LUDWIG-

ES?‘V'Q’:SL:?};"TS' INSTITUT FUR STATISTIK
A RCHE SONDERFORSCHUNGSBEREICH 386

Trevisani, Causin, Montecchio, Kastner, Heumann:

Analysing the relationship between ectomycorrhizal
infection and forest decline using marginal models

Sonderforschungsbereich 386, Paper 143 (1999)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


https://core.ac.uk/display/12162579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Analysing the relationship between
ectomycorrhizal infection and forest decline using

marginal models

M. Trevisani* R. Causin® L. Montecchio® C. Kastner **
C. Heumann™**

March 10, 1999

Abstract

This statistical survey originates from the problem of discovering which
relationship exists between root ectomycorrhizal infection and health sta-
tus of forest plants. The sampling scheme takes observations from roots
that come from sectors around the tree resulting in a hierarchical associa-
tion structure of the observations. Marginal regression models are used to
analyze the mean effect of the ectomycorrhizal state on a response variable
proxy for the health degree of the plants.

Keywords: ectomycorrhizal infection, forest decline, generalized estimating equa-
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1 Introduction

This statistical survey originates from the problem of discovering which relation-
ship exists between root ectomycorrhizal infection and health status of forest
plants. The ectomycorrhiza is a symbiosis involving fine root apexes of plants
and some species of fungi. It is characterized by an hyphal mantle outside the
apex surface and an internal, extracellular net of hyphae, with morphological
different features depending on the fungus and the plant species involved. This
symbiosis gives to the plant an improvement of the up-take of water and nu-
trients and of resistance to biotic and abiotic stresses. Therefore the decline of
the plant is expected when the proportion of the ectomycorrhized tips decreases
(Causin, Montecchio and Mutto Accordi, 1996).
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The study was conducted in a coastal, holm oak (Quercus ilez L.) wood
in the Veneto region (Mesola forest, northeast Italy) where a large number of
trees are declining in varying degrees. The survey was performed on coeval
plants, growing in the same enviromental conditions. The trees were divided in
three classes of decline identified by means of objective visual criteria such as
defoliation degree, discolored leaves, epicormic twigs, dead twigs and branches,
growing anomalies, not attributable to parasites, silvicultural damages or cli-
matic events. In particular the ordered damage levels are a not-decline control
class (class 1), an intermediate one (class 2) and, at last, a decline one (class 3).

The sample was collected as follows: for each class five trees were randomly
selected, and for each plant the area below the crown was divided in six equal
sectors. For each sector a cylindrical soil core (@ 8 cm, height 10cm) was col-
lected beneath the little layer at a distance of approximately 1 meter from the
collar. Fifteen roots were randomly drawn from each core and each root was cut
after fifteen apexes were counted in subsequence on it, starting from the distal
part. A scheme of the data structure is given in figure 1.
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Figure 1: Data structure

The whole data set consists of 3 classes x 5 trees x 6 sectors x 15 roots
x 15 apexes. That is 20250 apexes altogether. Each of them was checked for



the presence of ectomycorrhization, registering the vitality and the morphotype
of the found ectomycorrhizae. The vitality of unmycorrhized apexes was also
recorded.

The scope of this study is to analyze the relationship between the vitality
of the apexes, presumable proxy for the plant health status, and the presence
of ectomycorrhization. As there are further variables as length of the fragment
and the number of its ramifications which should be also included, we can use
a regression model to analyze the relationship.

Regression models—as the linear regression model for continuous response
variables and the logistic regression model for binary response variables—assume
that the observations are independent. As seen in figure 1 this assumption has
to be violated in this case, because each 15 apexes cluster belongs to the same
root, each 15 roots cluster is from the same sector and so on. Several methods
for handling correlated data exist. For an overview see e.g. Fahrmeir and Tutz
(1994).

In this paper we use marginal regression models to fit the data. Because
a well stated hypothesis of scientific interest exists on the mean process, the
influence of ectomycorrhizal state on the marginal probability of a response
variable, proxy for the decline degree, is of prime interest. The correlation
structure either of univariate or multivariate variables, considered up to now,
can be a second purpose of analysis.

In section 2 we describe the data. Section 3 gives a short description of the
three methods for estimating marginal regression models we used. In section 4
the results are presented. The results are discussed in section 5.

