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Abstract: Common nonparametric curve fitting methods such as spline smooth-
ing, local polynomial regression and basis function approaches are now well devel-
oped and widely applied. More recently, Bayesian function estimation has become
a useful supplementary or alternative tool for practical data analysis, mainly due
to breakthroughs in computerintensive inference via Markov chain Monte Carlo
simulation. This paper surveys recent developments in semiparametric Bayesian
inference for generalized regression and outlines some directions in current re-
search.

1 Introduction

Regression analysis is one of the most widely used methods in applied statis-
tics. Often it is difficult to prespecify parametric models, and nonparamet-
ric fitting of unknown regression functions is needed. Common methods
are kernel-based regression, spline smoothing, local polynomial regression
and basis function approaches such as regression splines, Fourier expansions
and wavelets. Very recently, semiparametric Bayesian methods have been
developed and are a promising alternative tool for practical data analysis.
They rely on Markov chain Monte Carlo (MCMC) simulation and provide
rich output for inference. No approximate normality conjectures for estima-
tors are required, so that the methods are also useful for moderate sample
sizes and in complex, high-dimensional problems. This paper surveys recent
advances in Bayesian function estimation, distinguishing smoothing priors
and basis function approaches as two mainstream directions. We do not
give details about MCMC algorithms here, but refer to general introduc-
tions to Bayesian data analysis, as well as to original work mentioned in
later sections. Section 2 deals with models for Gaussian response variables
and Section 3 with the non-Gaussian case. In particular for fundamentally
non-Gaussian response such as binary or other discrete responses, there is
clear need for additional research. Section 4 points out some extensions and
ideas for future developments.



2 Gaussian nonparametric regression

For bivariate observations (y1,1),..., (Yn, n) the classical nonparametric
regression model on a response variable Y and a dependent variable X is

yz:f(xz)+gza Zzlaana (1)

with i.i.d Gaussian errors ; ~ N(0, 0?), and an unknown regression function
f that we want to estimate. In the following, y = (y1,...,yn)? is the vec-
tor of observations on Y, and we will not distinguish notationally between
the function f and the vector f = (f(z1),..., f(z,))T of function evalua-
tions. This section describes and outlines some recent Bayesian approaches
for estimating f through posterior sampling by Markov chain Monte Carlo
(MCMC) techniques. Roughly, we may distinguish between methods based
on roughness penalties or smoothness priors and methods based on basis
functions.

One of the attractive features of these methods is that they are tailor-made
for extension to the case of multivariate regressors X, ..., X, by using ad-
ditive models and, somewhat more generally, semiparametric additive or
varying coefficient models.

2.1 The smoothness prior approach for univariate re-
gression

For simplicity first consider the case of equidistant design points or observa-
tions x1,...,x,. For nonparametric estimation based on smoothness priors,
the observation model (1) is supplemented by assigning an appropriate prior
to f. Common local smoothness priors are random walks of first (RW(1))
and second (RW(2)) order

f(@i)) = f(wia) =wi or f(xi) = 2f(zi1) + f(i2) = wi, (2)

with i.i.d. Gaussian errors u; ~ N(0,72?). Initial values are specified by
f(z1) ~ N(0,¢) or f(xy), f(z2) ~ N(0,cl), where we usually choose diffuse
priors, corresponding to the limiting case ¢ — oo. The difference equations
(2) penalize deviations from locally constant functions f(z;) = f(z;_1) or
straight lines f(z;) = 2f(x;—1) — 2f(x;_2). The penalty increases as the
variance 72 becomes smaller. The random walk models (2) define a multi-
variate Gaussian smoothness prior p(f) for f. Also, the observation model
(1) defines a multivariate Gaussian p(y | f) ~ N(f,0?I) for data y given f.
For the moment, the variances or hyperparameters o and 72 are regarded as
known or given constants. Thus, the posterior p(f |y) o< p(y| f) p(f) is also

Gaussian and characterized by the posterior mean f = E(f|y) and covari-
ance Var(f|y). Due to normality, f is also the posterior mode. Assuming
diffuse initial priors, f can therefore also be obtained as a minimizer of the



penalized least squares criterion

S~ S+ A Y (V4()? — min ®)

