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Abstract

We introduce some recent and very recent smoothing methods which focus on the

preservation of boundaries� spikes and canyons in presence of noise� We try to point

out basic principles they have in common� the most important one is the robustness

aspect� It is re�ected by the use of �cup functions� in the statistical loss functions instead

of squares� such cup functions were introduced early in robust statistics to downweight

outliers� Basically� they are variants of truncated squares� We discuss all the methods in
the common framework of �energy functions�� i�e we associate to �most of 	 the algorithms

a �loss function� in such a fashion that the output of the algorithm or the �estimate�

is a global or local minimum of this loss function� The third aspect we pursue is the

correspondence between loss functions and their local minima and nonlinear 
lters� We

shall argue that the nonlinear 
lters can be interpreted as variants of gradient descent

on the loss functions� This way we can show that some �robust	 M �estimators and some

nonlinear 
lters produce almost the same result�

Keywords� Edge�Preserving Smoothing� Noise Reduction� Edge Detection� Nonlinear Filtering
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� Introduction

The German�RussianWorkshop on Pattern Analysis and Image Understanding turned out to be
an excellent platform for the exchange of ideas and results of the imaging communities in eastern
and western countries� But we do not only have to bridge the gap between formerly separated
parts of the world but also between diverse scienti�c disciplines concerned with problems in
imaging and other �elds of signal analysis� This is more evident in western countries where the
applied and theoretical sciences are more separated whereas in eastern countries the interplay
between theory and applications has a long tradition �like formerly in the west	 and still is
alive� In view of the former observation this paper is intended to improve the information

ow between the imaging community on the one side and the mathematical and statistical
communities on the other�
In this paper we are concerned with noise reduction or smoothing of images where there

is evidence for smooth regions from the data� The harder problem is not to smooth where
there is evidence for breaks or boundaries� It is well known that linear approaches like linear
�ltering cannot handle such problems� some kind of nonlinear �ltering is needed� Plainly�
edge�preserving smoothing is closely related to boundary extraction which is an own discipline
in imaging� Boundary extraction for example has a long tradition and is an own �applied
art
� Nevertheless� contributions from mathematics and statistics are helpful� In recent years
scientist from these �elds became more and more involved into imaging� Their contributions
promise new approaches and�or a deeper analysis of statistical properties and performance of
existing ones�
In this paper we introduce and compare a couple of recent and very recent methods con�

tributed by mathematicians and statisticians� Some are developed by the authors ������ ����
����� ���� ����	 and some by others ����� ���� ���� ����� ����� ���� ���	�
The methods are selected and compared according to criteria described below�

��� Information Content of Boundaries

This is a paper about edge�preserving smoothing and not about edge detection� On the other
hand� these two �elds are closely related� Boundaries may partition an image into comparably
smooth parts �but on di�erent intensity levels	� Inside such regions noise may be reduced
by usual smoothing methods� Conversely� images processed by an edge�preserving smoother
implicitly contain boundary information in their set of discontinuities� This will be made precise
in Section ����
Therefore some �philosophical
 remarks on boundaries are in order before we turn to the

main subject� They concern the very old topic of information content of boundaries� The work
of U� Daub� ���� �����	 and V� Aurich and U� Daub� ��� �����	� sheds some light on this
question and should be mentioned here�
Boundaries may carry a considerable amount of information in an image relevant for the

observer or for processing tools� This becomes particularly evident in line drawings or hand�
writing� We admit that this is a platidude� On the other hand� the statement can to some
extent be made precise� In ���� and ��� the following rough idea is made precise� Take a digital



�

grey value image and set a reasonably good edge detector to work �in fact the authors adopted
a chain of nonlinear Gau�ian �lters to be discussed below	� Plainly� the amount of memory to
store the boundaries is considerably smaller than the memory needed for the whole image� In
addition store grey values �under�	 sampled from a very coarse subgrid of the original pixel grid�
To recover a version of the original image interpolate the undersampled grey values on the �ne
original pixel grid� To preserve contrast �i�e� boundaries	 the adopted method of interpolation
in a �xed pixel s only �sees
 grey values in pixels t for which the line segment between s and t
does not cross a boundary �this avoids disadvantages of more global interpolation methods like
that of Shepard	�
Now a subjective element comes in� Undersampling is performed with such a rate that a

human observer accepts the recovered image as a reasonable version of the original one� The
compression rate obtained by only storing boundaries and undersampled grey values then is a
measure of what is lost by deleting the rest of the image information�
The method simultaneously gives excellent restorations of noisy pictures� Both� excellent

restoration and compression are impressively illustrated by way of example� We include some
pictures from ���� with compression rates around �� which is lower than the compression rates
of some methods specially designed for image compression� In Figures �� � and � some natu�
ral scenes are processed� Figure � contrasts this compression methods to JPEG� the present
compression standard� In the captions we use the abbreviation PSC �piecewise smooth compres�
sion	 for the Aurich�Daub method� We see that compression based on piecewise smoothing
is completely di�erent in 
avour� The latter is an excellent basis for subsequent processing� for
example number recognition�

��� Plan and Idea of this Paper

We shall describe some recent methods of boundary preserving noise reduction� Some of them
are developed by statisticians and described by them in statistical terms� Others were developed
by computer scientists or engineers from signal analysis� The former work in the �estimation

context� the latter prefer the language of �lters and usually draw 
ow diagrams with two
arrows for in� and output and a box for the �lter� But frequently they mean precisely the same�
The most simple example is overall smoothing� The statistical model assumes independent
identically distributed random observations Yi� � � i � n� with common mean� In the imaging
context this means a noisy 
at� The statistician is interested in the estimation of the mean�
writes down a loss function� e�g�

� ���
X
i

�Yi � �	� ��	

and decides to accept that value �� as a reasonable estimate of the mean which minimizes the
loss function ��	� Then he computes this particular minimizer and �nds

�� � �Y �
�

n

X
i

Yi�

The engineer
s idea is to recover the signal as well as possible� i�e� he wants to smooth noise away�
Therefore he repeatedly uses a moving average �lter� Hence he applies a classical estimation
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Figure �� A natural scene �top	 compressed with rate ����� by PSC

method locally to the signal� In summary� the statistician and the engineer basically do the
same� Now the idea of i�i�d� variables is hopeless in imaging� There may be jumps � spikes�
canyons and other discontinuities in the image� which for the statistician means that a lot of
distribution families are involved in the inference� Here robustness aspects enter the game� A



�

Figure �� A natural scene �top	 compressed with rate ����� by PSC

�rst attempt is to replace the L��framework associated to ��	 by a L��theory� then ��	 becomes

� ���
X
i

jYi � �j�

Again the solution can be explicitely computed and turns out to be the median� This in turn
is re
ected by �local	 iterated moving medians� Since also these perform poorly� the methods
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Figure �� A natural scene �top	 compressed with rate ����� by PSC

must be re�ned which from the statistical point of view amounts to exploited robust statistics
and related methods more consequently�

Moreover� spatial context enters the game� which is a new challenge for both communities�
Bayesian and Markov �eld methods are well�suited to handle spacial context and there is
another �eld of application of statistics�



�

Figure �� Numerals on a chip compressed by PSC with rate � ��� Top� original image� middle�
PSC compression� bottom� compression by Jpeg with comparable rate�

In summary� a close interplay between statistics and engineering is necessary and fruitful�
The connection between loss functions and �ltering is one aspect of our consideration of

smoothing methods� to show that outputs of certain �lters and results of certain estimation
methods are closely connected�
The other aspect originates from statistics �and� to be honest� from statistical physics	� we

try to illustrate that most of the described methods basically are kind of a �local	 minimization
method for some loss function of the type ��	� In most cases the square is replaced by some
loss function � of the type ��u	 � minfu�� �g which leads to the minimization problems of the
type

� � � ���
X
i

��Yi � �	�

We wish to interpret �lters as steps of gradient descent type algorithms in the function ��
The methods of noise reduction we shall consider are the following ones�

� The Bayesian approach using maximum a posteriori estimation�

� A kernel density or robust statistics estimation approach based on local M �estimation�

� A nonlinear Gau�ian �lter�
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� A chain or cascade of nonlinear Gau�ian �lters�
� An adaptive �ltering approach�
� Radial Basis Functions �neural	 networks

��� Notation

Let us introduce some notation� An image or pattern will be given by a family x � �xs	s�S
where S represents a ��nite	 set of pixels s and xs the intensity in pixel s� The set of all
possible intensities in pixel s will be denoted by Xs and thus the set of all possible patterns is
the product space

Q
s�SXs� In all cases below S will be �nite� The spaces Xs are �nite for

digitized images but continuous intensity scales are of interest as well� for instance in presence
of Gau�ian noise� The corresponding random variables will be denoted by Xs�

� A Bayesian Model

The Bayesian paradigm allows consistently to combine empirical data and prior knowledge and
expectations about images� A comprehensive account is given in G� Winkler �����	� �����
and X� Guyon �����	� ����� Bayesian methods became popular in imaging by the paper S� and
D� Geman �����	� ���� although it had appeared before in other work� for example in B�R�
Hunt �����	� ����� Independently� A� Blake and A� Zisserman �����	� ���� suggested a
completely deterministic approach� Nevertheless� their model can naturally be interpreted as a
Bayesian model� ����� The basic idea is to combine the likelihood with a prior distribution which
favours images made up from smooth connected areas which are separated by �boundaries
�
Abrupt changes of intensity across edges are not penalized or even favoured� Various regularity
requirements on the boundaries can be incorporated into the prior as well� Given the data an
image hopefully closer to the �truth
 than the data is then selected by a posterior estimate like
the expectation or the mode of the posterior distribution�
We are going now to introduce and discuss the Bayesian approach� Before� some additional

notation is introduced� Spacial context is captured by an undirected graphon S� Pixels s
and t are called neighbours if they are connected by an edge in the graph which is indicated
by s � t� The most common example is a �nite square grid with a four�neighbourhood� In
another example the edges of the original graph are vertices and two edges are neighbours if
they share a common end� this way connected boundaries can be handled�

��� The Bayesian Paradigm and Gibbs Distributions

We brie
y review the Bayesian paradigm in a setting suitable for imaging � mainly to �x
notation� The formulae are given for �nite spaces only� in the continuous case probabilities
must be replaced by densities� There is a space X �

Q
tXt of ideal images �xt	t� It plays

the role of the parameter space in classical Bayesian inference� On X the prior probabilities
��x	 	 ��

P
x��x	 � � are de�ned which rate �favourable	 regularity properties of the x �for



��

z z

s t

�

Figure �� Simple graph with neighbour pixels

convenience of notation we use symols like x instead of fX � xg	� In addition to the space X
of ideal images a space Y �

Q
sYs of observed images or data �yt	t is given� For each x� data

y � �ys	s � Y is observed with probability �density	 ��yjx	� the likelihood of y given x� The
common distribution to �nd x and y simultaneously then is

Prob�x� y	 � ��x	��yjx	

Given y the prior is modi�ed to the posterior distribution� it is the normalized common distri�
bution

��xjy	 � ��x	��yjx	
��y	

�

The most popular estimate of the �true image
 is the maximum posterior mode �MAP	� It is
given by

x� maximizes x ��� ��xjy	�
There are other posterior estimates like the posterior mean� local posterior modes� conditional
modes or the iterated conditional modes suggested by J� Besag� see �����

If the prior distribution is strictly positive �which we shall assume	 then it can be written
in the Gibbsian form

��x	 �
�

Z
exp��K�x		� Z �

X
z�X

exp��K�z		�

For instance� one may take negative logarithms

K�x	 � � ln��x	�
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Frequently� the function K on X is called a prior energy function and Z is the prior partition
function� These terms stem from the physical literature where they have a long tradition�
Similarly� the Gibbsian form of the likelihood and the posterior distribution are given by

��yjx	 � exp��D�x� y		�
��xjy	 � exp��K�x	 �D�x� y		

with a function D�x� y	 on X	Y �provided all probabilites in question are strictly positivite	�
Then the MAP is given by

x� maximizes x ��� ��xjy	

� x� minimizes x ��� K�x	  D�x� y	�

This reformulation establishes the link between the Bayesian approach adopted for example
in ��� and purely deterministic approaches like ���� It is also consistent with the models of V�
Mottl et al� �����	� ���� �see also this volume	� and I� Muchnik and V� Mottl� �����

��� Piecewise Smoothing with Explicit Boundaries

We consider now a prior for piecewise smooth images� To be more speci�c let all Xs be equal
and all Ys be equal as well � for example Xs � ��� � � � � ���� and Ys � R�

Example ��� In the standard case of additive Gau�ian white noise �
s	s�S where

Ys � Xs  
s

one has Ys � R and the conditional density of data y is given by

��yjx	 � exp
�
�

���

X
s

�ys � xs	
�

�
� ��	

For additive Poisson shot noise with intensity � it reads

��yjx	 � exp
�
��jSj �

X
s

�xs � ys	 ln�  ln�ys � xs	!

�
�

If the MAP is supposed to result in an overall smooth image then

K�x	 � ��
X
s�t

�xs � xt	
� ��	

is a natural prior and in presence of Gau�ian white noise the posterior energy is

K�x	  D�x� y	 � ��
X
s�t

�xs � xt	
�  

�

���

X
s

�ys � xs	
��



��

To allow for boundaries in x� i�e� sudden changes of intensities where such are suggested by the
data� switches between adjacent pixels are introduced� In addition to the intensities boundary
variables bst � �� are introduced for neighbours s � t� A value bst � � means that there is an
edge between s and t� otherwise there is none� Thus fs � t � bst � �g is a contour� Let� for
� 	 ��

K�x� b	 �
X
s�t


��xs � xt	
�� �z �

smoothing

��� bst	� �z �
on�o�

 �bst��z�
penalty

� ��	

The prior energy K� 
 � 
 	 now is a function of two arrays of variables
K � X	B �� R� �x� b	 ��� K�x� b	

where B � ffs� tg � sneighbour of tg is the set of �micro�edges� The term �bst penalizes an edge
element between s and t by � 	 �� The sum of penalties is � times contour length� Hence short
contours are favourable� If bst � � then the quadratic smoothing term is switched o� which �
in view of the penalty � pays o� if 
��xs� xt	

� 	 �� If �xs� xt	
� � � then bst � � is the better

choice� This way the model cannot only switch o� smoothing where favourable but also has a
tendency to keep contours short which results in relatively smooth and well�organized contours�
In summary� the prior favours smooth regions but allows for abrupt changes in intensity where
there is evidence for a boundary in the data�
The function K D�
� y	 with quadratic data term D� namely ��	 is precisely that one used

in ���� The GNC�algorithm developed there applies exclusively to such a function �and not to
others	� In ��� simulating annealing is adopted for maximization� Hence the energy function
may be rather general and allows for arbitrary noise terms�

��� Equivalence to Robusti�cation of the Prior

The MAP�estimate �x�� b�	 minimizes H�
� 
	� The following minimization problems are equiv�
alent�

min
x�b

D�x� y	  
X
s�t


��xs � xt	
���� bst	  �bst


� min
x

D�x� y	  
X
s�t

min
bst����


��xs � xt	
���� bst	  �bst


� min
x

D�x� y	  
X
s�t

minf
��xs � xt	
�� �g� �z �

��xs�xt�


� min
x

D�x� y	  
X
s�t

��xs � xt	

where � is the cup�function given by

��u	 � minf�
u	�� �g ��	

�cf� Fig� �� second row� left column	� The boundary b� can be reconstructed from x� since

b�st � � 
� jxs � xtj � � �
p
��
�
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Figure �� One dimensional image �thin line	 degraded by Gau�ian white noise with standard
deviation ��� �dots	� MAP estimate computed by Metropolis annealing with logarithmic cooling
schedule after �� million sweeps�

��� Conclusion

In summary� explicit edges tend to suppress smoothing in presence of high data jumps provided
boundaries are well�organized� By ��	� use of explicit edges is equivalent to a robusti�cation of
the prior� The cup function � has derivative or score function redescending to zero in the sense
of F�R� Hampel� ����� We shall meet such �cup�functions� � in all methods below�

Robusti�ed priors are studied in H�R� K"unsch �����	� ����� He also addresses the choice of
parameters� The MAP �estimate for a one dimensional piecewise constant image computed by
Metropolis annealing with logarithmic cooling schedule is displayed in Fig� ��

� Local M �Smoothers

Local M �estimators based on cup functions � like in the Bayesian prior ��	 were introduced
recently by C�K� Chu� I� Glad� F� Godtliebsen and J�S� Marron �����	� ����

��� Global and Local M �Estimators

We are going now to discuss the role of cup�functions � like in ��	 in some detail� Suppose that
the random variables Yi� � � i � n� are independent and have the common Gau�ian distribution
N ��� ��	 with unknown mean �� Then the maximumlikelihood estimator �� for � maximizes



��

the likelihood function

� ��� �����	�n�� 
 exp
�
� �

���

X
i

�Yi � �	�

�

or� equivalently� minimizes

� ���
X
i

�Yi � �	�� ��	

It is easily veri�ed that the empirical mean �Y � �
P

i Yi	�n solves this problem� in fact it is even
a BLUE� i�e� a best linear unbiased estimator� In this context �best
 means that it has minimal
variance among all linear unbiased estimators� On the other hand� it is extremely sensitive
to contaminations of the underlying Gau�ian N ��� ��	� in particular those which cause more
heavy tails� But in imaging this is the generic situation� Suppose that the ideal picture has
intensity � on the left of a boundary and intensity � �� � on the right� Suppose further that
Yi are the noisy intensities in some moving window B�s	 around a pixel s� As the window
crosses the boundary from left to right more and more pixels from the ��side enter and we have
observations both from N ��� ��	 and N ��� ��	 in the window� If the majority of pixels is on
the ��side then we wish to eliminate the other pixels in the smoothing procedure�
An equivalent formulation is to assume i�i�d� observations Yi with distribution

Yi � ��� �	N ��� ��	  �N ��� ��	
where � 	 � is the proportion of ���pixels
� This mixture of Gau�ians has more heavy tails
than the pure distribution N ��� ��	� This is exactly the situation where robust procedures are
needed�
The most popular robust estimators are the M �estimators� The square function in ��	 is

replaced by a function � growing slower far outside� i�e� they are de�ned as minimizers �� of
the M�function

� � � ���
X
i

��Yi � �	� ��	

The function � downweights outliers which in the imaging context prevents oversmoothing of
edges to a certain extent� Typical examples for functions � include

� Gau�ian squares ��u	 � u�� Regression is studied in the framework of L��spaces� The
solution is the mean �� � �Y

� The absolute value ��u	 � juj� The L��theory is replaced by a �considerably more di#�
cult	 L��theory� cf� P� Bloomfield and W�L� Steiger �����	� ���� In this case �� is
a median� It is fairly robust but there is less smoothing on smooth regions than in the
L��case�

� P� Huber� ����� suggests the function � which equals the square inside a ball� stays
convex and increases as slowly as possible outside� hence necessarily

��u	 � �juj��u
�  �juj����juj � �	�
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The associated Gibbs distribution is called the least informative distribution � It is a
combination of the L�� and the L��case� For a theory the Lp�spaces must be replaced by
Orlizs spaces� There is still oversmoothing with this function�

� F�R� Hampel� ����� suggests functions � with derivatives redescending to zero far outside
� A typical example is the function � in ��	� They are most suited for edge preserving
smoothing�

Frequently� M �estimates are de�ned as stationary points of the M �function � in ��	 or as roots
of the corresponding score function �� �cf� ����	� This de�nition is somewhat confusing since
mimima or at least local minima of � are desired� Moreover� there may be a lot of local minima
and it is not obvious which one to choose� In fact� this led to substantial controversy in the
statistical community� For imaging� this turns out to be a chance rather than a mess� It turns
out that local minima near the data will provide better restorations of noisy data than global
minima� This will be discussed in Sections ��� and ����

��� Local M �Smoothers

Suppose that the intensity in a pixel s has to be updated based on the intensities yt� t � B�s	�
in a window B�s	 centering around s� To prevent smoothing across edges we may adopt
M�estimation sketched above and in accordance with ��	 for each pixel s � S minimize the
function

�s � � ���
X
t�B�s�

��Yt � �	� ��	

where �Yi	
n
i�� � �Yt	t�B�s� and � is of robust type discussed above� Plainly� the random in�

tensities Yt are no more i�i�d� �i�e� independent� identically distributed	� This estimator will
smooth reasonably over plateaus with smooth boundaries� on the other hand� �ne detail like
spikes de�nitely will be lost�
To preserve �ne detail C�K� Chu� I� Glad� F� Godtliebsen and J�S� Marron ����� �

��	� ����	� introduce a local version� Plainly� �s may have lots of �local	 minima� The authors
exploit just this seemingly disadvantageous circumstance�
Starting from the current data Ys in pixel s they choose the estimate �

� as the local minimum
of �s next to Ys� more precisely� they take the argument of the next local minimum of �s to
the left of Ys if the derivative of �s at Ys is positive and the next one to the right otherwise� As
cup function � they choose a negative Gau�ian �� �Fig� �� middle row� left column	 given by

g�u	 � exp��u���	� �� � �g�u��	��� � 	 �� ��	

Finally� they replace hard windows B�s	 by soft ones introducing another negative Gau�ian ��

which downweights pixels far from s and� in summary� replacing ��	 by

�s � � ���
X
t

���Yt � �	�� �s� t	� ���	

LocalM �smoothers show an excellent performance� preserving edges and spikes and smoothing
across canyons �Fig� �� top row	� The left display shows a step function corrupted by Gau�ian