2 Data description

An exploratory analysis of the data was conducted to detect the possible diffor-
mity of ectomycorrhizal infection and its effect in the three classes of decline.
First sample probabilities per apex were calculated (table 1). As for ectomyc-
orrhizal phenomenon the values don’t look as they were expected: the rate of
infection is almost the same in the three classes. Instead the vitality of apexes
varies from nearly 60% in the healthy class to 18% in the diseased one.

Class 1 2 3
Mycorrhizae Prob. 0.285037 0.2441481 0.2598519

s.e. 0.005495063 0.005229081 0.005338294
Vitality Prob. 0.5874074 0.4265185 0.1863704

s.e. 0.005992537 0.006020172 0.004740041

Table 1: Sample probabilities per apex

Noticed ectomycorrhizal rate is not a discriminant feature but vitality rate is,
the relationship between vitality and ectomycorrhizal spread among the apexes
becomes the key point from now on. Contingency tables and conditional dis-
tributions (fig. 2) show a clear positive association between the two variables:



probability of dying is higher than that of surviving for a not-mycorrhizal apex,
getting almost sure death in the diseased class, probability of living is nearly
one for a mycorrhizal apex in the first two classes and is more than 0.5 in the
third one. An immediate observation is that ectomycorrhizal portion of a radical
system is usually hale and hearty (by a microscope observation ectomycorrhizal
apexes are bright and coloured) and is the last surviving in dying trees.

MYCORRHYZAL and LIVING APEXES conditional probability
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Figure 2: Conditional distribution of vitality given ectomycorrhizal status of
apex

Mycorrhizae distribution is now examined. The frequency distribution of the
number of ectomycorrhizae in every fifteen apexes-root has a shape considerably
different from that of a standard binomial with the same parameters (fig. 3).
Overdispersion in binary data can provide a general explanation of atypical
distributions like this.

Sources of overdispersion can be heterogeneity of clusters—in this case trees,
sectors as well as roots—and ignorance of dependence of units within clusters.
With respect to the dependence of units, apexes infect each other within the
small root and their dependence can be even seen as a longitudinal correlation.
In fact ectomycorrhizal diffusion takes mainly place in two ways: during the
growth of root and during its life. In the first case a temporal order in infection of
subsequent apexes exists, in the last case a general spatial correlation is supposed
to act. As regards the vitality distribution the same remark on overdispersion
can be repeated yet noticing an emphasized dychotomous behaviour in the peaks
of 0 and 15 apexes. For that summary of the two binomial variables into four
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Figure 3: Frequency distributions of the number of ectomycorrhizal and living
apexes per root

categories (figure 4) can help to put in focus the phenomenon.
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Figure 4: Four categories ectomycorrhizal and vitality distributions

The first two classes have a similar ectomycorrhizal distribution: infection
is a rare event (pick of 0-roots) but when it succeds it spreads in the remaining
three categories in a decreasing way rather uniformly—with a better ectomyc-



orrhizal and vital state in the healthy class—. In the third class infection is still
more rare but when it adheres it catches the whole root. Why these full infected
roots die? A first interpretation of biological phenomenon can now be given.
Left any attempt of explanation in terms of cause and effect, the kind of mu-
tual association between the two variables has to be explored. It seems that in
the damaged trees ectomychorrizal infection concentrates in few roots avoiding
large portions of the root system: both a less infective ability of fungi involved
and a loss of vitality of still surviving roots !, in the unmycorrhized area, could
be responsible. Moreover why in the third class some of the full ectomycor-
rhized roots die? An attempt of explanation is that in strongly declined plants
the specific fungi in symbiosis with the dead observed roots were less capable
to protect them from stresses in comparison with the fungi in symbiosis with
living observed roots. But the difficulty to distinguish among morphotypes in
dead ectomycorrhizae restrict the possibility to interpret the phenomenon more
deeply.

The conditional relative frequencies of the four categories of root life given
as many as categories of ectomycorrhizal state (fig. 5) can give a better insight
of the sort of dependence between the two variables.
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Figure 5: Absolute(above) and relative (beneath) frequencies of the four root
life categories given the ectomycorrhizal ones with decline increase.

