
Toutenburg, Fieger, Schaffrin:

Approximate Confidence Regions for Minimax-Linear
Estimators

Sonderforschungsbereich 386, Paper 166 (1999)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12162602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/


Approximate Con�dence Regions for

Minimax�Linear Estimators

H� Toutenburg� A Fieger� B� Scha�rin��

�st September ����

Abstract

Minimax estimation is based on the idea� that the quadratic risk func�
tion for the estimate �� is not minimized over the entire parameter space
IRK � but only over an area B��� that is restricted by a priori knowledge�
If all restrictions de�ne a convex area� this area can often be enclosed
in an ellipsoid of the form B��� 	 f� 
 ��T� � rg� The ellipsoid has
a larger volume than the cuboid� Hence� the transition to an ellipsoid
as a priori information represents a weakening� but comes with an easier
mathematical handling�

Deriving the linear Minimax estimator we see that it is biased and non�
operationable� Using an approximation of the non�central ���distribution
and prior information on the variance� we get an operationable solution
which is compared with OLSE with respect to the size of the corresponding
con�dence intervals�

� Introduction

We consider the linear regression model

y � X� � �� � � N��� ��I� ���

with nonstochastic regressor matrix X of full column rank K� The sample size
is T � The restriction to uncorrelated errors is not essential since it is easy to
give the corresponding formulae for a covariance matrix ��W �� ��I � If there is
no further information given	 the Gau
�Markov estimator for OLSE� Ordinary
Least Squares Estimator

b � �X �X���X �y � S��X �y � N��� ��S��� ��

with S � X �X is optimal with respect to the BLUE�property� The variance
factor �� is estimated by

s� � �y �Xb���y �Xb��T �K��� �
��

T �K
��T�K � ���
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Con�dence Regions for � on the Basis of b� From �� we get

���S����b� �� � N��� I� ���

and thus

�

K
����b� ���S�b� �� �

�

K
��K � ���

As this �� variable is independent of s�	 we may conclude that

K��s���b� ���S�b� �� � FK�T�K � ���

From the central FK�T�K distribution we de�ne the ����� fractile FK�T�K���
�� according to

P �F � FK�T�K��� ��� � �� �� ���

Using these results we have

P

�
�b� ���S�b� ��

s�K
� FK�T�K��� ��

�
� �� � � ���

In this way we have found a simultaneous con�dence region for � which is formed
by the interior of the K�dimensional ellipsoid

�

K

�b� ���S�b� ��

s�
� FK�T�K��� ��� ���

In practice	 besides the simultaneous con�dence region	 one might be more
interested in the resulting intervals for the components �i� They are determined
according to Appendix A� From ���� we get the interval for the i�th component
�i �i � �� � � � �K��

bi � gi � �i � bi � gi � ����

with

gi �
q
FK�T�K��� ��s�K�S���ii ����

where �S���ii is the i�th diagonal element of S�� and bi is the i�th component
of b�

The length of the intervals ���� is

li � gi � ���

The points of intersection of the ellipsoid ��� with the �i�axes result from ����
as

�i � bi �

s
FK�T�K��� ��s�K

�S�ii
� ����

In the special case of a diagonal matrix S � X �X �as e� g� in the case of orthog�
onal regressors�	 S�� is diagonal	 too	 and we have �S���ii � �	�S�ii� Hence
in this case for once the points of intersection ���� with the �i�axes coincide
with the end points of the con�dence intervals ����� But in general we have
�S���ii � �S���ii�





� Minimax�Linear Estimation

Under the additional condition

��B� � r ����

with a positive de�nite �K �K� matrix B and a constant r � �	 the minimax�
linear estimation �MMLE� is of the form

b� � �r����B � S���X �y � D��X �y ����

where D � �I����B � S�� cf�	e� g� 	Rao and Toutenburg�����	 Theorem �����
This estimator is biased�


 � bias�b�� �� � E�b��� � � �D��S � I�� � �r����D��I� ����

The covariance matrix �� V is

�� V � E ��b� � E�b����b� � E�b����� � ��D��SD��� ����

Assuming normal distribution of � thus leads to

b� � � � N�
� �� V�� ����

V�����b� �� � N�V���� 
� ��I�� ����

����b� � ���V ���b� � �� � ��K��� ���

with the noncentrality parameter

� � ���
�V�� 
� ���

As the MMLE b� ���� is dependent on the unknown parameter ��	 this estimator
is not operational�

Substitution of ��� We con�ne ourselves on the substitution to �� by a
positive constant c and	 therefore obtain the corrected estimator

b�c � D��

c X �y ��

with

Dc � �r��cB � S�� ���

bias�b�c � �� � �D��

c S � I�� � �r��cD��

c B� � 
c� ���

��Vc � ��D��

c SD��

c ���

and

����b�c � ��� V��

c �b�c � �� � ��K��c� � ���

where the noncentrality parameter �c is given by

�c � ���
�cV
��

c 
c � ������SD��

c � I�DcS
��Dc�D

��

c S � I�� ���

� ������S �Dc�S
���S �Dc�� � ���S����c���B�S��B� � ���

�



We note that �c is unknown	 too	 along with the unknown �����
The choice of c has to be done such that the corrected MMLE b�c is superior

to the Gau
�Markov estimator b� Based on the scalar quadratic risk of an
estimator ��

R���� a� � a� E
h
� �� � ��� �� � ���

i
a ���

with a �xed K � � vector a �� �	 it holds that

R�b� a� � sup
c
fR�b�c � a� � �

�B� � rg � ����

if �see Toutenburg	 ���	 p����

c � �� � ����

This �su�cient� condition follows from a general lemma on the robustness
of the MMLE against misspeci�cation of the additional restriction ��B� � r
since the substitution of �� by c may be interpreted as a misspeci�ed ellipsoid
of the shape

��B� � r��c��� ���

The condition ���� is practical	 if a lower bound for �� is known�

��� � ��� ����

resulting in the choice

c � ��
�

����

for c� Such a lower bound may be reclaimed using the estimator s� of ���

P

�
s��T �K�

��T�K��� ��
� ��

�
� �� � � ����

Hence one may choose ��
�
� s��T �K�	��

��� at a � � � level of signi�cance�
The estimator b�c with c � ��

�
is called two�stage minimax linear estimator

�SMMLE��

� Approximation of the noncentral � distribu�

tion

By formula �����	 page ��	 in Kendall and Stuart ������	 a noncentral ��

distribution may be approximated by a central �� distribution according to

��K��c� � a��d ����

with

a �
K � �c
K � �c

� d �
�K � �c�

�

K � �c
� ����

�



where	 due to the unknown �c	 the factor a and the number of degrees of freedom
d are unknown	 too�

With the approximation ����	 formula ��� becomes

a������b�c � ��� V��

c �b�c � �� � ��d� ����

i� e� approximately �in case of independence of s�� we have

�b�c � ��� V��

c �b�c � ��

ads�
� Fd�T�K � ����

The wanted con�dence region for � at the level ��� is de�ned by the interior
of the ellipsoid

�b�c � ��� V��

c �b�c � �� � ads�Fd�T�K��� ��� ����

Because of the unknown �c	 a and d relation ���� cannot be applied directly	
but only via an approximation such as the following�

Bounds for �c� We rewrite the noncentrality parameter �c ��� as follows�
From

bias�b�c � �� � 
c � �D��

c S � I�� � �r��cD��

c B�� ����

we get

�c � ���
�cV
��

c 
c

� ���r��c���BD��

c DcS
��DcD

��

c B�

� ���r��c���BS��B� � ���

Let 
min�A� denote the minimal and 
max�A� the maximal eigenvalue of a ma�
trix A	 respectively� Then it is well�known that �Raleigh�s inequalities�

� � ��B�
min�B
���S��B���� � ��BS��B� � r
max�B

���S��B���� ����

hold true	 yielding for a general c and with the inequality ���� at �rst

�c � ���
�
r��c�
max�B

���S��B����� ����

and for c � ��
�
especially

�c � cr��
max�B
���S��B���� � �o� ����

Hence	 the upper bound �� for �c can be calculated for any c�
Using this inequality	 we get for the coe�cients a and d of the approximation

����

a �
K � �o
K � �o

� ao ����

and

d �
�K � �o�

�

K � �o
� do� ����

�



i� e�

ad � K � �c � K � �o � aodo� ����

The approximate con�dence region for � then becomes

f� � �b�c � ��� V��

c �b�c � �� � �K � �o�s
�Fdo�T�K��� ��g� ����

We have �K� �c� � �K� �o�	 but Fd�T�K����� � Fdo�T�K����� for realistic
choices of � and T �K � �� Thus the impact of changing the actual param�
eter to its maximal value �o	 on the volume of the con�dence region ���� used
in practice	 has to be analysed numerically� Simulations �see Section �� were
carried out which show that using �o instead of �c will increase the volume of
the con�dence region�

With the abbreviation

goi �
q
Fdo�T�K��� ��s��K � �o��Vc�ii � ����

it follows from ����	 that the con�dence intervals for the components from �
may be written as