��

white noise� the right one contour lines of the function �s� �	 �� �s��	� For each s on the
abscissa the algorithm starts in data ys and moves to the next local minimum along the y�axis�
The underlying idea is closely related to the Bayesian with robusti�ed prior� But� in contrast

to global �MAP��estimation local minima are adopted�
The authors also provide an asymptotic analysis of bias and variance �which amounts to

heavy calculations	�

��� W �Estimators

The local M smoother can be identi�ed with a local version of the well�known W �estimator in
a precise way� We shall introduce some notions from robust statistics with which the reader
perhaps is less familiar�
We continue with notation from Section ���� Recall that frequently M �estimates are de�ned

as stationary points of the M �function � in ��	 or as roots of the corresponding score function
��� This de�nition includes �local	 minima� saddle points and even �local	 maxima� Plainly�
only minima or at least local minima of � are desired� We are going to sketch how this can be
handled in practice� Before� we recall the classical setting�
Given random variables Y�� � � � � Yn� a W�estimate �� is determined by� �����	�

�� �
�P

iw�Yi � ��	

X
i

w�Yi � ��	Yi� ���	

where the weight functions w are positive or at least nonnegative such that the sum in the
denominator does not vanish� A canonical choice are unimodal symmetric functions centering
around zero like Gau�ians or compactly supported approximations� Note that for constant
weights w the formula ���	 de�nes a usual linear �lter� or� more precisely� a weighted mean�
Now the estimate �� itself enters the �lter weights�
Because of the normalization the linear combination on the right is convex and

���	
�
X
i

w�Yi � ��	 
 �Yi � ��	 � �
�
X
i

��Yi � ��	 � �� ���	

where
��u	 � u 
 w�u	�

Let � � ��� Then ���	 and ���	 are implied by

�� minimizes locally � � � ���
X
i

��Yi � �	� ���	

Solutions of ���	 are the local M �estimators from Section ��� and ���	 characterizes the sta�
tionary points of �� A common method to arrive at special solutions of ���	 is the iterative
procedure given by

�k�� �
�P

iw�Yi � �k	

X
i

w�Yi � �k	Yi� ���	
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Figure �� Left column� A step function �solid line	 is corrupted by Gau�ian white noise �dots	�
The fat lines show restorations by �from top to bottom	� the local M �smoother� the nonlinear
Gau�ian �lter� the chain of nonlinear Gau�ian �lters� and RBFneuralnetworks� The right
column displays contour lines of the corresponding functions �s� ��	� in the s�y�plane �row one
to three	 and the error function ���	�
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Since the linear combination of the Yi on the right hand side is convex and in view of the
preceding observations this may be rewritten in the form

�k�� � �k  �k
X
i

w�Yi � �k	�Yi � �k	

� �k  �k
X
i

��Yi � �k	 ���	

� �k � �k
X
i

��Yi � 
	���k	

where we assume that �k normalizes the sum of coe#cients to �� This shows that the above
recursion amounts to a steepest �gradient	 descent algorithm� Starting the iteration at �� � yj�
the sequence ��k	k �hopefully	 converges to the local minimum of the M �function � from ���	
next to yj�

��� Conclusion

The W estimator applied locally to an image� i�e� to data Yt in a window B�s	 around pixel
s gives precisely the local M �estimate from Section ���� Plainly� there is some handwaving
with this statement since it is assumed that all algorithms converge to the proper values� The
only di�erence is that the formulation in Section ��� gives us the freedom to plug in any good
optimization algorithm we know whereas the algorithm is �xed in the W �estimation context�
�The equivalence was observed independently by D�G� Simpson� X� He and Y��T� Liu� �����
and the �rst author	�

� Nonlinear Gau�ian Filters

In this section we introduce nonlinear Gau�ian �lters� establish a close connection to a variant of
W �estimators and thus in turn reveal a close connection to localM �smoothers� Simultaneously�
the calculations in Section ��� will be used to establish a correspondence between the cup�
functions � in the M �functions and the weights of nonlinear �lters�

��� w�estimators

w�estimators are de�ned as the outcome �� of the �rst iteration step in ���	 or ���	� cf� �����

�� � �� �
�P

iw
��Yi � ��	

X
i

w��Yi � ��	��� ���	

According to its derivation� it takes a step downwards from �� towards the local minimum of ��
i�e� towards the local M �estimator and hence lies somewhere inbetween the local M �estimator
and the starting value ���
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��� The Nonlinear Gau�ian Filter

In the imaging context� we adopt the rule de�ning a w�estimator locally to images� more
precisely� to update the intensity in pixel s� we replace the random variables Yi by random
intensities Yt in a block B�s	 centering around s� The choice �� � Ys leads to the �lter

�FY 	s � �� � �� �
�P

t w
��Yt � Ys	

X
t

w��Yt � Ys	Yt� ���	

This is a rough form of a ���lter� It is usually re�ned replacing the hard window B�s	 by a
soft one� i�e� weighting down pixels t far away from s by means of a second weight function v�

�FY 	s � �� �
�P

t w
��Yt � Ys	v� �t� s	

X
t

w��Yt � Ys	v
� �t� s	Yt� ���	

The numbers � and � are tuning parameters measuring the width of w and v� respectively� If�
for example w and v are Gau�ians then � and � are the corresponding standard deviations�
���	 is the general form of a ���lter�
As pointed out above� starting at ys it takes a step downwards to the next local minimum

of �s but usually does not reach it� Hence it is some value between the data and the output
of the local M �smoother� This explains that there is boundary preserving smoothing� Part of
the wiggliness is inherited from the noisy data since the estimate moves only part of the way
from a data point to the respective local minimum� Fig� � displays the data as points� the
local M �estimates as a connected solid line and the result of the �lter inbetween� Application

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

0

1
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4

Figure �� x�axis� spatial scale� y�axis� intensity scale� The ���lter �wiggly line	 moves part of
the way from the data ys �dots	 to the next local minimum of �s �solid line	

of the �lter to our standard phantom is illustrated in Fig� �� The contour lines are those of the
M �function corresponding to the �lter weights w�
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Example ��� In Section ��� we established a correspondence between cup�functions � as the
building blocks ofM �functions� their score functions � and certain weights w� In the same sec�
tion and in Section ��� it became apparent that these weights in fact are weights of nonlinear
�lters� Thus we established a correspondence between local M estimators and associated non�
linear �lters� This correspondence for di�erent types of functions � is illustrated in Figure ��
For example� truncated squares � as M �functions correspond to truncated means as nonlinear
�lter weights w� similarly� negative Gau�ians correspond to Gau�ian weights�

If w� and v� are Gau�ian then ���	 de�nes the nonlinear Gau	�lter studied e�g� in ��� and
�����

Example ��� The performance of the nonlinear Gau�ian �lter is illustrated by an application
from biochemical plant pathology� ����� The data are taken from an experiment where stress
of plants is studied by photo�stimulated radio�luminiscence� Figure �� shows the noisy and
smoothed versions of the image and of a single line�

� Chains of Nonlinear Gau�ian Filters

In general� the smoothing e�ect of a single nonlinear Gau�ian �lter may be not satisfactory�
In a series of papers V� Aurich and his group ����� � ��	� ���� ���� ����� ����� studied chains
of nonlinear Gau�ian �lters�� They perform similar to localM �smoothers but are considerably
faster� The link to the local M �smoother is given by the preceding observations on nonlinear
Gau�ian �lters�
This �lter chain is an iterative procedure with single steps given by

�FY 	s � �P
t w

��Yt � Ys	v� �t� s	

X
t

w��Yt � Ys	v
� �t� s	Yt

where � 	 � and � 	 � are scale parameters� for instance the standard deviation if v and w are
Gau�ian densities� Such �lters are applied iteratively with varying scale parameters � and � �
formally it may be written in the form

F�n��n � 
 
 
 � F�����Y� ���	

The �rst �lter step mainly reduces the contrast of �ne detail� A very small spatial scale pa�
rameter �corresponding to a small hard window	 is adopted in order to avoid blurring of coarse
structures� on the other hand� it should be of the size of �ne structure� The scale parameter
in intensity space is more wide� essentially it determines the maximal contrast in �ne structure
which eventually has to be eliminated� The following �lter steps continue with noise reduction
but simultaneously sharpen edges of coarser structures which may have been blurred in pre�
vious steps� To this end� spacial scale parameters increase whereas intensity scale parameters
decrease� In an additional step the �nal weights can be applied to the raw data Y to achieve
a reconstruction with less distinct plateaus� Deblurring and sharpening of edges is illustrated
in Fig� ��� The size of scale parameters is indicated by �hard	 windows in the single �gures�
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Figure �� Several instances of functions � �left column	� their derivatives � �middle column	
and associated weights w �right column	� From top to bottom � is a square� truncated square�
negative Gau�ian� the modulus and the truncated modulus�
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Figure ��� Blops and restoration together with data and �ltered data from line ���

Fig� �� shows deblurring and sharpening across a single step The number n of iterations is
small� n � � works well in most instances� The optimal choice of parameters is discussed in

�Source code under Aurich�s web site
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Figure ��� A noisy signal �ltered by successive steps of the chain of nonlinear Gau�ian �lters�
From top left to bottom right� Data and scale parameters of the �rst step� output of the �rst
step� output of second step� output of third step� output of modi�ed fourth step� output of
modi�ed �fth step� di�erence to original image� original image

����� they depend on the dimension of the image� In one dimension� for example and n � � one
gets �k � �k���� and �k � ��k���
The algorithm is very fast and in a large variety of applications the chain gives excellent

results� It is rather di#cult to obtain rigorous mathematical results� The reason is the same
as for many iterative nonlinear �ltering procedures� data are transformed in each �lter step
and thus pleasant statistical properties of noise like independence or distribution properties are
lost�
The performance is illustrated in Fig� �� The contour lines correspond to the data obtained

in the last but one �lter step� They illustrate the shape of the soft �lter masks�

Example ��� The algorithm was applied to a stack of images or a movie� i�e� to data in three
dimensions� Fig��� shows two dots before a background which � at least from one frame � by
the human eye hardly can be detected in presence of heavy noise� Since the �lter chain uses
information from previous and subsequent frames it can remove the noise and enhance the dots
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Figure ��� Subsequent deblurring and sharpening of edges by the chain of nonlinear Gau�ian
�lters
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Figure ��� A frame of the movie� degraded by noise� restored� with marked dots

