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Abstract

Most statistical methods for assessing activated voxels in fMRI experiments are based

on correlation or regression analysis� In this context the main assumptions are that the

baseline can be described by a few known basis�functions or variables and that the e�ect

of the stimulus� i�e� the activation� stays constant over time� As these assumptions are in

many cases neither necessary nor correct� a new dynamic approach that does not depend

on those suppositions will be presented� This allows for simultaneous nonparametric es�

timation of the baseline as well as the time�varying e�ect of stimulation�

This method of estimating the stimulus related areas of the brain furthermore provides the

possibility of an analysis of the temporal and spatial development of the activation within

an fMRI�experiment�
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� Introduction

In the analysis of functional MRI time series the main goal is the assessment of stimulus�

related activated areas of the brain on the basis of a stimulus�induced MR�signal variation�

This is equivalent to the detection of a dependency between the time�courses of the meas�

ured MR signal of the voxels in the brain� and a stimulus� that has been presented to the

subject� For this purpose the most commonly used techniques are correlation methods

��� or linear regression analysis ���� But even if these methods are well known and estab�

lished� due to a huge number of noise sources the analysis appears easier than it actually

is� Whereas the physical noise produced by the scanner �e�g� Quantum noise� thermal

noise� and the environmental sources can usually be described as a stationary white�noise

process� the characterisation of other sources is far more di�cult� Respiratory and cardiac

cycles as well as other kinds of physiological noise are well known non�stationary con�

founds� which have to be considered� A common measure to do this is a detrending of

the signal with a few polynomial or trigonometric basis�functions ��� ��� But this imposes

two questions� up to which order of the basis�functions should one detrend and what is

the interpretation of the estimated elements of the trend� Another di�culty lies in the

principle of the above methods� They describe in a simple parametric way the relation

between the signal and a reference stimulus� The latter is assumed to be similar to the

time�course of the evoked activation and to be nearly always identical for all voxels in the

brain� The estimated parameters are then� after standardisation and thresholding at a

certain value� displayed in a so�called activation map� This should show the regions� where

the stimulus has a signi�cant in�uence on the MR signal thought to be activation�related

via the BOLD mechanism� But there are no apparent reasons for the evoked activation�

and consequently for the temporal delay or the shape of the signals increase� to be identical

over the entire brain ���� Also� the assumption that one single parameter can describe the

stimulus�related e�ect in a voxel is questionable� In many cases it can be observed� that

the amplitude of the activation varies quite strongly and unpredictably between the stim�

ulation periods� Here an adequate description with a prespeci�ed reference function and

a single temporally constant parameter is nearly impossible� But� ignoring this variability
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leads to biassed estimates of the parameters and activation maps�

Even though these facts are well known� the insu�ciencies of the existing methods have

usually been neglected until now� The aim of our studies was to evaluate a new approach

that can handle these problems in a very intuitive and elegant way and thus� provide

an appropriate description of the measured time�series� By means of a dynamic model

we present a nonparametric method that works without introducing any new covariables

or basis�functions or constraining the parameters to any prespeci�ed parametric form�

Furthermore a solution for omitting the restrictions applied to the lag and shape parameters

will be proposed� before some examples will illustrate this approach�

� Theory

The Model

In the following we look at a familiar fMRI experiment� A certain number T of MR images

Y t� t � �� � � � � T was obtained from a subject during the presentation of any kind of ON�

OFF�Stimulus X �e�g� �	s of rest� �	s stimulation� �	s rest� � � ��� Each of these T images

consists of I pixels or voxels� for which a whole time�series Yi � �yi�� yi�� � � � � yiT �
�� i �

�� � � � � I of measured MR signals exists� Aim of the analysis is to assess those voxels� whose

time�series show a signi�cant connection to the presented stimulus�

Without any loss of generality� our considerations start from an ordinary linear regression

model� which under certain conditions is transformable to a correlation model and can be

formulated as follows�

Yi � Wai � Zbi � �i� �i � N�	� ��i I�� i � �� � � � � I� ���

or in componentwise notation

yit � w�

tai � ztbi � �it� �it � N�	� ��i �� i � �� � � � � I�

This model describes the signal Yi at voxel i as a linear combination of the design matrices

