanatory
variables. Thus, we choose eight different models that specifically focus on this
aspect in our simulations. They all include one non-random binary and one non-
random continuous explanatory variable for the mean structure. The covariates
are subject to variation as they are chosen to be either cluster-constant or non
mean-balanced cluster-specific.

The binary variable is dummy-coded. The binary variable is one in 40 of the
50 clusters for the cluster-constant model. For the generation of a within-cluster
varying binary variable, we set the number of ones to 40, 30 and 10 for the three
observations within a cluster. This results in the patterns displayed in table 1.

pattern frequency

1-1-1 10
1-1-0 20
1-0-0 10
0-0-0 10

Table 1: Frequency table for pattern of within-cluster varying binary variable

The non-random continuous variable is generated from the frequency dis-
tribution of grouped data. Therefore, the lower and upper bound and the



frequency has to be specified. Within a class, the continuous values are equi-
distant. The distribution for the cluster-constant case is given in table 2. To
generate a within-cluster varying continuous variable, we use the three different
frequency distributions which are given in table 2.

Cluster-constant Within-cluster varying

Interval freq. Interval obs.1 Interval obs.2 Interval obs.3 freq.
[0; 1] 5 [0; 1] [0; 2] [1; 3] 5
[1; 3] 10 1;3] [2; 5] [3;4] 10
[3; 6] 20 [3; 6] [5; 6] [4; 8] 20
[6; 8] 10 [6; 8] [6; 8] [8;9] 10
[8;9] 5 [8; 9] [8; 9] [9; 9] 5

Table 2: Frequency table of continuous variable

This results in four different configurations for the parameters of the mean
structure. In any case the theoretical parameters for the explanatory variables
are §yp = 1 (regression constant), 6, = 3 (binary variable) and 6, = —0.2
(continuous variable). Thus, the effects itself are cluster-constant.

In addition to the mean structure, the association structure is also subject to
variation. We use the exchangeable and the unstructured association structure
in our simulations. Parameters for the unspecified correlation structure are
chosen to be 3 = 0.5, 8, = 1 and 05 = 0.7, resulting in correlation coefficients of
0.245, 0.462 and 0.336 for the pairs 1-2, 1-3 and 2-3, respectively. The parameter
value for the exchangeable correlation structure is set to #3 = 0.7. The variance
is set to 0% = 1 for all three observations within a cluster. Therefore, the
correlation matrix is identical to the covariance matrix.

Given the design matrix X, the parameters of the mean structure and the
covariance matrix, the response vector for each cluster is simulated using a
multivariate normal distribution (Fieger, Heumann, Kastner and Watzka, 1997).
The pseudo random numbers were generated using DRANDA48, which is supplied
by SunOS (1995, man Pages(3C)) as a C-library function.

The results from the Monte-Carlo simulations are shown in tables 3 to 10.
The tables display the mean parameter estimate and the standard error of the
mean from the 1,000 replicates in addition to the theoretical parameter values
and the different estimates of the standard error.

Obviously, with either of the four approaches for estimating or approximat-
ing the robust variance matrix, the standard error of the mean is well approxi-
mated for the parameter estimates of the mean structure, i.e. 6y, 61 and 6. This
is in line with the findings of Lipsitz and colleagues (Lipsitz et al., 1990; Lipsitz,
Dear and Zhao, 1994) and Ziegler (1997). However, the results differ substan-
tially with respect to the association structure. The standard errors using the
usual robust variance matrix according to Prentice (1988) are far too large, re-
sulting in conservative tests. On the other side, the 1-SJ is too liberal for all
eight models. The AJS generally is conservative for the simulated models. The
best approximation to the true standard error of the mean is obtained with the
F1J. Therefore, we recommend to use the FIJ in small samples. For a look at
the first glance, both the 1-SJ and the AJS seem to be appropriate.



param. Theoret. Mean Std.err. Standard error

value param. of the
estimate  mean  Prentice AJS F1J 1-SJ
fo 1 1.007 0.233 0.227 0.235 0.234 0.234
01 3 2.995 0.214 0.203 0.209 0.207 0.207
0, -0.2 -0.201 0.043 0.040 0.042 0.042 0.042
03 0.7 0.622 0.198 0.391 0.236 0.198 0.187

Table 3: Simulation results with mean-unbalanced cluster constant covariates
and exchangeable correlation structure. AJS: approximation of the jackknife
estimator of variance, F1J: fully iterated jackknife estimator of variance, 1-SJ:
one-step approximation of the jackknife estimator of variance

param. Theoret. Mean Std.err. Standard error
value param. of the
estimate  mean  Prentice AJS FIJ 1-SJ
0o 1.003 0.236 0.225 0.230 0.231 0.228
0, 3.000 0.215 0.202 0.207  0.205 0.202
0 —0.200 0.041 0.040 0.041 0.041 0.041
03 0.422 0.282 0.405 0.286 0.277 0.265
04 0.924 0.317 0.622 0.366 0.304 0.291
05 0.617 0.300 0.478 0.312 0.285 0.273