=1 i=d+1

with V¢, d = 1,2, as the first or second order difference operator and
smoothness parameter A = o2 / 72. Estimation of f via (3) is the classical
“method of graduation” of Whittaker (1923). Obviously, (3) has a non-
Bayesian interpretation, with the first term as a measure of goodness of fit,
the second as a roughness penalty and A controlling the bias - variance trade
off. The penalty terms are discretized versions of corresponding penalty

terms
Jr@Pde vesp. [1f @) do, (4)

leading to quadratic resp. cubic spline smoothing. Already for a moderate

number of observations, smoothing splines and discretized versions f are
virtually indistinguishable. Therefore, solutions of (3) are sometimes called
discrete splines. In matrix notation, (3) can be written as

(== )+ ATKf — min (5)

with appropriately defined penalty matrix K. For example, one gets

1 -1
-1 2 -1 0
0 -1 2 -1

-1 1

for a first order random walk.

The solution of (5) and thus the posterior mean or mode estimate f is given
by

f=E(fly) = Sy

with smoother matrix S = (I + AK)~'. Within the Bayesian framework,
we are interested not only in the posterior mean but in the entire posterior
distribution p(f|y). The observation model (1) is y| f ~ N(0,0%I), from
(2) one obtains the global smoothness prior

fNN(07K77_2)7 (6)
where K~ is a generalized inverse of K, and the posterior is
fly~N(Sy,Sa?). (7)

Since (1) and (2) define a state space model with “states” f(z1),..., f(zn),
the linear Kalman filter and smoother computes posterior means f(z;)|y
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and variances Var(f(z;)|y), i.e. the diagonal of S¢?, in O(n) operations.
Moreover, and this seems to be far less known, the complete covariance
matrix S 02 as well as a Cholesky square root S'/2 2, can be computed easily
from its output, see Fahrmeir and Kaufmann (1991, Prop. 1) for general state
space models. For the special case considered here, this leads to the banded
Cholesky factorization (I + AK) /o? = LL", so that SY/2¢ = L™! can be
computed in O(n) operations. Therefore, a posterior realization of f can be
obtained from

F=8y+8Y%0z=f+5"0z, z~N(,I).

Of course, the banded Cholesky decomposition of (I + AK) can also be
efficiently computed without making direct use of the Kalman filter and
smoother, as suggested by Hastie and Tibshirani (1998) for cubic smooth-
ing splines. Other suggestions for efficient posterior samling of f have been
made by Fruewirth - Schnatter (1994), Carter and Kohn (1994) and de Jong
and Shephard (1996) in the context of linear state space models. It may
appear that posterior sampling from Gaussian models is not very interest-
ing, since the posterior is Gaussian and its first and second moments can
be computed already with efficient algorithmus. The point is, however, that
these methods are important building blocks for posterior sampling in more
complex situations.

Up to now smoothing parameters or variances o? and 72 were considered
fixed or known. In practice they have to be determined as well. In a full
Bayesian approach priors are put on the variances and their posteriors are
estimated along with the function f. The standard choice are indepen-
dent highly dispersed inverse gamma priors p(c?) ~ IG(ag,bp), p(72) ~
IG(ay,by). The posterior is then

p(f, 0% 72 y) < ply | f,0%) p(f | %) p(o?) p(72).

Posterior sampling can be carried out with the Gibbs sampler: Realiza-
tions are drawn sequentially from p(f |y, o2 7%), and from p(c? |y, f,7%) =
p(a? |y, f), p(? |y, f,0%) = p(7?| f), which are inverse Gaussian with up-
dated parameters, see e.g. Fruewirth - Schnatter (1994), Carter and Kohn
(1994), Hastie and Tibshirani (1998). There is empirical evidence that these
“multi-move” sampling schemes are superior in convergence and mixing be-
haviour to “single-move” samplers that update single components f(z;) of
f, given the rest (Carlin, Polson and Stoffer, 1992).

For non-equally spaced observations, smoothness priors have to be modi-
fied appropriately to account for non-equal distances 0; = x; — x;_; between
observations. RW(1) models are now specified by

f(x;) = f(wiz1) + g, u; ~ N(0;6;0%),

i.e. by adjusting error variances from o to d;0c%. RW(2) models generalize
to

2

0;
0i-1

o) = (14 2] flo) = S b N,

i—1
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where g; is an appropriate weight. The simplest weight is again g; = ¢;, but
more complicated weights can be derived from underlying continuous priors
or with other arguments, see e.g. Knorr-Held (1997). A related, but different
AR(2) model can be found in Berzuini and Larissa (1996). Another possi-
bility is to work with stochastic differential smoothness priors for smoothing
splines and state space models for non-equally spaced observations derived
from them, see Carter and Kohn (1994), Wong and Kohn (1996). Hastie
and Tibshirani (1998) directly start with smoothness priors as in (6), where
K is the penalty matrix corresponding to smoothing splines.