A positive association between pairs of the same category is evident in the
second class and between pairs of the same and superior life category in the
healthy class too. As foreseen, in the diseased class, the correlation is very
strong for the first three categories while it is, in a certain sense, negative for
the 15-mycorrhizae roots.

Fungi produce ectomycorrhizae only with living apexes



Next figures describe distributions and possible influences of other variates
in the phenomenon evolution. Figure 6 shows boxplots of root length given
number of its ramifications, providing evidence that roots become more and
more a tangle—shorter and with more ramifications—with decline increase.
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Figure 6: Length (in mm) w.r.t. number of ramifications of the root: boxplots
with width proportional to the number of observations.

Figures 7 to 9 show conditional distributions of vitality and ectomycorrhizal
four categories given three levels of length for each number of ramifications. The
proportion of higher categories of vitality is usually larger with the increase of
root length and the decreasing of ramification number. Mycorrhization gen-
erally shows analogous features. Figure 10 shows conditional distributions of
vitality given ectomycorrhizal four categories for each class with respect to the
level of a dummy factor variable, to be referred as sector dispersion factor. It
is generated by classification of sectors in to three levels. In the first one ecto-
mycorrhizal infection is distributed rather homogeneously in the four categories
and the number of 0&0-roots (nor ectomycorrhizal neither alife) is low, as mean
behaviour of class 1 is. In the last, on the contrary, ectomycorrhizal infection is
sparse and concentrated (0-15 ectomycorrhizae) at the same time and there are
many 0&0-roots, as in the third class. As expected in each class the typical sec-
tor category corresponds to the level of the class itself. It is rather evident that
the typical bivariate distribution for each class is repeated in sectors classified
into the three levels.
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Figure 7: Vitality (above) and ectomycorrhizae (beneath), ramifications 0,1,2,3
(from left to right), length 0.4-1.3, 1.3 -1.8, 1.8 -4.7 (categories 1,2,3 in graphic)
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Figure 8: ramifications 0,1,2,3,4 (from left to right), length 0.4-1.1, 1.1-1.7,
1.7-5.3 (categories 1,2,3 in graphic)
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Figure 9: ramifications 0,1,2,3,4,5 (from left to right), length 0.3-1.0, 1.0-1.5,
1.5-7.5 (categories 1,2,3 in graphic)
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In the following we describe several marginal regression models for the binary
response variable vitality. Clusters are defined by roots from which follows that
the association between roots, between sectors and between trees is not taken
into account.



3 Marginal regression models for correlated data

Let Y;; be the vitality status of the jth apex within the ithroot j =1,... ,T;i =
1,...,n. For each Y;; several covariates are available, which can be summarized
in the matrix X; = (z};,...,2}r)’. Marginal models specify the marginal ex-
pectation of the response given the covariates

E(Yijlzij) = pij = g(zi; )

where gil(m;j B) is the so-called link function and f is the vector of parameters.

For binary data, the usual link function is the logit-link resulting in

exp (z7;8)
Eijlaig) = Plyij = eiy) = 7oy o Z;'-ﬂ)
13

3.1 Logistic marginal regression with markovian depen-
dence

Within-root dependence among apexes is modeled like a Markov chain exploiting
the one-way direction of the birth order and infection spread and of the nutri-
ent flow from the older apexes to the younger ones®. Other possible sources
of overdispersion have been neglected. The logistic marginal regression model
proposed by Azzalini (1994) uses a markovian dependence structure. The asso-
ciation between two subsequent apexes is modeled in terms of an odds ratio of
transition probabilities of a first order markovian chain®:

_ pllij(j—l)(l - POOij(j—l))
w =
(1 = pr1ijj—1))Proij(i—1)

where prijj—1 = P(Yij = k|Yj(j—1) = 1). Solving

w — Puij-1 (1—p10ij(i—1)
(I=P11i3(i-1))P10i3(G—1)

{ mij = Ti(j—1)Pr1iji—1) + (1 — Tigj—1))Proij(i—1)

for p114j(j—1) and pigij(j—1) results in the transition probabilities

pogy = Ut D STy M
(= 1)(1 = mi5-1)
P11ij(j—1) = P10ij(j—1)
1= dijj-1) + (% = D(mij + Tig—1) = 2mijTigj—1))
2(¢p — 1)7Tz'(j71)(1 - Wi(jfl))

with ‘51'2]'(]'71) =1+ (¢ = D) {(mij —mi(j—1)) 0 — (mij + 1)) +2(mi5 +m5-1)) }-
Parameter estimates are obtained using standard maximum likelihood methods.