W and Z superimposed by a white�noise error term �i� In this context W denotes a known
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vector or matrix� which is supposed to model the trend or the baseline drift� Matrices

that contain linear and quadratic trends or the �rst few terms of a Fourier expansion are

common examples� The variable Z denotes the transformed stimulus� in other words Z is

a function of the presented ON�OFF�stimulus X� With regard to the transformation� we

consider a temporal shift of the original stimulus by a time�delay d and a convolution with

a parametric hemodynamic response function �HRF� h� so that�

zt �
t�dX
s��

h�s� ��xt�d�s� ���

In general Poisson �Po���� or Gamma �Ga��� u�� densities are chosen for this purpose�

These transformations model that �a� due to hemodynamic latencies the cerebral blood�

�ow �CBF�� the source of the MR signal� increases approximately ��
s after the onset of the

stimulus� and that �b� the �ow responses do not occur suddenly� but rather continuously

and delayed� The question� how the parameters d and � can be estimated will be addressed

later� At this point� we suppose that they are known� Finally� the unknown parameters ai

and bi are a measure for the in�uence of the covariables W and Z on the MR signal�

After having estimated ai and bi� one can test whether bi is zero or not� i�e� whether Z�

respectively X� has an in�uence on Y � This yields the familiar activation maps� images of

the standardised test statistics of all voxels thresholded at a certain value� that determines

the p�value�

As mentioned above� we believe that some assumptions made in the above model are in�

correct in many cases� Therefore� an alternative approach� based on the theory of dynamic

linear models� which works without these suppositions� will be proposed in the following�

As it is quite di�cult to formulate an appropriate trend modelling matrix W for often

highly nonlinear trends in the baselines of the MR�signals� in a �rst step the arbitrarily

chosen matrix W will be omitted� We do not introduce any new arti�cial covariables�

but we allow the parameter ai � �ai�� � � � � aiT � to be a function of time to describe the

baseline directly without specifying any particular parametric form for it� This is achieved

by modelling ait nonparametrically� The only applied restriction is that ait and thus the

baseline should vary smoothly� In dynamic or state space models this is guaranteed by
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imposing a so called random walk smoothness prior on ait� For a single observation we can

formulate this extension as follows�

yit � ait � ztbi � �it� �it � N�	� ��i �� ���

with ait � �ait�� � ait�� � �it� �it � N�	� ���i��

The second term can be regarded as a kind of penalty term� which penalises all kinds of

variation in the parameter ai that deviate from a linear trend� For example� for a straight

line this penalty is zero� So� a trade�o� has to be found between data �t and smoothness of

the curve� It should be mentioned� that in the estimation algorithm� which we will discuss

later� this compromise is achieved entirely data�driven�

In a next step� the temporal variability in the amplitude of the activation should also be

considered� i�e� the assumption that a single parameter can describe the whole fMRI time

series is dropped� This e�ect will also be modelled nonparametrically� This means that we

also allow the parameter bi to vary over time� implying that the transformed stimulus Z

may have a variable in�uence on the processes in a particular voxel� As for the parameter

ait� the only condition imposed is that bit should vary smoothly� Thus� again a random

walk prior on the parameter is assumed and the result is the new model�

yit � ait � ztbit � �it� �it � N�	� ��i �� ���

with
ait � �ait�� � ait�� � �it� �it � N�	� ���i��

bit � �bit�� � bit�� � 	it� 	it � N�	� ���i��
���

At a �rst glance this extension might look a bit confusing� because it is not straightforward

how to handle this parameter� But the underlying idea is quite simple and intuitive� When

the amplitude of the response to a constant stimulus varies� then the parameter� which

re�ects the dependency between these two variables� should vary correspondingly� If the