Figure ��� Three dimensional display of original and restored movie

such that they can be marked� Fig� �� gives a three dimensional impression of the original and
the restoration�

A �nal remark is in order here� It is well known that linear Gau�ian �ltering corresponds
to the solution of the heat equation� In a similar way� there is a correspondence between
nonlinear Gau�ian �ltering and anisotropic di�usion �the role of anisotropic di�usion in imaging
is discussed in ����	� Hopefully� nonlinear Gau�ian �ltering can be studied in this framework�

� Adaptive Weights Smoothing

Such methods are addressed in a series of papers by J� Polzehl and V�G� Spokoiny �����	�
����� ����� ����� We restrict ourselves to the algorithm proposed in ���� and ����� It is an iterative
procedure formally similar to the chain of nonlinear Gau�ian �lters ���	� The main di�erence
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is that the quantities corresponding to the parameters �k and �k in ���	 are locally estimated
from the raw data� Hence it is an adaptive method� The �lter weights are computed from the
raw data Y themselves and not from transformed data like in ���	�

	�� The Algorithm

In advance� some parameters are �xed� For each design point s an increasing sequence of
windows Uk

s around s containing n
�k�
s pixels� respectively� is chosen� It is assumed that consistent

estimates Vs of the unknown variances of the variables Ys are given� Moreover� parameters 
 	 �
and 
 	 � are chosen� The algorithm is initialized with k � � and

Y ���
s �

�

n
���
s

X
j�U�

s

Yt� Vs
��� �

�

n
���
s

�

X
j�U�

s

Vs�

In the following steps for k 	 � and s � S weights are computed according to

w�k��s� t	 � g

�
Y

�k���
s � Y

�k���
t


V
�k���
s

�

for all points t � Uk
s � The kernel g is bell�shaped similar to ��	� In contrast to the �lters above

the weights here are not symmetric� New estimates of Y are computed as

Y �k�
s �

�P
t�Uk

s
w�k��s� t	

X
t�Uk

s

w�k��s� t	Yt�

and new estimates of V by

V �k�
s �

��P
t�Uk

s
w�k��s� t	

��X
t�Uk

s

w�k��s� t	�Vs�

The outcome is then controlled in the following way� Let

K � f�� �� �� �� � � � � �l� � � �g�
For every l � K� l � k� it is checked whether

jY �k�
s � Y �l�

s j 	 


q
V

�l�
s �

If this inequality holds for one such l then the above estimates are rejected and and the previous
Y

�k���
s and V

�k���
s are kept� The algorithm is stopped if either k exceeds a given bound k� or if

Y �k� � Y �k���� Let � $Ys	s�S denote the �nal estimate�
The control step prevents the algorithm of loosing previously detected discontinuities� It

is necessary� since �unlike in the nonlinear �lter chain	 in each step the original raw data
are processed� The control step has some practical disadvantages� The choice of the scheme
K � f�� �� �� �� � � � � �l� � � �g is more or less a pragmatical one and not supported by theory� In
principle� K � f�� �� �� �� �� �� � � �g would be the natural choice� But also in the former case� the
control step is time�consuming even for moderate size of k�
The results of this method seem to be very good�
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	�� The Parameters

The authors discuss the choice of parameters� which is critical� from an empirical point of
view� In accordance with Aurich
s choice of bandwidths the neighbourhoods U

�k�
s increase

exponentially� for example like n�k�s � �k� They may be chosen as the �k points nearest to s in
the Euclidean distance or those in suitably increasing balls� The choice of n

���
s also is important�

Let
c � minfja� bj � a� b possible intensitiesg

be the image contrast� For large signal to noise ratio c�� 	 � the authors recommend n
���
s � ��

for � � c�� � �� a value n���s � � and for c�� � � a value n
���
s � � seems to be reasonable�

The authors further recommend values � � 
 � � and ��� � 
 � �� The parameter

 controls the error of �rst kind� i�e for high 
 the probability to detect arti�cial jumps is
reduced� of course there is a tradeo� with the probability not to detect a real jump� this is
illustrated by the above results�

	�� Rigorous Results

The authors obtain some rigorous results� cf� ����� The kernel g is rectangular� i�e�

g � �fy��g

where �A denotes the indicator function of a set A� This amounts to the application of a local
truncated mean the bandwidth of which is estimated from the data� Note that for this kernel
all nonvanishing weights are equal�
The �rst result is concerned with a noisy plane where the Ys are i�i�d� Gau�ian with mean

a�
Ys � a 
s� s � S� ���	

It is shown that with high probability the estimate � $Ys	 is a constant and that the deviations
$Ys � a are of order n����� More precisley�

Theorem ��� Let in �
�� be a a real number and 
s� s � S� independent and identically dis�
tributed Gau	ian random variables with mean zero� Let further

g � �fy��g� n�k�s � n�k�

for all
s � S� n�k��s � jSj�

and C a real constant with
n���  
 
 
 n�k�� � C 
 jSj

and

� � ��  �	 log jSj

with some � 	 �� Then

Prob
	
w�k��s� t	 � �for some k � k�� s �� t


 � n�C�� exp��
���	  k�n log���k�	 exp��
���	�
���	
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The bound on the right hand side of ���	 is small provided that 
� � ��  �	 logn and 
� �
��  �	 logn with some constant �� In view of the assumption that in the last step with index
k� the whole image is covered by the windows U

k�
s � this means that with high probability all

estimates $Ys coincide with the mean of all observed Ys�

Of considerably more interest is piecewise constant regression� For simplicity assume