+ (2)

2The count order of the apexes has been inverted compared to the survey one. The first
apex is the first to be born and to be liable to infection.

3The odds ratio is supposed constant across roots and apexes, but this condition can
theoretically be relaxed.
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Assuming independence among the roots besides a first order Markov chain
structure within them, the log-likelihood is

n

=1

where

15
LB ) = L (B,9)
j=1

Li(B, 1) (3)
= yalogmay + (1 —yir)log(l —ma) +
15
+ Zyi(j—l)yz’j log p114j(j—1) + ¥i(i—1) (1 — i) log(1 = prigj(j—1)) X
j=2
x (1— yi(jfl))yij logploij(jfl)(l - yi(jfl))(l - yz’j) log(1 — plOij(jfl))
15
= y; logitmy + log(l — ;1) + Zyij logit (p1y,;_,jj—1) +
j=2
+10g(1 _plyij—ljjfl) (4)

Inserting (1) and (2) in (3) the log-likelihood is parametrized in terms of the
marginal means and the odds ratio; maximum likelihood estimates can then
be obtained computing the first derivatives. In the context of repeated mea-
sures standard errors can be achieved by inversion of the sum of first derivatives
squares*, so avoiding the second derivatives computing. The hypothesis of or-
thogonality® of 8 and log is an attractive feature of this model.

3.2 Mixed parameter model

The second approach is to use a ‘mixed parameter model’ for modeling marginal
expectations and marginal pairwise associations. The underlying model for
the joint distribution of the binary variates is a loglinear model and was e.g.
introduced by Fitzmaurice and Laird (1993) for the context of marginal models.
The joint density is given by

f(y,\I!,Q) = P(Yv1 =Yi,--- 7YT = ZIT;‘I’,Q) :exp{y"ll—{—w’Q—A(\Il,ﬂ)} (5)

where y = (y1,.-.,y7r), w = (Y1Y2, Y1Y3,- - »YT—1YT5--- ,Y1y2 - -yr), ¥ =
(¥q,...,P7) a parameter vector which can be interpreted as logits of condi-
tional probabilities and Q = (w12, w13, ... ,Wr—1T,- .- ,wi2..7)" & vector repre-
senting conditional log odds ratios and contrasts of conditional log odds ratios.

4Quantity which approximates the Fisher information, at least for large n.
5Tt has been proved in some particular cases and it seems to hold in the model applications.
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The expression

y=(1,1,...,1)
eAW, D} = 3 exply'¥ + ')
y=(0,0,...,0)

is the normalizing constant obtained by adding 27 terms according to all the
possible response profiles. The density (5) is a special case of the partial ex-
ponential families introduced by Zhao, Prentice and Self (1992). They have
considered the following family

fly;%,Q) = exp{y'¥ + c(y, M)} (6)

1
A(T, Q)
which includes the multinomial distribution and the multivariate normal dis-
tribution as particular cases. This presentation enables the modeling of mixed
discrete and continuous response also. Choosing A(%, Q) = exp{A(¥,Q)} and
c(y, Q) = w'Q we get (5) as a special case of (6).

Zhao and Prentice (1990) have discussed the choice of a quadratic exponen-
tial family as the working likelihood for binary variables, i.e.,

3 9,9) = ——— exp{y¥ + w0}
A(T, Q)

where w is found from the pairwise products (y1y2), .- . , (yr—1yr) only, i.e., all
interactions of order three and higher are neglected meaning thereby that they
a priori are assumed to be zero. This parametrization was first proposed by Cox
(1972). In fact we use such a quadratic model after a one-to-one transformation
of the canonical parameters into marginal mean and pairwise marginal odds
ratio parameters, see Heagerty and Zeger (1996), Glonek (1996) and Heumann
(1998) for the details.