response to the stimulus becomes weaker or disappears altogether with time� then this

particular parameter should be able to indicate this� An elegant way to do this �without

prespecifying the temporal behaviour via a parametric form�� is to have as many paramet�

ers as observations� These parameters show for every point in time the actual strength of

the in�uence of the stimulus� As a consequence of this fact and because in this model the
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estimated parameters �bit are distributed normally� doing this analysis for all voxels� one

can calculate an activation map for every image or time point� This parameter map then

shows the regions of the brain that are �activated� �i�e� signi�cantly stimulus�related� at

this particular point in time� This is an important aspect of this model� To our knowledge

it provides for the �rst time the possibility to investigate the temporal behaviour of a

stimulus�induced signal variation within an fMRI experiment� Through the sequential dis�

play of all T activation maps the temporal and spatial evolution of the cortical activation

during the experimental procedure can be studied�

As it is sometimes useful or even necessary to get only a single activation map out of an ex�

periment� de�ning bi� � bi� and ��� � 	 in the above model results in the familiar approach

with a temporally constant parameter bi� so that this case also can be considered without

leaving this particular framework� Another possibility is to take the semiparametric model

��� and to apply an estimation algorithm for mixed models as proposed in Biller ����

The last assumption to be omitted� is the one of an identical reference function for the

whole brain� As well the lag and the shape of the activation should be allowed to di�er

between the voxels and therefore� pixelwise parameters di and �i for the stimulus trans�

formations are introduced� Thus� the �nal model can be formulated as follows�

yit � ait � zitbit � �it� ���

with the error distributions and priors of the parameters a and b as de�ned in Eq����

Estimation

This section will give a brief description of the method of estimation in the presented

model� Because most algorithms used for the above model have already been described

very well and detailed in other publications� we refer for a more comprehensive introduc�

tion to Fahrmeir�Tutz ���� Harvey � �� De Jong �
� and Press et al� ���

The estimation of the parameters is carried out in two major steps� The �rst� a more

technical one� is calculating pixelwise pilot�estimates of the lag and shape parameters di

and �i� while the second one yields the estimates of the model parameters and variances�

 



For the pilot�estimate a modi�ed Gauss�Newton algorithm is used� which for each voxel

minimises the quadratic distance between the MR signal Yi and a reference function z�di� �i�

as de�ned in Eq����� As hemodynamic response function a Poisson density Po��� is as�

sumed� so that �i � �i and

zit �
t�diX
s��

�s
i

s!
e�ixt�di�s�

We adapted the original algorithm �� by �rst applying the ordinary algorithm for the

parameter �i� and then heuristically minimising the resulting sum of squares �SSQ� after

each iteration with regard to the discrete lag di� This was done by comparing the SSQs

for the current value of di and its direct neighbours di � �� di � �� An upper bound for

di is de�ned naturally by the beginning of the next stimulation period� Moreover for �i

a limit was set to the value of ��s� based on plausibility considerations and to keep the

computational e�ort acceptable� Once the parameters � or d reached these bounds� they

were set equal to them for the further analysis�

Two alternative ways of estimating the model parameters could be considered� First�

Markov chain Monte Carlo �MCMC� methods� That means to sample from the posterior

distribution of the parameters� which can be calculated as a combination of the distribu�

tion of the measured data for a given set of parameters and the prior distribution of the

parameters according to Bayes� Theorem� Due to the huge amount of data this would

be a very time�consuming procedure� The second possibility is a linear Kalman �lter and

smoother� Under the assumptions that the error terms are normal it also estimates the

posterior mean together with the standard deviations and is computationally more e��

cient� Therefore� we decided on the �lter� To apply the latter� the model only has to be

transformed into state space form�

yit � vt
it � �it� �it � N�	� ��i �� � �


it � F
it�� � ��it� ��it � N�	� Q�� �
�

with vt � ��� 	� zit� 	�� 
t � �ait� ait��� bit� bit���
��
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�
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�
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�
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���i 	 	 	