Table 4: Simulation results with mean-unbalanced cluster constant covariates
and unspecified correlation structure. AJS: approximation of the jackknife es-
timator of variance, F1J: fully iterated jackknife estimator of variance, 1-SJ:
one-step approximation of the jackknife estimator of variance

param. Theoret. Mean Std.err. Standard error
value param. of the
estimate  mean  Prentice AJS FIJ 1-SJ
) 0.996 0.254 0.246 0.255 0.255 0.253
0, 3.001 0.215 0.204 0.210 0.207 0.207
0o —0.198 0.040 0.039 0.041 0.041 0.041
03 0.630 0.200 0.387 0.240 0.201  0.189

Table 5: Simulation results with mean-unbalanced cluster constant binary and
cluster varying continuous covariate and exchangeable correlation structure.
AJS: approximation of the jackknife estimator of variance, F1J: fully iterated
jackknife estimator of variance, 1-SJ: one-step approximation of the jackknife
estimator of variance



param. Theoret. Mean Std.err. Standard error

value param. of the
estimate  mean  Prentice AJS FI1IJ  1-SJ
6o 1.005 0.266 0.245 0.250 0.254 0.247
0, 3.001 0.215 0.204 0.207 0.207 0.203
0 —0.200 0.043 0.039 0.040 0.041 0.039
03 0.435 0.297 0.392 0.287 0.275 0.264
04 0.946 0.314 0.607 0.369 0.305 0.292
05 0.662 0.294 0.460 0.317 0.289 0.278

Table 6: Simulation results with mean-unbalanced cluster constant binary and
cluster variing continuous covariate and unspecified correlation structure. AJS:
approximation of the jackknife estimator of variance, F1J: fully iterated jackknife
estimator of variance, 1-SJ: one-step approximation of the jackknife estimator
of variance

param. Theoret. Mean Std.err. Standard error
value param. of the
estimate  mean  Prentice AJS F1J 1-SJ
fo 1 0.988 0.228 0.217 0.222 0.221 0.221
0, 3 3.004 0.161 0.160 0.160 0.163 0.160
0 —-0.2 -0.199 0.043 0.041 0.042 0.042 0.042
03 0.7 0.651 0.200 0.346 0.238 0.201 0.190

Table 7: Simulation results with mean-unbalanced cluster variing binary and
cluster constant continuous covariate and exchangeable correlation structure.
AJS: approximation of the jackknife estimator of variance, F1J: fully iterated
jackknife estimator of variance, 1-SJ: one-step approximation of the jackknife
estimator of variance

param. Theoret. Mean Std.err. Standard error
value param. of the
estimate  mean  Prentice AJS FIJ 1-SJ
0o 0.995 0.222 0.215 0.217 0.219 0.215
0, 2.999 0.155 0.146 0.144 0.148 0.144
0o —0.199 0.043 0.040 0.041 0.041 0.041
03 0.438 0.279 0.394 0.285 0.275 0.266
04 0.973 0.341 0.515 0.377  0.310 0.302
05 0.656 0.287 0.393 0.314 0.287 0.278

Table 8: Simulation results with mean-unbalanced cluster variing binary and
cluster constant continuous covariate and unspecified correlation structure.
AJS: approximation of the jackknife estimator of variance, F1J: fully iterated
jackknife estimator of variance, 1-SJ: one-step approximation of the jackknife
estimator of variance



param. Theoret. Mean Std.err. Standard error

value param. of the
estimate  mean  Prentice AJS F1J 1-SJ
fo 1 1.000 0.245 0.243 0.249 0.250 0.248
0, 3 3.000 0.163 0.162 0.164 0.165 0.162
0, -0.2 -0.200 0.040 0.040 0.041 0.041 0.041
03 0.7 0.646 0.204 0.333 0.241 0.202 0.192

Table 9: Simulation results with mean-unbalanced cluster variing covariates
and exchangeable correlation structure. AJS: approximation of the jackknife
estimator of variance, F1J: fully interated jackknife estimator of variance, 1-SJ:
one-step approximation of the jackknife estimator of variance

param. Theoret. Mean Std.err. Standard error
value param. of the

estimate  mean  Prentice AJS F1J 1-SJ
Bo 1 0.998 0.244 0.239 0.241 0.246 0.240
0, 3 2.997 0.152 0.147 0.147 0.150 0.146
0, -0.2 -0.200 0.040 0.039 0.040 0.041 0.039
03 0.5 0.460 0.280 0.376 0.286 0.274 0.265
04 1 0.974 0.319 0.494 0.376 0.309 0.301
05 0.7 0.681 0.305 0.383 0.322 0.292 0.283

Table 10: Simulation results with mean-unbalanced cluster variing covariates
and unspecified correlation structure. AJS: approximation of the jackknife es-
timator of variance, F1J: fully iterated jackknife estimator of variance, 1-SJ:
one-step approximation of the jackknife estimator of variance
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