For the pairwise marginal log odds ratios ©; we used a model where the
marginal log odds ratio «; between direct neighbor apexes (1 and 2, 2 and 3,
and so on) is one parameter and the pairwise marginal log odds ratio as between
all other apexes is another:

ay if|k—1=1k#I

O;(apex k, apex 1) = { ay iflk—1>1,k#I @)

independent of the individual index i.
The maximum likelihood estimators (3, &) are then the solutions of the equa-

tions
ol oo N (1 o) Yi— i
—1 {2 (2
=3V o ) (an a ) cor (B0 ) <0,
i=1 da Opi 00; i 4
where 88%' is a design matrix independent of i resulting from the parametrisa-

tion in equation (7). v; is the vector of expectations of the pairwise products:

12



EWiYs),... . EYr_1Yp). g:i_ and gg"_ result from the mentioned one-to-one

transformation. Cov(Y|W); is the symmetric matrix

( Var(Y;) COV(YZ-,Wi)>
Cov(W;,Y;)  Var(W;)

containing second moments in the upper left block, third moments in the upper
right and lower left block and fourth moments on the lower right block.

An algorithm for estimating § and a using ‘iterative proportional fitting
within Fisher Scoring is described in Heagerty and Zeger (1996) and in more
detail in Heumann (1998). Also a formula for estimating the variances of the
estimates can be found there.

3.3 The generalised estimating equations

Contrary to the Azzalini approach and the mixed parameter model, the gen-
eralized estimating equations (GEE) are a semiparametric quasi-likelihood ap-
proach. It has first been proposed by Liang and Zeger (1986). Several extensions
have been proposed, reviewed e.g. by Ziegler, Kastner and Blettner (1998).

The Generalized Linear Model—not taking into account that the observa-
tions within a cluster are correlated—will estimate the parameters using the
Independence Estimating Equation (IEE)

B =Y D e Q
i=1

where D; = Ou; /08’ is the diagonal matrix of first derivatives, V; is the diagonal
matrix of the variances V; = diag(vi:), where v,y = Var(Yy), and €; = y; — .
The solution of (8) is computed using the Fisher scoring algorithm. In (8),
only the first two moments have to be specified. Therefore this is called a
quasi-likelihood approach. Not taking into account the correlation between the
observations, it is necessary to use the robust variance estimator proposed by
White (1982):

—1 —1
— n o ~ n o 1. n o .
V(BreEe) = <ZD§V;1D,-> (Z DV, v, Di> (Z D;VilDZ) .

i=1 i=1 i=1

" DIV, D; is the estimated Fisher information matrix. The middle matrix
on the right hand side of (9) consists of the estimated crossproducts of first order
derivatives, also termed estimated outer product gradient (estimated OPQG),
with Q; = (y; — 1) (i — fui)'-

The Independence Estimating Equations (8) can be inefficient, because V;
does not take the correlation between the observations into account. That is
why Liang and Zeger (1986) modeled V; as

Vi= AV?R,AY?

13



where A; is the matrix containing the variances on the diagonal, and R; is a
positive definite correlation matrix that should describe well the association
structure. For estimating this matrix, Liang and Zeger (1986) used the method
of moments. Prentice (1988) proposed a second estimating equation for the
association which has teh same structure as (8). The correlation was taken as a
measure for the association and the sample correlation is used as 'response’ in
the second estimation equation. This results in a second score equation

@) = - 3 B i = ) (10)

where E; = 0p;/0a’ is the diagonal matrix of first derivatives, U; is the matrix of
the third and fourth moments, w; is the vector of sample correlations and p is the
correlation, which is modeled through the inverse of Fisher’s z—transformation
(Lipsitz, Laird and Harrington, 1991).

4 Results

We now apply the marginal regression models to the forest decline data. As
there are 15 apexes per root, we have to assume independence between the
roots within a sector for computational reasons. That is we have 1350 clusters
of size 15. For the likelihood approach of the mixed parameter model we have to
specify the joint distribution which consists of 2!® probabilities. This seems not
to be computationally feasible. So for this approach we reduced the observations
to the first ten apexes per cluster. The main goal of this analysis is to find out
the relationship between mycorrhizal infection and vitality. Therefore modeling
the mean structure is of primary interest.