	 	 	 	

	 	 ���i 	

	 	 	 	

�
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�

The �lter estimates in an recursive procedure the means and the variances of the posterior

distribution of the parameters 
it� the e�ects we are mainly interested in� To minimise

the in�uence of arbitrarily chosen starting values� an extended version of the Kalman �lter

and smoother with di�use initial value priors can be used� as proposed in De Jong ����

Further� to consider the unknown variances ��i and Qi� the �lter is embedded in an EM�

Type algorithm ��� for estimating the unknown hyperparameters� This algorithm is of an

iterative structure� In a �rst step the conditional expectation of the log�likelihood for a

given set of observations and hyperparameters is built and then in a second one maxim�

ised with regard to these hyperparameters� This procedure is repeated until convergence�

For the presented approach the expectation step is carried out via the Kalman �lter and

smoother and the maximisation can be solved analytically� For a detailed outline of the

applied methods we refer the interested reader to Fahrmeir�Tutz ��� and Harvey ����

As mentioned already the algorithm �nds a trade�o� between data �t and smoothness of

the curves of the �tted e�ects� This compromise is mainly controlled by the relation of

the variances of the observation model �Eq�� �� and the transition model �Eq��
��� Con�

sequently� because the EM algorithm estimates the unknown variances on the basis of the

data� it performs this trade�o� completely data�driven simultaneously to the estimation of

the time�varying e�ects� A supervision by the user is not necessary�

� F�MRI data analysis

The Data

The data sets to illustrate the above method were fMRI time series of photic and acoustic

stimulation experiments� They were acquired on a ��� T system �Echospeed� GE Med�

ical Systems� Milwaukee� using a single shot Gradient Echo EPI sequence with echo and





repetition times of �	 ms and �			 ms� respectively� Seven slices parallel to the intercom�

missural line with a nominal voxel size of ��� � ��� � � mm were positioned to cover the

occipital lobes in the visual and the temporal lobes in the acoustic stimulation�  � images

were acquired with the initial three images being discarded to avoid non�steady�state ef�

fects� With regard to the stimulation paradigm� the subsequent  	 images were divided

into four rest and three activation periods� with each period consisting of �	 images ��	s

long�� During the visual stimulation periods a �� � �� element rectangular checkerboard

that alternated at a frequency of � Hz was displayed� whereas a uniformly dark screen

with a small �xation point in the centre was displayed in the rest periods� The stimula�

tion pattern was projected into the magnet room through the observation window using

an LCD projector� For acoustic stimulation� a tape recorded novel read by a professional

speaker was presented via headphones that also reduced scanner noise in the rest periods�

Data were transferred to a separate workstation �Sparc �	� Sun Microsystems� CA� for

processing and calculation� For the data of the acoustic experiment a �D motion correc�

tion was performed using version ��	
 of the public domain image registration program

AIR ��	� ����

The algorithm

The starting values for the estimation of the pixelwise lag and shape parameters were set

to d � �s and � � �s� the convergence criterion was a relative change of � smaller than

	�		� in subsequent iterations�

The variances of the observation and transition model at the beginning of the EM�Type

algorithm were set to �		 and �� The convergence criterion for the variance of the obser�

vation model was chosen as above�

A di�use Kalman �lter and smoother was used and the time series were mean correc�

ted prior to the analysis� For the activation maps� the estimated means of the posterior

distribution of the e�ects were taken as point estimators� They were normalised to unit

variance and then tested to be non�zero� This was simply carried out by thresholding the

parametric map at a certain value� without de�ning a particular p�value� We renounced

the latter� due to the non�existence of a su�cient solution of this highly complex problem�

�	



The arbitrary threshold was set to the value of ���� which seemed to be an appropriate

value to suppress most of the noise artefacts on the one hand and on the other not to be

too restrictive with respect to the �activated� voxels� At this point we did not apply any

kind of spatial analysis� for not biassing the results� These aspects will be discussed later�

Results

Figure ��� shows the time series of a voxel from the visual cortex and its estimated e�ects�

In the upper row the most simple regression model is displayed with an intercept term

in the second column and a �xed e�ect for the boxcar reference stimulus in the third�

The resulting �tted curve is superimposed on the data� The residuals are plotted in the

last column� The second row displays an approach with the nonparametrically modelled

baseline �Eq����� but still a �xed e�ect for the pixelwise estimate of the reference function�

In the last row the e�ects of the fully dynamic model �Eq����� are plotted� Here� for

illustration� the estimated dynamic e�ect of the stimulus was multiplied with the reference

function�

As it is indicated through the residual plots� in both models with a single �xed parameter

for the in�uence of the stimulus� an adequate �t to the data is not given� The only model

that provides an appropriate description of the MR�signal is the completely nonparametric

approach �Eq������

It can be seen that the dynamic e�ect varies quite strongly over time� This means that for a

single voxel the signi�cance of the stimulus in�uence can change within the experiment� As

mentioned above the nonparametric approach generates as many parameters as there are

observations for one e�ect� Doing the same analysis for all voxels of the brain� standardising

and thresholding the estimated stimulus e�ects results in T parametric maps which display

for every time�point all voxels that at this time exceed the threshold� One would expect

that these maps re�ect the temporal variation� Three activation maps taken from each

stimulation period at s� ��s� and ��s after stimulus onset clearly show �Fig� �a� a major

variability of the extent of activation between periods especially in extrastriatal areas�

The anatomical location of detected activation is fairly comparable to standard correlation

maps �Fig� �b�� Compared to the well de�ned simple photic stimulus� presentation of a
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spoken text also implies cognitive components that may furthermore �uctuate over time

depending on the story and the subject�s interest� The same nine representative maps �Fig�

�a� taken from �xed time points within the stimulation periods illustrate a remarkable

variation of activation in frontal cortex� right thalamus and secondary acoustic cortex

including posterior language areas� while the extent of activation in the primary acoustic

cortex stays rather constant� The single correlation map �Fig� �b� shows similar anatomical

activation� but time resolution proves the transient nature of thalamic activation which

does not occur in the third stimulation period�

Furthermore� it could be stated that the motion correction had no in�uence on the spatial

variability in these and �	 other tested data sets�

� Discussion

The work presented here demonstrates that dynamic linear models are an appropriate

means to model fMRI time series� They are capable of accounting accurately for signal�

drifts and other non�stationary baseline e�ects using a simple and intuitive nonparametric

approach� without requiring any prior knowledge of the underlying processes� Because the

baseline is modelled with only one parameter� also the interpretation of the estimated e�ect

is simpli�ed� It is not necessary to explain the meaning of several trend modelling cov�

ariables or basis�functions� Moreover� such a splitting does not seem to be advantageous�

The source of background signal changes in fMRI time series is not completely understood�

apart from breathing� cardiac cycles and CSF pulsations� also residual motion has to be

considered� Further� the complexity of the modelled trend is not restricted by the number

of included basis�functions� but is adjusted dynamically� Thus� it is independent of the

operators supervision and therefore provides an interesting tool for a more comprehensive

study of the nature of baseline changes�

The dynamically modelled stimulus e�ect re�ects in a very �exible way the variability

of stimulus�induced signal variations� Especially this variability is quite informative and

important for the temporal investigation of the stimulus�related processes� This model

provides the possibility to really examine the temporal evolution of activated brain areas
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and thus to analyse the spatio�temporal development of a given activation� which is im�

possible with a single parameter� Whereas the commonly used correlation and regression

techniques calculate a single activation map� i�e� they compress the time series to a single

parameter� the nonparametric approach yields a parametric map for every image� keeping

the temporal dimension of the experiment� This does not only o�er the possibility to in�

vestigate the temporal di�erences in the responses of several voxels as by the approach of

