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Abstract� Common nonparametric curve �tting methods such as spline smooth�
ing� local polynomial regression and basis function approaches are now well devel�
oped and widely applied� More recently� Bayesian function estimation has become
a useful supplementary or alternative tool for practical data analysis� mainly due
to breakthroughs in computerintensive inference via Markov chain Monte Carlo
simulation� This paper surveys recent developments in semiparametric Bayesian
inference for generalized regression and outlines some directions in current re�
search�

� Introduction

Regression analysis is one of the most widely used methods in applied statis

tics� Often it is di
cult to prespecify parametric models� and nonparamet

ric �tting of unknown regression functions is needed� Common methods
are kernel
based regression� spline smoothing� local polynomial regression
and basis function approaches such as regression splines� Fourier expansions
and wavelets� Very recently� semiparametric Bayesian methods have been
developed and are a promising alternative tool for practical data analysis�
They rely on Markov chain Monte Carlo �MCMC� simulation and provide
rich output for inference� No approximate normality conjectures for estima

tors are required� so that the methods are also useful for moderate sample
sizes and in complex� high
dimensional problems� This paper surveys recent
advances in Bayesian function estimation� distinguishing smoothing priors
and basis function approaches as two mainstream directions� We do not
give details about MCMC algorithms here� but refer to general introduc

tions to Bayesian data analysis� as well as to original work mentioned in
later sections� Section � deals with models for Gaussian response variables
and Section � with the non
Gaussian case� In particular for fundamentally
non
Gaussian response such as binary or other discrete responses� there is
clear need for additional research� Section � points out some extensions and
ideas for future developments�
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� Gaussian nonparametric regression

For bivariate observations �y�� x��� � � � � �yn� xn� the classical nonparametric
regression model on a response variable Y and a dependent variable X is

yi � f�xi� � �i� i � �� � � � � n� ���

with i�i�d Gaussian errors �i � N��� ���� and an unknown regression function
f that we want to estimate� In the following� y � �y�� � � � � yn�T is the vec

tor of observations on Y � and we will not distinguish notationally between
the function f and the vector f � �f�x��� � � � � f�xn��T of function evalua

tions� This section describes and outlines some recent Bayesian approaches
for estimating f through posterior sampling by Markov chain Monte Carlo
�MCMC� techniques� Roughly� we may distinguish between methods based
on roughness penalties or smoothness priors and methods based on basis
functions�
One of the attractive features of these methods is that they are tailor
made
for extension to the case of multivariate regressors X�� � � � � Xp by using ad

ditive models and� somewhat more generally� semiparametric additive or
varying coe
cient models�

��� The smoothness prior approach for univariate re�
gression

For simplicity �rst consider the case of equidistant design points or observa

tions x�� � � � � xn� For nonparametric estimation based on smoothness priors�
the observation model ��� is supplemented by assigning an appropriate prior
to f � Common local smoothness priors are random walks of �rst �RW����
and second �RW���� order

f�xi�� f�xi��� � ui or f�xi�� �f�xi��� � f�xi��� � ui � ���

with i�i�d� Gaussian errors ui � N��� � ��� Initial values are speci�ed by
f�x�� � N��� c� or f�x��� f�x�� � N��� cI�� where we usually choose di�use
priors� corresponding to the limiting case c ���� The di�erence equations
��� penalize deviations from locally constant functions f�xi� � f�xi��� or
straight lines f�xi� � �f�xi��� � �f�xi���� The penalty increases as the
variance � � becomes smaller� The random walk models ��� de�ne a multi

variate Gaussian smoothness prior p�f� for f � Also� the observation model
��� de�nes a multivariate Gaussian p�y j f� � N�f� ��I� for data y given f �
For the moment� the variances or hyperparameters �� and � � are regarded as
known or given constants� Thus� the posterior p�f j y� � p�y j f� p�f� is also

Gaussian and characterized by the posterior mean �f � E�f j y� and covari


ance Var�f j y�� Due to normality� �f is also the posterior mode� Assuming

di�use initial priors� �f can therefore also be obtained as a minimizer of the
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penalized least squares criterion

nX
i��

�yi � f�xi��
� � �

nX
i�d��

�rdf�xi��
� �� min

f
���

with rd� d � �� �� as the �rst or second order di�erence operator and
smoothness parameter � � �� � � �� Estimation of f via ��� is the classical
�method of graduation� of Whittaker ��	���� Obviously� ��� has a non