The starting model only includes the class as covariate: it is dummy coded
using class 1 as reference category. In model 2 ectomycorrhizal infection as
binary covariate—using dummy coding—and the interaction between class and
mycorrhizal infection are added. In model 3 the categorized ectomycorrhizal
infection—which is cluster-constant—is included using dummy coding, too; also
the interaction between class and the categorized ectomycorrhizal infection is
modeled. Furthermore, factor—the sector dispersion factor, standing for the
type of root distribution of ectomycorrhization and vitality within a sector—and
the interaction factorx categorized ectomycorrhizal infection are added. Finally,
in model 4 length and number of ramifications are considered. Number of
ramifications is dummy coded, 0 and 1 are coded as 0, otherwise it is coded
as 1.

The association is modeled using two parameters. The first one describes the
association between subsequent apexes. The second one describes the pairwise
association between each pair of apexes.

The results for models 1 to 4 are presented in table 2 to 5. For each esti-
mation approach, parameters and standard deviations (in brackets) are given.

14



Significant results are highlighted. For the likelihood approaches the log likeli-
hood is given, too. Note, that the results of the mixed parameter model are only
based on 10 apexes per cluster (13500 observations). Therefore, the likelihood
values for the two different approaches within a model are not comparable.

The results of the generalized estimating equation approach of Prentice were
only available for model 1. The algorithm did not converge for models 2 to 4.
This could because of the restriction of the correlation which may be violated
(see Prentice, 1988).

IEE GEE Azzalini Mixed param.
Intercept  0.354 (0.080)*** 0.355 (0.080)*** 0.356 (0.055)"** 0.328 (0.079)**"
class2 -0.650 (0.109)*** -0.650 (0.109)*** -0.646 (0.078)*** -0.681 (0.112)***
class3 -1.828 (0.125)*** -1.830 (0.126)*** -1.835 (0.085)*** -1.817 (0.123)***
i 1.867 (0.045)*** 3.932 (0.047)*** 3.602 (0.075)**"
s 1.404 (0.043)*** 3.012 (0.081)"**
Likelihood -7221.402 -4639.210

Table 2: parameter estimates, standard errors and significance (*: p — value <
0.05, **: p—value < 0.01, ***; p—value < 0.001); o1 : association parameter for
nearest neighbour, ay: association parameter for all other associations; mixed
parameter model is based on only 10 apexes per root

Model 1 estimates (table 2) point out a significant decrease in vitality from
classl to class 2 and much more strongly to class 3, a quite high correlation
between either adiacent apexes or any two apexes in the same root, respectively
around 0.7 and 0.6 in all estimating approaches.

IEE Azzalini Mixed param.
Intercept -0.140  (0.091) -0.072  (0.062) -0.184  (0.088)*
class2 -0.868 (0.134)*** -0.922 (0.092)*** -0.862 (0.131)***
class3 -2.952  (0.212)** -2.823 (0.138)*** -2.783 (0.193)***
mico 2.283 (0.248)***  2.384 (0.130)***  2.423 (0.180)***
C2mico 1.158 (0.382)***  1.432 (0.210)**  1.123 (0.281)***
C3mico 1.187 (0.345)***  1.390 (0.198)***  1.016 (0.270)***
ay 5216 (0.072)***  4.651 (0.101)***
Qs 3.892 (0.110)***
Likelihood -4591.366 -2943.860

Table 3: parameter estimates, standard errors and significance (*: p — value <
0.05, **: p—value < 0.01, ***: p—value < 0.001); «1: association parameter for
nearest neighbour, as: association parameter for all other associations; mixed
parameter model is based on only 10 apexes per root

In model 2 (table 3) both class factor and mycorrhiza indicator variable
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are significant. The class effect still acts but the presence of ectomycorrhiza
involves very high vitality probability. With inclusion of ectomycorrhization
model fit has been much improved and correlation has been estimated higher
(producing an interesting articulate dependence between infection and vitality
in near apexes).