KIi � �b�ci � goi � �i � b�ci � goi � � ����

� Properties of E�ciency

Let us now investigate the e�ciency of the proposed solution� Assume that the
con�dence level ��� is �xed� Replacing �c by the least favourable value �o has
in�uence on the length of the con�dence intervals�

a� True	 but unknown con�dence region ���� on the basis of �c� Length of the
con�dence interval�

gci � 
q
Fd�T�K��� ��s��K � �c��Vc�ii�

b� Practical con�dence region ���� on the base of �o� Length of the con�dence
interval according to �����

goi � 
q
Fdo�T�K��� ��s��K � �o��Vc�ii�

By de�ning the ratio

Length of the interval on the basis of �o
Length of the interval on the basis of �c

we get �for all i � �� � � � �K� the same stretching factor

f � f��c� �o�K� T �K� �
goi
gci

�

s
�K � �o�Fdo�T�K��� ��

�K � �c�Fd�T�K��� ��
� ���

For given values of �c where ��c � ��� and �c � �� and for T � K � �� and
T � K � �� � K	 respectively	 we have calculated the stretching factor in

�



dependence of �o and varying values of K �Figures �	 � and ��� The stretching
factor is decreasing with increasing K �number of regressors� and is increasing
with the distance ��o � �c�� see Fig� ����

Another kind of rating the quality of the practical con�dence region ���� is
to determine the equivalent con�dence level � � �� of the true �but unknown�
con�dence region �����

The true con�dence region is de�ned approximately through

P

�
�b�c � ��� V��

c �b�c � ��

ads�
� Fd�T�K��� ��

�
� �� �� ����

Due to the replacement of �c by its maximum �o	 we instead determine an
increased con�dence ellipsoid by

P

�
�b�c � ���V��

c �b�c � ��

aodos�
� Fdo�T�K��� ��

�
� �� ��� ����

Hence	 by combination of ���� and ����	 we �nd for the true �and smaller�
con�dence region

P

�
�b�c � ���V��

c �b�c � ��

ads�
� f�Fd�T�K��� ��

�
� �� �� � �� � ����

with f � � from ���� Replacing the unknown noncentrality parameter �c by
its maximum �o results in an increase of the con�dence level	 as we have �� � �
�Figures ��� present values of �� for varying values of T and K��

As a consequence in practice we choose a smaller con�dence level of e� g�
� � � � ���� to reach a real con�dence level of � � �� � � �also for greater
distances �o � �c��

The stretching factor f and� moreover	 the increase of the con�dence level
are increasing with �o � �c� For model and data given the distance �o � �c may
be approximately determined by

�o � �c � �o � �u � �o ����

where	 according to ��� and ����	

�u � ����r
��
�

min�B

���S��B����
�
��B� � � ����

turns out to be a lower bound of the true noncentrality parameter �c� The
upper bound �o is calculated for concrete models such that it becomes possible
to estimate the maximum stretch factor f and the maximal increase of the
con�dence level from ��� to ����� In this way the practicality of the proposed
method is given in addition to the estimation of its e�ciency�

If the ellipsoid of the prior information is not centred in the origin but in a
general mid point vector �� �� �	 i� e�

�� � ���
�B�� � ��� � r� ����

then the MMLE becomes

b����� � �� �D��X ��y �X��� ����

�



with

bias�b������ �� � �D��S � I��� � ��� ����

and �see �����

V�b������ � V�b�� � V � ����

All the preceding results remain valid if we replace for 
 in ���� and �c in ���
the vector � by �� � ���	 provided that � in ��� and �c in ��� is de�ned with
the accordingly changed 
 and 
c�

� Comparing the Volumes

The de�nition of a con�dence ellipsoid is based on the assumption that the
unknown parameter � is contained with probability �� � in the random ellip�
soid� If one has the choice between alternative ellipsoids	 one would choose the
ellipsoid with the smallest volume� In other words	 the MDE�superiority of the
MMLE with respect to the Gau
�Markov estimator in the sense of ���� does
not necessarily lead to a preference of the ellipsoids based on the MMLE� Hence
in the following we determine the volume of both ellipsoids� The volume of the
T �dimensional unit sphere

x�x � �

�x being a T � ��Vector� is given as

VolE �
T��

��� � T
�
�
� ���

For an ellipsoid x�Ax � � with a positive de�nite matrix A	 the volume is

Vol�A� � VolEjAj
����� ����

a� Gau��Markov Estimator The con�dence ellipsoid for � on the basis of
the Gau
�Markov estimator b in �� is	 according to ���	

�

s�KFK�T�K��� ��
�b� ���S�b� �� � � � ����

thus the volume becomes

Vol�b� � �s�KFK�T�K��� ���K��jSj����VolE� ����

b� MMLE Based on the approximations ���� and ����	 the con�dence region
using the MMLE b�c was �see �����

�

�K � �o�s�Fdo�T�K��� ��
�b�c � ���V��

c �b�c � �� � �� ����

hence its volume is

Vol�b�c� � ��K � �o�s
�Fdo�T�K��� ���K��jV��

c j����VolE � ����

�



Comparing both volumes with each other gives

q �
Vol�b�c�

Vol�b�
� �f��� �o�K� T �K��K

jX �X j���

jV��

c j���
����

where f��� �o�K� T �K� is the maximal stretch factor ��� for the lower bound
�u � � of the noncentrality parameters �c� �u � � corresponds to T 	 
	i� e�
to the change from the MMLE to the Gau
�Markov estimator� The MMLE bc
has smaller variance than the Gau
�Markov estimator b�

� � �X �X��� �Vc �nonnegative de�nite	�

i� e� we have

� � V��

c �X �X � r��cB � r��c�BSB � C

or

V��

c � X �X � C with C � � �nonnegative de�nite�� ����

From ���� we may conclude that

jX �X j � jV��

c j �

and thus

jI � r��cBS��j�� �
jX �X j���

jV��

c j���
� � � ����

So the relation ���� between both volumes turns out to be the product of a
function f � � and the expression ���� which is � ��

The ratio ���� has to be investigated for a concrete model and given data	
as �o �and hence f� and the quantity ���� are dependent on the data as well as
on the strength of the additional condition�

Let X �X � S and assume the condition ��S� � r� Then according to
Section � we have

V��

c � �r��c� � � � r��c�S

� �r��c� ���S

and

jV��

c j � �r��c� ���K jSj� ����

Analogously	 from ���� with c � ��� 	 we get

�o � r��c � ���

This results in a change of the relation of the volumes ���� to

q � q�r��c� �

�
f��� r��c�K� T �K�

�r��c� ��

�K

� ����

�
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Figure �� Region of the components x� and x� of an ellipsoid x�Ax � r

A Appendix

Assume an ellipsoid

x�Ax � r

with the positive de�nite matrix A and the �� T vector x� � �x�� � � � � xT ��

We determine the regions of the xi components for the ellipsoid� Without loss
of generality	 we solve this problem for the �rst component x� only	 this is
equivalent to �nding an extremum under linear constraints�

Let e�
�
� ��� �� � � � � �� and � be a Lagrange muliplier� Further	 let

f�x� � x� � e��x �

g�x� � x�Ax� r

and

F �x� � f�x� � �g�x��

Then we have to solve

F �x� � stationaryx�y �

which leads to the necessary normal equations

�F �x�

�x
� e� � ��Ax � �� ����

�F �x�

��
� x�Ax� r � ��

From ���� it follows that�

x�e� � ��x�Ax � � �

thus we get

�� � �
x�
r
�

��



Inserting this into ���� gives

e� � ��Ax � e� �
x�
r
Ax � � �

x � A��e�
r

x�

and therefore

e�
�
x � x� � e�

�
A��e�

r

x�
�

or

x� � �
p
r�A������

with �A����� as the �rst diagonal element of the matrix A��� In case that the
ellipsoid is not centered in the origin�

�x� x��
�A�x � x�� � r

the regions of the xi components become

x�i �
p
r�A���ii � xi � x�i �

p
r�A���ii � ����

The intersection points of the ellipsoid x�Ax � r with the coordinate axes follow
from

��� � � � � xt � x�i� �� � � � � ��A��� � � � � xt � x�i� �� � � � � ��
� � �xt � x�i�

��A�ii � r �

as

xi � x�i �

r
r

�A�ii
� ����
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Figure � Stretching factor f �vertical axis� depending on K �horizontal axis��
With increasing K the stretching factor is decreasing� Results are presented for
�c � �	 T � �� and additionally varying �o starting from �c � ��� �solid line	
step ����� With increasing di erence ��o � �c� the stretching factor increases�
see also Figure �
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Figure �� Stretching factor f �vertical axis� depending on K �horizontal axis��
With increasing K the stretching factor is decreasing� Results are presented for
�c � �	 T � K � �� and additionally varying �o from �c � ��� �solid line	 step
����� With increasing di erence ��o��c� the stretching factor increases� see also
Figure �
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Figure �� Stretching factor f �vertical axis� depending on the di erence ��o��c�
�horizontal axis�� With increasing di erence ��o � �c� the stretching factor
increases� Results are presented for �c � �	 T � �� and additionally varying K
from � �solid line� to �� With increasing K the stretching factor decreases� see
also Figure 
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Figure �� Con�dence level �� �vertical axis� depending on T �horizontal axis�
for f� � ���� and � � ����� Additionally varying K from � �solid line� to ��
�� decreases with increasing K�
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Figure �� Di erence of the con�dence level �� � ��� �vertical axis� depending
on � �horizontal axis� for f� � ���� and K � �� Additionally varying T � ��
�solid line�	 ��� �� �� ��� With increasing T the di erence �� �� increases�
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