Ys � �a 
 �A�s	  b 
 �B�s		  
s� ���	

where A�B are a partition of S into two disjoint regions and �
s	 is Gau�ian white noise
as above� i�e� Ys � N ��� ��	� The next result shows that there is no smoothing across the
boundaries of A and B for pairs of pixels in the interior of the regions provided contrast is high
enough�

We continue with notation introduced for Theorem ���� The image contrast is given by
c � ja � bj� The interior of � say A � is the set of those pixels for which A contains a
neighbourhood�

A� � fs � S � U�
s � Ag�

Theorem ��� Let Y be given by �

�� Then

w�k��s� t	 � � for all s � A�� t � B�� k � k��

with probability greater or equal to

�� �
�

 C 
 jSj� 
 exp

�
���

�

�p
n���

�

 ja� bj � �


��


A �

If 
� is of the ord er ��  �	 logn and

���
p
n���ja� bj 	 �


then the probability in the theorem can be bounded by jSj� exp��
�	 which is small for large
jSj� In conclusion� misclassi�cation errors are rare in the interior of the regions� They typically
appear near the edges� Thus problems arise if the regions are fuzzy�

The proofs of such results are not too di#cult� basically they use standard facts about
Gau�ian distributions� The reason for this is that in each step of the algorithm the original
�Gau�ian	 random variables Ys are updated �and not any transformed data	� This in turn is the
reason that the control step is necessary� It plays an essential role in the proof� and� moreover�
the algorithm would not work without the control step� Here we see a crucial di�erence to the
chain of nonlinear Gau� �lters from the last section� It transforms the data and in each step
updates the transformed data which works well in practice� No control step is necessary� On
the other hand� it becomes extremely di#cult to obtain rigorous results since transformed noise
is no more i�i�d� and mathematically di#cult to analyze�
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	 Local Radial�Basis�Function Networks

K� Hahn and Th� Waschulzik �����	� ����� attack the problem of edge�preserving smooth�
ing in a somewhat di�erent manner� They adopt a combination of neural networks� which
interpolate di�erent gray levels of a noisy image by a local estimate of the regression� The
basic constituents of the networks are radial basis functions �RBFs	� i�e� functions � which are
radially symmetric around some centre� Therefore the nets are called Radial�Basis�Function�
Networks� The basic idea behind rests on the following approximation theorem�

Theorem 	�� Let � be a square integrable function on R
n such that ��u	 � f�juj	 for some

function f � Then the linear span of all functions

�

�
u� a

�

�
� a � R

n � � 	 ��

is dense in L��Rn	�

The con�guration space grid of design points is covered by a set f�i�u	g of RBFs� the grid
of gray values is covered by another set fOj�y	g of RBFs� Thus also in this approach �cup
functions
 play a crucial role� If the data are dense and hence are in a region where some of the
Oj�y	 strongly overlap then the model generalizes similar to a smoothing spline� If� on the other
hand� there is an edge then the generalization breaks down and starts again on the new gray
value level� This gives an estimate of the regression which on the grey value scale works locally
and hence allows for jumps and spikes� In fact� the identity ���	 shows that asymptotically the
regression is estimated exactly�

Formally� the model follows the use of implicit functions� the zeros of which describe mul�
tivalued functions or relations by locally single valued functions �here �i�u		� in this context
the model is more general than edge�preserving smoothing� Nevertheless� it applies naturally
also to this class of problems� images with di�erent gray levels are interpreted as multivalued
functions �cf� ���� for more details	�

The mentioned implicit function is given by the error function

error�u� y	 �
X
j

�
Oj�y	� �

f�  exp���Piwij�i�u		g
��

� ���	

where � is a scaling constant and the wij are the weights of the RBF �expansion�

Given a noisy image as a set f�up� yp	g� the parameters of ���	 are chosen in two steps�

a	 following a simplifying heuristic recipe ����� the centers of the RBF 
s cover the u and
y projection of the image equidistantly� the constant widths are chosen via the centre
distance�

b	 the weights wij are determined by the minimization or training procedure
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Figure ��� Illustration of curvature estimation by RBF �networks

min
w

ntrainingX
p��

�
error�up� yp	  �

X
ij

�c wij	
�

�

where � is a regularization parameter and c � ��� is plugged in to achieve a conveniently 
at
error function�
Since a quadratic error function is used� one can show by a bias�variance argument for a

continuous noisy training set� ���� that after training one has to analyze the error function

error�u� hyjui	 �
X
j

�
hOjjui � �

�  exp���Piwij�i�u		

��

���	

where hf jui � R f�y	p�yju	dy is a conditional mean of some function f at point u� Let p�yju	
be Gau�ian with known variance ��u	� and unknown mean hyjui and set

Oj�y	 � exp

�
��y �mj	

�

�s�j

�
�
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Then

hOjjui � �q
s�j  ��u	�

e��hyjui�mj �
�����s�j���u�

���sj�

According to the training process and the generalization properties of RBF 
s� the estimate of
hyjui is a minimizer of ���	 which can be found by local minimization �similar to local M �
estimators from ���� see Fig� �	� In the bottom row of Fig� � a restoration of the standard
phantom by a RBF network is displayed on the left hand together with contour lines of ���	
on the right hand side�
Since the model uses the generalization abilities of RBF networks� also the curvature of the

underlying regression curve is estimated in reasonable quality� see Fig� ���
A more detailed study of advantages and limits of this model � including extensions to higher

dimensions � is in progress�
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