IEE Azzalini Mixed param.
Intercept 0.149 (0.152) 0.180 (0.120) 0.072 (0.154)
class2 -0.323  (0.209) -0.271  (0.162)* -0.371  (0.214)
class3 -1.916  (0.413)** -1.989 (0.266)*** -1.747 (0.358)***
myco 2379 (0.226)***  2.523 (0.150)***  2.578 (0.212)***
cl2*myco 1.416 (0.381)***  1.545 (0.251)***  1.136 (0.333)***
cl3*myco 1.343  (0.373)***  1.435 (0.252)***  0.879 (0.340)**
myco(k1) 0478 (0.218)* 0.365 (0.167)* 0474 (0.235)*
myco(k2)  -0.093 (0.261) -0.198  (0.197) -0.240  (0.281)
myco(k3) 1.903 (0.865)* 1.055 (0.897) 1.045 (1.039)
cl2*mycl  -0.735 (0.286)**  -0.825 (0.211)*** -0.598 (0.298)*
cl3*mycl  -0.061 (0.510) 0.068 (0.332) 0.069 (0.465)
cl2*myc2 0.084 (0.396) -0.220 (0.276) 0.013  (0.398)
cl3*myc2  -0.043 (0.607) -0.240 (0.412) -0.187 (0.564)
cl2*myc3  -1.506 (0.845) -1.617  (0.561)**  -1.365 (0.753)
cl3*myc3  -1.353 (0.851) -1.346  (0.562)**  -1.503 (0.763)*
factor2 -1.056  (0.205)*** -1.078 (0.161)*** -1.111 (0.210)***
factor3 -2.857 (0.484)** -2.886 (0.273)*** -3.584 (0.406)***
fa2*mycl 0.327 (0.277) 0473 (0.206)* 0.447 (0.288)
fa3*mycl 1.487 (0.573)** 1.741  (0.355)***  2.467 (0.523)***
fa2*myc2 0.252 (0.374) 0.568 (0.259)* 0.351 (0.363)
fa3*myc2 1.660 (0.667)* 2.109 (0.426)***  2.863 (0.613)***
fa2*myc3  -1.778 (0.830)* -1.109  (0.901) -0.631 (1.032)
fa3*myc3  -0.425 (1.065) 0.257 (0.993) 1.400 (1.182)
Q1 5.006 (0.072)***  4.431 (0.102)***
Qs 3.670 (0.110)***
Likelihood -4416.508 -2840.33

Table 4: parameter estimates, standard errors and significance (*: p — value <
0.05, **: p—value < 0.01, ***; p—value < 0.001); o1 : association parameter for
nearest neighbour, as: association parameter for all other associations; mixed

parameter model is based on only 10 apexes per root

Model 3 (table 4) adds factor and ,in minor way, the variable standing for
the root infection size as sources of significant effect . Goodness of fit is a bit
higher and correlation estimate a bit lower. Yet the known effects of class and
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myco apply, it is remarkable the decrease in vitality from factorl to factor2
and factor3—expecially with myco(k0) and myco(k3)—, the stressed increase in
myco(k0) and myco(kl) and the stressed decrease in myco(k3)-expecially in
class2 and class3—. Model 4 (table 5) adds only the root length as source of
significant effect. Analogous observations as those for model 3 apply with regard
to model fit and correlation estimate.

IEE Azzalini Mixed param.
Intercept 0.038 (0.229) 0.116 (0.166) -0.004 (0.224)
class2 -0.333  (0.211) -0.286  (0.162) -0.373  (0.214)
class3 -1.798  (0.422)*** -1.993 (0.273)*** -1.635 (0.363)***
myco 2.392  (0.225)***  2.549 (0.151)***  2.588 (0.213)***
cl2*myco 1.391 (0.379)***  1.575 (0.254)***  1.125 (0.333)***
cl3*myco 1.371  (0.375)***  1.369 (0.251)***  0.890 (0.341)**
myco(k1) 0451 (0.221)* 0.333 (0.168)* 0.449 (0.236)
myco(k2) -0.190  (0.267) -0.310  (0.198) -0.328 (0.283)
myco(k3) 1.805 (0.857)* 0.945 (0.895) 0.948 (1.041)
cl2*mycl -0.683  (0.290)* -0.775  (0.212)** -0.558 (0.299)
cl3*mycl -0.081 (0.509) 0.159 (0.336) 0.060 (0.466)
cl2*myc2 0.151  (0.400) -0.160 (0.277) 0.078 (0.399)
cl3*myc2 -0.024  (0.607) -0.076  (0.416) -0.144  (0.566)
cl2*myc3 -1.441  (0.828) -1.569 (0.569)**  -1.323 (0.754)
cl3*myc3 -1.355 (0.846) -1.187  (0.567)* -1.496 (0.766)
factor2 -1.065 (0.206)*** -1.148 (0.162)*** -1.129 (0.211)***
factor3 -2.783  (0.484)** -2.908 (0.277)*** -3.528 (0.407)***
fa2*mycl 0.341 (0.278) 0.495 (0.207)** 0.476 (0.288)
fa3*mycl 1.461 (0.572)* 1.810 (0.357)***  2.466 (0.524)***
fa2*myc2 0.283 (0.374) 0.634 (0.260)** 0.382 (0.363)
fa3*myc2 1.630 (0.670)* 2.139 (0.428)***  2.821 (0.615)***
fa2*myc3 -1.740 (0.825)* -1.002  (0.900) -0.575 (1.035)
fa3*myc3 -0.445  (1.058) 0.349 (0.992) 1.389 (1.184)
length 0.141 (0.120) 0.268 (0.079)***  0.123 (0.112)
ram -0.475 (0.276) -0.134  (0.192) -0.385 (0.278)
length*ram  0.125 (0.156) -0.052 (0.108) 0.066 (0.156)
Q1 4980 (0.072)*** 4423 (0.102)***
Qs 3.661 (0.110)***
Likelihood -4405.720 -2836.420