Friston et al� ���� but also to analyse the amplitudinal variation�

As shown for the language task� temporal resolution of the fMRI maps enables the detec�

tion of transient variations in the activation pattern possibly re�ecting di�erential cognition

during prolonged listening to a complex story� Thus� a potentially much �ner detection

level for speci�c answers to short stimuli can be foreseen� Further studies will be neces�

sary to de�ne the physiological limitation of temporal resolution� i�e� necessary minimum

persistence of activation in order to be detected with this approach� However� this time�

resolved approach together with carefully designed temporally varying stimuli a�ords a

better exploitation of the inherent information from fMRI time series� Another advantage

that can be expected for robustness of results in simple sensory or motor tasks� where

habituation e�ects or other subject dependant sources of variation like attention� drowsi�

ness or motor weakness may a�ect BOLD responsiveness� Systematic comparison of this

model with correlation techniques for analysis of event�related versus prolonged steady

state stimulation designs will �nally provide insight into optimal adaptation of temporal

stimulation schedules for speci�c neurobiological applications�

Up to now an important aspect of the analysis of fMRI experiments has not been taken

into account� Critical in the analysis of fMRI experiments is the treatment of spatial

dependencies between the voxels� The whole analysis was carried out pixelwise� Even

though the spatial connectivity is a highly nontrivial problem� its consideration should not

be neglected� To regard the voxels in the analysis as independent individuals is certainly

not correct� But it is questionable whether the present approaches� cluster�analysis ����

or applying the theory of Gaussian random �elds ����� can meet the requirements of this

task� Whereas cluster�analysis more or less keeps existing contours in the parametric map�

it does not account for the quantitative di�erences of the adjacent voxels and is strongly
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dependent on the choice of the threshold� Further� it cannot provide any objective con�d�

ence level� Applying some distributional assumptions and the theory of Gaussian random

�elds yield such p�values� But this imposes another problem� The necessary blurring prior

to the analysis smoothes out the contours and edges of the map� Also� it is not evident

whether activation maps ful�l the assumption of a stationary Gaussian random �eld�

Possible ways to overcome these problems might be approaches that incorporate spatial

aspects already on the stage of the time series models� This will get close to the idea of

a really spatio�temporal analysis� In other areas of research such models exist already� In

the �eld of epidemiological investigations fully Bayesian approaches for a spatio�temporal

analysis are actually made ����� Here the spatial connectivity is explicitly considered

in Markovian random �elds de�ning neighbourhood systems� The temporal and spatial

interactions enter in the model simultaneously and are equally weighted� However� the

challenging task of a transfer to fMRI data is not trivial� The huge amount of data and

some unpleasant characteristics of the data� like the small signal to noise ratio� partial

volume e�ects in the signal intensities or spatial inhomogeneities� are aspects that com�

plicate this endeavour�

Until its realisation more extensive validation studies will have to be performed to prove

that the described positive properties of the presented model have not only occurred by

chance� A comparison with other imaging techniques that have a higher temporal resolu�

tion would be very informative� First approaches in the direction of an inclusion of EEG

methods are done but have to be looked at in greater detail�
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Legends for �gures

Figure �	 Fitted Models� e�ects and residual�plots for a selected example� The upper

row shows a simple linear regression� the centre row a nonparametrically modelled baseline

and the lower row the completely nonparametric approach�

Figure �a	 Time�dependent activation maps for visual stimulation� estimated with the

nonparametric model�

Figure �b	 Cross�correlation map for visual stimulation

Figure �a	 Time�dependent activation maps for acoustic stimulation� estimated with the

nonparametric model�

Figure �b	 Cross�correlation map for acoustic stimulation
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Figure �a	 Time�dependent activation maps for visual stimulation� estimated with the

nonparametric model�
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Figure �b	 Cross�correlation map for visual stimulation
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Figure �a	 Time�dependent activation maps for acoustic stimulation� estimated with the

nonparametric model�
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Figure �b	 Cross�correlation map for acoustic stimulation
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