Bayesian interpretation� with the �rst term as a measure of goodness of �t�
the second as a roughness penalty and � controlling the bias 
 variance trade
o�� The penalty terms are discretized versions of corresponding penalty
terms Z

�f ��x��� dx resp�
Z

�f ���x��� dx � ���

leading to quadratic resp� cubic spline smoothing� Already for a moderate
number of observations� smoothing splines and discretized versions �f are
virtually indistinguishable� Therefore� solutions of ��� are sometimes called
discrete splines� In matrix notation� ��� can be written as

�y � f�T �y � f� � �fTKf �� min
f

���

with appropriately de�ned penalty matrix K� For example� one gets

K �

�
BBBBBB�

� ��
�� � �� �

� � � � � � � � �
� �� � ��

�� �

�
CCCCCCA

for a �rst order random walk�
The solution of ��� and thus the posterior mean or mode estimate �f is given
by

�f � E�f jy� � Sy

with smoother matrix S � �I � �K���� Within the Bayesian framework�
we are interested not only in the posterior mean but in the entire posterior
distribution p�f j y�� The observation model ��� is y j f � N��� ��I�� from
��� one obtains the global smoothness prior

f � N��� K� � ��� ���

where K� is a generalized inverse of K� and the posterior is

f j y � N�S y� S ���� ���

Since ��� and ��� de�ne a state space model with �states� f�x��� � � � � f�xn��
the linear Kalman �lter and smoother computes posterior means f�xi� j y
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and variances Var�f�xi� j y�� i�e� the diagonal of S ��� in O�n� operations�
Moreover� and this seems to be far less known� the complete covariance
matrix S �� as well as a Cholesky square root S��� ��� can be computed easily
from its output� see Fahrmeir and Kaufmann ��		�� Prop� �� for general state
space models� For the special case considered here� this leads to the banded
Cholesky factorization �I � �K� � �� � LLT � so that S��� � � L�� can be
computed in O�n� operations� Therefore� a posterior realization of f can be
obtained from

f � Sy � S����z � �f � S����z� z � N��� I��

Of course� the banded Cholesky decomposition of �I � �K� can also be
e
ciently computed without making direct use of the Kalman �lter and
smoother� as suggested by Hastie and Tibshirani ��		�� for cubic smooth

ing splines� Other suggestions for e
cient posterior samling of f have been
made by Fruewirth 
 Schnatter ��		��� Carter and Kohn ��		�� and de Jong
and Shephard ��		�� in the context of linear state space models� It may
appear that posterior sampling from Gaussian models is not very interest

ing� since the posterior is Gaussian and its �rst and second moments can
be computed already with e
cient algorithmus� The point is� however� that
these methods are important building blocks for posterior sampling in more
complex situations�
Up to now smoothing parameters or variances �� and � � were considered
�xed or known� In practice they have to be determined as well� In a full
Bayesian approach priors are put on the variances and their posteriors are
estimated along with the function f � The standard choice are indepen

dent highly dispersed inverse gamma priors p���� � IG�a�� b��� p�� �� �
IG�a�� b��� The posterior is then

p�f� ��� � � j y� � p�y j f� ��� p�f j � �� p���� p�� ���

Posterior sampling can be carried out with the Gibbs sampler� Realiza

tions are drawn sequentially from p�f j y� ��� � ��� and from p��� j y� f� � �� �
p��� j y� f�� p�� � j y� f� ��� � p�� � j f�� which are inverse Gaussian with up

dated parameters� see e�g� Fruewirth 
 Schnatter ��		��� Carter and Kohn
��		��� Hastie and Tibshirani ��		��� There is empirical evidence that these
�multi
move� sampling schemes are superior in convergence and mixing be

haviour to �single
move� samplers that update single components f�xi� of
f � given the rest �Carlin� Polson and Sto�er� �		���
For non
equally spaced observations� smoothness priors have to be modi

�ed appropriately to account for non
equal distances 	i � xi� xi�� between
observations� RW��� models are now speci�ed by

f�xi� � f�xi��� � ui� ui � N��� 	i�
���

i�e� by adjusting error variances from �� to 	i�
�� RW��� models generalize

to

f�xi� �

�
� �

	i
	i��

�
f�xi����

	i
	i��

f�xi��� � ui� ui � N��� gi�
���
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where gi is an appropriate weight� The simplest weight is again gi � 	i� but
more complicated weights can be derived from underlying continuous priors
or with other arguments� see e�g� Knorr
Held ��		��� A related� but di�erent
AR��� model can be found in Berzuini and Larissa ��		��� Another possi

bility is to work with stochastic di�erential smoothness priors for smoothing
splines and state space models for non
equally spaced observations derived
from them� see Carter and Kohn ��		��� Wong and Kohn ��		��� Hastie
and Tibshirani ��		�� directly start with smoothness priors as in ���� where
K is the penalty matrix corresponding to smoothing splines�

��� Unsmooth functions

So far the methods are useful for estimating and exploring smooth regres

sion functions� that means functions with curvatures that do not exhibit too
much spatial inhomogeneity� They have problems� however� with functions
that are more wiggly or have edges and jumps� This is a consequence of the
global variances or smoothing parameters� which are assumed constant over
the design space� and the Gaussian prior assumptions� leading to quadratic
roughness penalties�
One approach to handle this problem is therefore to replace to Gaussian pri

ors in ��� or ��� by heavy tail priors as they are known in robust statistics�
Prominent examples are �nite mixtures of normals� Student priors with low
degrees of freedom� Laplace� Huber or truncated Gaussian priors� A poste

rior mode or penalized likelihood approach is given in Fahrmeir and K�unstler
��		��� and posterior sampling approaches are described in Carter and Kohn
��		��� An interesting family of distributions� that contains Gaussian and
Laplace densities as special cases� is the exponential power family �Box and
Tiao� pp� ���
����� Its potential for �exible modelling has still to be ex

plored�
The second possibility to deal with unsmooth functions is to allow for vari

ances that vary over the design space� This corresponds to locally varying
smoothness parameters or bandwidths� which have gained considerable in

terest in kernel
based nonparametric regression� A Bayesian approach is
proposed by Fronk and Fahrmeir ��		��� They modify the local RW��� and
RW��� priors ��� by assuming varying variances � �i for the errors ui� Repa

rameterizing by hi � log�� �i � and adding random walk smoothness priors
for the sequence h � �h�� � � � � hn� in a further layer of the hierarchy� leads
to locally adaptive dynamic models with observation equation ���� random
walk priors ���� but with errors

ui � N��� exp�hi��� i � �� � � � � n

and RW��� or RW��� priors

hi � hi�� � vi� hi � �hi�� � hi�� � vi� vi � N��� q� �

and an inverse Gamma prior for q�
Posterior sampling is carried out by a hybrid MCMC algorithm� combining

�



Gibbs and Metropolis
Hastings steps� The method works quite well with
the �Blocks�� �Bumps� and �Doppler� simulated examples� constructed by
Donoho and Johnstone ��		�� for wavelet shrinkage�

��� Basis function approach

Let S � fBi�x�� i � Ig be a set of linearly independent univariate functions�
which are called basis functions� This section outlines recent Bayesian meth

ods for nonparametric estimation of f by modeling it as a linear combination

f�x� �
X
i�I


iBi�x� ���

of these basis functions� Popular choices for the Bi are various bases for
spline functions� piecewise polynomials and wavelets� Generally� it is di
cult
to determine which basis functions should be included in ���� If the basis has
too many functions� estimates for 
i will have high variability or may even
produce interpolation in the extreme case� Conversly� if too few functions
are in the basis� the resulting estimator will be severely biased�
Smith and Kohn ��		�� propose to approximate f�x� by cubic regression
splines using the truncated power series basis

f�x� � �� � ��x � ��x � ��x
� �

mX
k��


k�x� �k�
�

��

where �� � � � � � �m is a large number of potential �knots� placed along the
domain of the independent variable x� and �z�� � max��� z�� A Bayesian
variable selection approach is used to determine the signi�cant knots and
to estimate the parameters 
� Denison et al� ��		�� use a wider class of
piecewise polynomials as basis functions that incorporates smoothing splines
as a subclass� However� it is more �exible because also unsmooth functions
with rapidly varying �rst and second derivatives or even discontinuities can
be modelled adequately� They assume

f�x� �
lX

j��

�j�x� ���
j
� �

kX
m��

lX
j�l�


jk�x� �m�j��

where �� is the left boundary knot� l is the order of the piecewise polynomials
and l� gives the degree of continuity at the knot points� Taking l � l� � �
gives the cubic regression spline basis as a special case� The number and
location of knots is considered as unknown� and sampling from posteriors for
both the number and the location of knots is addressed using the reversible
jump MCMC simulation technique of Green ��		��� The method is some
hybrid technique between an empirical and a full Bayesian approach in that
the � s and 
 s are estimated by least squares conditional upon number and
location of knots as well as �� � var��i�� The novelty is that the resulting
posterior mean estimate for f corresponds to Bayesian model averaging�
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The Bayesian basis function approach is surely rather promising and it seems
worthwile to extend it to other function bases� in particular those with local
support� like B
Splines� or orthogonal basis functions� like the Demmler