Table 5: parameter estimates, standard errors and significance (*: p — value <
0.05, **: p—value < 0.01, ***; p—value < 0.001); o1 : association parameter for
nearest neighbour, ay: association parameter for all other associations; mixed

parameter model is based on only 10 apexes per root
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5 Discussion

In this paper we used several estimating approaches for marginal models to
analyze the relationship between ectomycorrhizal infection and vitality.

The first important goal was to demonstrate that an increase of decline
of the epigean apparatus (classes from 1 to 3) corresponds to a decrease of
root vitality. This was partially expected as it is well known that a deep and
complex interrelation between epigean and hypogean apparatus exists. Hence
it is realistic to presume that when damage symptoms are observed for a long
time in one apparatus, sufference symptoms are detectable also in the other one.

The second goal was to confirm that the apex vitality is positively associated
to the ectomycorrhizal degree. This also was expected and is probably due to
the uptake (of nutrients and water) and to the (both biotic and abiotic) stress
resistance induced by the ectomycorrhizal symbiosis.

Nevertheless the mutual influence between vitality and ectomycorrhization
stands out at each level of data clustering, whether apex or root or sector. We
attempt some possible interpretations. The presence of living ectomycorrhized
apexes can protect the unmycorrhized neighbours from biological stresses. This
fact derives from the capacity of ectomycorrhizal fungi to oppose the colonization
of the closest rhizophere by some harmful soil microrganisms, both producing
toxic compounds or antibiotics and modifying the root exudates. On the other
hand this study demonstrates that vitality is a variable with a high correlation.
In fact the death of proximal® apexes can cause nutrient flow interruptions, and
consequently the death of the distal apexes. Furthermore the vitality degree
of plants can influence the capacity of attracting symbionts or selecting the
ectomycorrhizal fungi. In fact we can presume the existence of ectomycorrhizal
fungi with more or less ability of infecting through the soil (e.g. by emanating
hyphae or rhizomorphs), or more or less protective for plants.

At last the root length—generally higher in class1- turns out to be positively
correlated with vitality. It can be interpretated as a root vegetative vigour
index, higher in healthy plants and lower in the declining ones.

In our marginal models we neglected the association between roots within
a sector, between sectors within a tree and between trees within a class. This
might result in incorrect conclusions, if clusters are not independent. Possible
solutions are to extend the likelihood approaches to the case of nested structures
or to use different approaches like bayesian hierarchical models (Knorr-Held and
Rasser, 1998).

For the mixed parameter model it was necessary—because of computational
feasibility—to reduce the data to the first ten apexes per root. This subset is
taken systematically (the first ten), so a comparison of the parameter estimates
between estimation approaches should be done with care. An additional effect
is that the parameter estimates are not as efficient as in the Azzalini approach.

The generalized estimating equation approach by Prentice did not converge
when cluster-specific covariates are used in the mean model. This approach uses

6Proximal apexes consist of the older apexes along the root growth direction.
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the correlation as measure of association, which is bounded. Another possibility
is to use the odds ratio as measure of association (Fahrmeir and Pritscher, 1996).
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