2.2 Unsmooth functions

So far the methods are useful for estimating and exploring smooth regres-
sion functions, that means functions with curvatures that do not exhibit too
much spatial inhomogeneity. They have problems, however, with functions
that are more wiggly or have edges and jumps. This is a consequence of the
global variances or smoothing parameters, which are assumed constant over
the design space, and the Gaussian prior assumptions, leading to quadratic
roughness penalties.

One approach to handle this problem is therefore to replace to Gaussian pri-
ors in (2) or (6) by heavy tail priors as they are known in robust statistics.
Prominent examples are finite mixtures of normals, Student priors with low
degrees of freedom, Laplace, Huber or truncated Gaussian priors. A poste-
rior mode or penalized likelihood approach is given in Fahrmeir and Kiinstler
(1998), and posterior sampling approaches are described in Carter and Kohn
(1996). An interesting family of distributions, that contains Gaussian and
Laplace densities as special cases, is the exponential power family (Box and
Tiao, pp.156-243). Its potential for flexible modelling has still to be ex-
plored.

The second possibility to deal with unsmooth functions is to allow for vari-
ances that vary over the design space. This corresponds to locally varying
smoothness parameters or bandwidths, which have gained considerable in-
terest in kernel-based nonparametric regression. A Bayesian approach is
proposed by Fronk and Fahrmeir (1998). They modify the local RW(1) and
RW (2) priors (2) by assuming varying variances 77 for the errors u;. Repa-
rameterizing by h; = log(7?) and adding random walk smoothness priors
for the sequence h = (hy,...,h,) in a further layer of the hierarchy, leads
to locally adaptive dynamic models with observation equation (1), random
walk priors (2), but with errors

u; ~ N(0;exp(hy)), i=1,...,n
and RW(1) or RW(2) priors
hi = hi—1 + v, hi = 2hj_1 — hj_9 + v;, v; ~ N(0;¢q),

and an inverse Gamma prior for q.
Posterior sampling is carried out by a hybrid MCMC algorithm, combining



Gibbs and Metropolis-Hastings steps. The method works quite well with
the “Blocks”, “Bumps” and “Doppler” simulated examples, constructed by
Donoho and Johnstone (1994) for wavelet shrinkage.

2.3 Basis function approach

Let S = {B;(z);i € I} be a set of linearly independent univariate functions,
which are called basis functions. This section outlines recent Bayesian meth-
ods for nonparametric estimation of f by modeling it as a linear combination

fz) =3 BiBi(x) (8)

el

of these basis functions. Popular choices for the B; are various bases for
spline functions, piecewise polynomials and wavelets. Generally, it is difficult
to determine which basis functions should be included in (8). If the basis has
too many functions, estimates for 3; will have high variability or may even
produce interpolation in the extreme case. Conversly, if too few functions
are in the basis, the resulting estimator will be severely biased.

Smith and Kohn (1996) propose to approximate f(z) by cubic regression
splines using the truncated power series basis

f(z) = ag + a1 + aox + asz® + Z By (x — Tk)i,
k=1

where 7 < ... < 7, is a large number of potential “knots” placed along the
domain of the independent variable x, and (z); = max(0;2). A Bayesian
variable selection approach is used to determine the significant knots and
to estimate the parameters 5. Denison et al. (1998) use a wider class of
piecewise polynomials as basis functions that incorporates smoothing splines
as a subclass. However, it is more flexible because also unsmooth functions
with rapidly varying first and second derivatives or even discontinuities can
be modelled adequately. They assume

f(x) = ;)Oéj(x —70)k+ D > Biklw — )

where 7y is the left boundary knot, [ is the order of the piecewise polynomials
and [y gives the degree of continuity at the knot points. Taking [ = [, = 3
gives the cubic regression spline basis as a special case. The number and
location of knots is considered as unknown, and sampling from posteriors for
both the number and the location of knots is addressed using the reversible
jump MCMC simulation technique of Green (1995). The method is some
hybrid technique between an empirical and a full Bayesian approach in that
the a’s and 3’s are estimated by least squares conditional upon number and
location of knots as well as 02 = var(e;). The novelty is that the resulting
posterior mean estimate for f corresponds to Bayesian model averaging.