Reinsch basis� for smoothing splines� or to orthogonal wavelet bases�

��� Extensions to additive models

Without further structural assumptions� nonparametric regression with
more than two regressors quickly becomes intractable due to the inter

actions which have to be included� Additive models for observations
�yi� xi�� � � � � xip�� i � �� � � � � n� on a Gaussian response variable Y and a
vector X � �X�� � � � � Xp� of metrical covariates assume

yi � � �
pX

j��

fj�xij� � �i� �i � N��� ���� �	�

For identi�ability� some constraint has to be imposed� for example assuming
that the unknown functions are centered by

nX
i��

fj�xij� � ��

The standard nonparametric approach for �tting the fj is to use univariate
smoothers and the back�tting algorithm as described in Hastie and Tibshi

rani ��		��� Extensions of additive models that can be treated with more
or less the same techniques are semiparametric additive models

yi � � �
pX

j��

fj�xij� � w�

i
 � �i � ����

where wi is a vector of further covariates whose e�ect is assumed to be linear�
and varying coe
cient models

yi � � �
pX

j��

fj�xij�zij � w�

i
 � �i ����

with additional design variables or covariates zj� The Gibbs sampler
is tailor
made for drawing posteriors from additive models and can be
interpreted as �Bayesian back�tting� �Hastie and Tibshirani� ��		����
Supressing dependence on hyperparameters like variances etc�� the generic
form of the Gibbs sampling algorithm is as follows�

Step � initialize 
 f� � � � ave�yi�� fj � f �j � j � �� � � � � n
Step � cycle 
 j � �� � � � � p� �� � � � � p� � � � draw posterior samples from

p�fjjf�� � � � � fj��� fj��� � � � � fp� y�
Step � continue step � until the joint distribution of

�f�� � � � � fp� doesn t change�

�



In Step �� one of the univariate function samplers can be used� For example�
if Sj is one of the smoothing matrices corresponding to random walk or
smoothing spline models� then Step � becomes

Step � �Hastie and Tibshirani� ��		����
iterate for t � �� �� � � �

 do for j � �� �� � � � � p� De�ne partial residual
rtj � y �

P
k�j f

t
k �

P
k�j f

t��
k

Generate ztj � N��� I� and update

f tj � Sjr
t
j � �S

�

�

j z
t
j

The algorithm can easily be extended to the more general models ���� and
�����

� Nonparametric regression for non�

Gaussian responses

There are two mainstreams for regression analysis with non
Gaussian re

sponses Y � In the �rst approach� one tries to �nd a suitable transformation
!Y � T �Y � such that the transformed variable !Y is� at least approximately�
Gaussian� A well known class of such transformations are Box
Cox
type
transformations� Given the transformation� regression techniques for Gaus

sian responses are applied� A Bayesian approach for a data driven choice of
transformations is suggested in Smith and Kohn ��		��� This section deals
with the second approach� where the distribution of Y is directly modelled
by a non
Gaussian distribution� We distinguish between so
called condition

ally Gaussian models� where the density of Y is Gaussian conditional upon a
further variable� often a mixture variable� and fundamentally non
Gaussian
models� e�g� for regression analysis with categorical responses�

��� Conditionally Gaussian models

Historically� conditionally Gaussian models were �rst used for additive out

liers� Let ki � f�� �g� i � �� � � � � n� denote an i�i�d� sequence of unobserved
indicator variables� with ki � � for an �usual� observation yi and ki � � for
an outlier yi� Conditional upon k�� � � � � kn the observation model is Gaussian�

yi � f�xi� � �i� �ijki � N��� ��ki
�� ����

For ki � �� the variance ��� corresponds to a usual observation� whereas
��� � ��� corresponds to an outlier� Obviously� ���� is equivalent to the
non
Gaussian model