The Bayesian basis function approach is surely rather promising and it seems
worthwile to extend it to other function bases, in particular those with local
support, like B-Splines, or orthogonal basis functions, like the Demmler-
Reinsch basis, for smoothing splines, or to orthogonal wavelet bases.

2.4 Extensions to additive models

Without further structural assumptions, nonparametric regression with
more than two regressors quickly becomes intractable due to the inter-
actions which have to be included. Additive models for observations

(Yir Tity -, Tip), © = 1,...,n, on a Gaussian response variable ¥ and a
vector X = (Xi,...,X,) of metrical covariates assume
- 2
yi:a+2fj(xij)+€i, SiNN(O;U ) (9)
j=1

For identifiability, some constraint has to be imposed, for example assuming
that the unknown functions are centered by

Z:fj(%‘) = 0.

The standard nonparametric approach for fitting the f; is to use univariate
smoothers and the backfitting algorithm as described in Hastie and Tibshi-
rani (1990). Extensions of additive models that can be treated with more
or less the same techniques are semiparametric additive models

p
yi=a+ Y filzy) +wip+e, (10)

=1

where w; is a vector of further covariates whose effect is assumed to be linear,
and varying coefficient models

p
Y; = a+2fj(wij)zij +w;ﬁ+5i (11)
=1

with additional design variables or covariates z;. The Gibbs sampler
is tailor-made for drawing posteriors from additive models and can be
interpreted as “Bayesian backfitting” (Hastie and Tibshirani, (1998)).
Supressing dependence on hyperparameters like variances etc., the generic
form of the Gibbs sampling algorithm is as follows:

Step 1 initialize - fo = a = ave(y), f; = 7,7 =1,...,n

Step 2 cycle-5=0,...,p,0,...,p,... draw posterior samples from
p(f]|f17 e '7fj717fj+17 . '7fp7y)

Step 3 continue step 2 until the joint distribution of
(fo, ..., fp) doesn’t change.



In Step 2, one of the univariate function samplers can be used. For example,
if S; is one of the smoothing matrices corresponding to random walk or
smoothing spline models, then Step 2 becomes

Step 2 (Hastie and Tibshirani, (1998)).
iterate for t =1,2,...
-do for 7 =0,1,...,p: Define partial residual
b=y —Yhei fh— Shsi fi
Generate 2} ~ N(0; 1) and update

1
fj < Siri+ 0872
The algorithm can easily be extended to the more general models (10) and

(11).

3 Nonparametric regression for non-
Gaussian responses

There are two mainstreams for regression analysis with non-Gaussian re-
sponses Y. In the first approach, one tries to find a suitable transformation
Y = T(Y) such that the transformed variable Y is, at least approximately,
Gaussian. A well known class of such transformations are Box-Cox-type
transformations. Given the transformation, regression techniques for Gaus-
sian responses are applied. A Bayesian approach for a data driven choice of
transformations is suggested in Smith and Kohn (1996). This section deals
with the second approach, where the distribution of Y is directly modelled
by a non-Gaussian distribution. We distinguish between so-called condition-
ally Gaussian models, where the density of Y is Gaussian conditional upon a
further variable, often a mixture variable, and fundamentally non-Gaussian
models, e.g. for regression analysis with categorical responses.

3.1 Conditionally Gaussian models

Historically, conditionally Gaussian models were first used for additive out-
liers. Let k; € {1,2}, i =1,...,n, denote an i.i.d. sequence of unobserved
indicator variables, with k; = 1 for an “usual” observation y; and k; = 2 for
an outlier y;. Conditional upon k1, ..., k, the observation model is Gaussian,

yi = f(xi) + i, eilki ~ N(0; 0, (12)
For k; = 1, the variance of corresponds to a usual observation, whereas
03 > o2 corresponds to an outlier. Obviously, (12) is equivalent to the

non-Gaussian model
yi = f(x:)) + &, & ~mN(0;07) + 1N (0;03), (13)
where errors €; come from a mixture of normals with m = pr(k; = 1) and

me = 1 —m = pr(k; = 2). The simple model (12) can be generalized
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and modified in various ways. For example, (13) can be extended to a
finite or continuous mixture of normals. Taking Y?-distributed variables
as mixture variables leads to observation models with heavy-tailed Student
errors, thus making the observation model robust against additive outliers,
see, for example, Carter and Kohn (1994), Fahrmeir and Kiinstler (1998). In
principle, conditionally Gaussian observation models can be combined with
any of the smoothness priors of Section 2, leading to robust nonparametric
regression. Gibbs sampling is ideally suited for Bayesian inference in such
models, with an efficient multi-move sampler for Gaussian models as a basic
building block. Carter and Kohn (1996) generalize the finite mixture model
to the case, where the sequence (kq,...,k,) is a discrete Markov chain with
known transition probabilities. In analogy to the locally dynamic models
in Subsection 2.2, Shepard (1994) proposes local scale models with error
variables ¢; ~ N(0;0?), where the variances, perhaps after an appropriate
reparameterization, follow random walk models. A special version of such
models is the stochastic volatility model y; = ¢; exp (0.5¢;), ;11 = pa; + v;,
where y; are log-returns of a financial assets, and «; and v; are mutually
independent Gaussian random variables. This non-Gaussian model has been
used to generalize the Black-Scholes option pricing equation to allow the
volatility change over time.

3.2 Fundamentally non-Gaussian responses

Although a more general formulation is possible, we restrict discussion to
nonparametric extensions of generalized linear models. This class of mod-
els covers regression situations with responses that are binary, categorical,
counts or nonnegative variables. The observation model (1) is replaced
by the distributional assumption that, conditional upon covariates and un-
knowns, the distribution of the response Y belongs to the exponential family.
The structural assumption E(Y;) = p; = f(x;) in (1) is generalized to

Hi = h(f(xz))a i=1,...,n (14)

where h is a known response (or link) function. A well known discrete re-
sponse model is the logit model, where Y is binary or binomial and A is
the logistic function h() = exp()/[1 + exp()]. For the case of several regres-
sors, generalized additive and semiparametric additive models are defined
by extending (14) to

pi = ha + ﬁ: f(@ig) +wif3). (15)

For semiparametric Bayesian inference, the two approaches in Section 2,
smoothness priors and basis functions, are again suitable, in principle. How-
ever, compared to Gaussian and conditionally Gaussian models, much less
has been done for regression with fundamentally non-Gaussian responses. A



main feature of Bayesian inference in this situation is that conditional distri-
butions do not have a simple form in general. In particular the conditional
distributions for unknown functions f; are no longer multivariate normal.
Hence Gibbs sampling is no longer feasible, and more general Metropolis-
Hastings algorithms are needed.

Hastie and Tibshirani (1998) make a corresponding suggestion for extend-
ing their smoothness priors approach and “Bayesian backfitting” algorithm
to generalized additive models. Fahrmeir and Lang (1998) supplement the
observation models (14) or (15) with the Gaussian random walk smooth-
ness priors of Subsection 2.1. They base posterior sampling on an efficient
Metropolis-Hastings algorithm recently developed by Knorr-Held (1998) in
the context of dynamic generalized linear models. Compared to single move
samplers described in Fahrmeir and Tutz (1997, ch. 8), this block move sam-
pler considerably improves convergence and mixing behaviour of posterior
samples. Based on the state space representation of stochastic differential
priors for smoothing splines, Biller and Fahrmeir (1997) develop Bayesian
spline-type smoothing. However, mixing behaviour for generalized additive
models is less satisfactory. Surprisingly none of the basis function approaches
described in Subsection 2.3 seems to have been extended to fundamentally
non-Gaussian responses. The only development at the moment is found in
Biller (1998). In an approach related to, yet different from Denison et al.
(1998), he works with a B-spline basis, with location and number of knots
unknown and estimated via a reversible jump M-H-algorithm, simultane-
ously with the coefficients of the basis functions.

4 Conclusions

Due to their modular structure, hierarchical Bayesian regression models pro-
vide a flexible framework for extensions to other settings. For longitudinal
and spatial data, correlation can be accounted for by introducing additional
exchangeable random effects or effects with Markov random field priors into
the predictor. In particular combining fundamentally non-Gaussian observa-
tion models with locally adaptive priors for unsmooth functions as in 2.2, or
with basis function priors as in 2.3, an incorporation of unsmooth dynamic
and spatial effects offers many possibilities for modelling and analysing data
with complex correlation structure in space and time.
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