yi � f�xi� � �i� �i � 
�N��� ���� � 
�N��� ����� ����

where errors �i come from a mixture of normals with 
� � pr�ki � �� and

� � � � 
� � pr�ki � ��� The simple model ���� can be generalized
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and modi�ed in various ways� For example� ���� can be extended to a
�nite or continuous mixture of normals� Taking ��
distributed variables
as mixture variables leads to observation models with heavy
tailed Student
errors� thus making the observation model robust against additive outliers�
see� for example� Carter and Kohn ��		��� Fahrmeir and K�unstler ��		��� In
principle� conditionally Gaussian observation models can be combined with
any of the smoothness priors of Section �� leading to robust nonparametric
regression� Gibbs sampling is ideally suited for Bayesian inference in such
models� with an e
cient multi
move sampler for Gaussian models as a basic
building block� Carter and Kohn ��		�� generalize the �nite mixture model
to the case� where the sequence �k�� � � � � kn� is a discrete Markov chain with
known transition probabilities� In analogy to the locally dynamic models
in Subsection ���� Shepard ��		�� proposes local scale models with error
variables �i � N��� ��i �� where the variances� perhaps after an appropriate
reparameterization� follow random walk models� A special version of such
models is the stochastic volatility model yi � �i exp �����i�� �i�� � ��i � vi�
where yi are log
returns of a �nancial assets� and �i and vi are mutually
independent Gaussian random variables� This non
Gaussian model has been
used to generalize the Black
Scholes option pricing equation to allow the
volatility change over time�

��� Fundamentally non�Gaussian responses

Although a more general formulation is possible� we restrict discussion to
nonparametric extensions of generalized linear models� This class of mod

els covers regression situations with responses that are binary� categorical�
counts or nonnegative variables� The observation model ��� is replaced
by the distributional assumption that� conditional upon covariates and un

knowns� the distribution of the response Y belongs to the exponential family�
The structural assumption E�Yi� � �i � f�xi� in ��� is generalized to

�i � h�f�xi��� i � �� � � � � n ����

where h is a known response �or link� function� A well known discrete re

sponse model is the logit model� where Y is binary or binomial and h is
the logistic function h�� � exp����� � exp���� For the case of several regres

sors� generalized additive and semiparametric additive models are de�ned
by extending ���� to

�i � h�� �
pX

j��

f�xij� � w�

i
�� ����

For semiparametric Bayesian inference� the two approaches in Section ��
smoothness priors and basis functions� are again suitable� in principle� How

ever� compared to Gaussian and conditionally Gaussian models� much less
has been done for regression with fundamentally non
Gaussian responses� A

	



main feature of Bayesian inference in this situation is that conditional distri

butions do not have a simple form in general� In particular the conditional
distributions for unknown functions fj are no longer multivariate normal�
Hence Gibbs sampling is no longer feasible� and more general Metropolis

Hastings algorithms are needed�
Hastie and Tibshirani ��		�� make a corresponding suggestion for extend

ing their smoothness priors approach and �Bayesian back�tting� algorithm
to generalized additive models� Fahrmeir and Lang ��		�� supplement the
observation models ���� or ���� with the Gaussian random walk smooth

ness priors of Subsection ���� They base posterior sampling on an e
cient
Metropolis
Hastings algorithm recently developed by Knorr
Held ��		�� in
the context of dynamic generalized linear models� Compared to single move
samplers described in Fahrmeir and Tutz ��		�� ch� ��� this block move sam

pler considerably improves convergence and mixing behaviour of posterior
samples� Based on the state space representation of stochastic di�erential
priors for smoothing splines� Biller and Fahrmeir ��		�� develop Bayesian
spline
type smoothing� However� mixing behaviour for generalized additive
models is less satisfactory� Surprisingly none of the basis function approaches
described in Subsection ��� seems to have been extended to fundamentally
non
Gaussian responses� The only development at the moment is found in
Biller ��		��� In an approach related to� yet di�erent from Denison et al�
��		��� he works with a B
spline basis� with location and number of knots
unknown and estimated via a reversible jump M
H
algorithm� simultane

ously with the coe
cients of the basis functions�

� Conclusions

Due to their modular structure� hierarchical Bayesian regression models pro

vide a �exible framework for extensions to other settings� For longitudinal
and spatial data� correlation can be accounted for by introducing additional
exchangeable random e�ects or e�ects with Markov random �eld priors into
the predictor� In particular combining fundamentally non
Gaussian observa

tion models with locally adaptive priors for unsmooth functions as in ���� or
with basis function priors as in ���� an incorporation of unsmooth dynamic
and spatial e�ects o�ers many possibilities for modelling and analysing data
with complex correlation structure in space and time�
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