LUDWIG-

SQ?\/‘Q’:SLI'?ETS' INSTITUT FUR STATISTIK
A RCHE SONDERFORSCHUNGSBEREICH 386

Winkler, Hahn, Aurich:

A Brief Survey of Recent Edge-Preserving Smoothers

Sonderforschungsbereich 386, Paper 132 (1998)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


https://core.ac.uk/display/12162568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

A Brief Survey of Recent Edge-Preserving
Smoothers

Gerhard Winkler!, Klaus Hahn', and Volker Aurich?

! Tnstitute for Biomathematics and Biometrics
GSF - National Research Center for Environment and Health, Postfach 1129,
D-85758 Oberschleilheim, Germany,
{Hahn, GWinkler}@GSF.de, http://www.gsf.de/institute/ibb/gwinkler
2 Mathematical Institute, Heinrich-Heine University,
Universitatsstr. 1, D-40225 Diisseldorf, Germany,
aurich@cs.uni-duesseldorf.de,
http://www.cs.uni-duesseldorf.de/aurich/index.html

Keywords: Edge-Preserving Smoothing, Noise Reduction, Edge Detection, Non-
linear Filtering

Abstract. We introduce recent and very recent smoothing methods and
discuss them in the common framework of ‘energy functions’. Focus is on
the preservation of boundaries, spikes and canyons in presence of noise.

1 Introduction

There is rapidly increasing interest in models and methods for discontinuous
phenomena, both in the mathematical and statistical community. The focus is
on the identification of discontinuities in data perturbed by noise. This is of
particular importance in imaging, where noise has to be removed from image
data while preserving relevant basic features like jumps, spikes and boundaries.

Plainly, methods dealing for instance with boundary extraction have a long
tradition in imaging and are an own ‘applied art’. Nevertheless, recent contribu-
tions from mathematics and statistics promise new approaches and/or a deeper
analysis of statistical properties and performance.

With this slender paper we try to contribute to the communication between
the imaging and the statistical community. We shall introduce and compare a
couple of recent and very recent methods, some developed by the authors ([15],
[2], [11], [1], [7]) and some by others ([3], [5], [6], [12], [13], [14] [4]). We shall point
out their relationship to Bayesian image analysis ([16]) and robust statistics ([9],
8).

Let us fix some notation. An image or pattern will be given by a family
x = (xs)ses where S represents a (finite) set of pixels s and x, the intensity in
pixel s. Spacial context is captured by an indirected graph on S. Pixels s and
t are called neighbours if they are connected by an edge in the graph which is
indicated by s ~ t. The most common example is a finite square grid with a
four-neighbourhood.



2 A Bayesian Model

It allows consistently to combine empirical data and prior knowledge and ex-
pectations about the image. A comprehensive account is given in G. WINKLER
(1995), [16]. It became popular in imaging by the paper S. and D. GEMAN
(1984), [5]. Independently, A. BLAKE AND A. ZISSERMAN (1987), [3], suggested
a completely deterministic approach. which can naturally be interpreted as a
Bayesian model ([16]. The prior probabilities II(x) > 0, > II(x) = 1, rate
(favourable) regularity properties of the z. For each x, data y = (ys)s is ob-
served with probability (density) IT(y|x), the likelihood of y given z. Given y
the prior is modified to the posterior (distribution) II (z|y) = II(x)II(y|x) /I (y).
The most popular estimate of the ‘true image’ is the mazimum posterior mode
(MAP) z* = argmax,II(z|y). Reformulation in the Gibbsian form gives

1(z) o exp(=K (2)), I (y|x) oc exp(=D(z,y)), I (z]y) o< exp(=K (z)=D(z,y)),

(provided strict positivity) and z* = argmin, K (x) + D(z,y).

We consider now a prior for piecewise smooth images. In addition to the
intensities z; boundary variables by = £1 are introduced for neighbours s ~ t.
If bs; = 1 we say that there is an edge between s and ¢. Otherwise there is none.
Thus {s ~ t: bss = 1} is a ‘contour’. Let, for a > 0,

K(z,b)+ D(z,y) = Z/\ (5 —24)? (1 — bgy) + abst +D(z,y). (1)
————— ———
smoothing  on/off penalty data
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The terms abys; penalize boundary elements by a > 0; their sum is « times
contour length. Hence short (and thus ‘smooth’) contours are favourable. If by, =
1 then the quadratic smoothing term is switched off which — in view of the
penalty — pays off if (z; — 2¢)?> > . Small intensity differences are favourable.
Thus the prior favours smooth regions but allows for abrupt changes in intensity
where there is evidence for a boundary in the data . The MAP-estimate (z*,b*)
minimizes H(-,-) and the following are equivalent:

mlany +Zh>‘°‘ Ts — Tg,bst)

s~t

= mm D(z,y) +Z min hy o(zs — ¢, bst)

bs:=0,1
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s~t
4@(-7/‘s—$t)
= min D(z,) + Y p(@s — 1) (2)
s~t

where ¢ is the cup-function given by

¢(u) = min{(\u)*, a} (3)



(cf. Fig. 1(a)). The boundary b* can be reconstructed from z* since b%, = 1 if
and only if |zs — z¢| > § = Va/\.

In summary, explicit edges tend to suppress smoothing in presence of high
data jumps provided boundaries are well-organized. By (2), use of explicit edges
is equivalent to a robustification of the prior by score functions redescending to
zero in the sense of F.R. HAMPEL, [8]. We shall meet such ‘cup-functions’ ¢ in
all methods below. Robustified priors are studied in H.R. Kiinsch (1994), [10].

3 Local M-Smoothers

Local M-estimators with score functions like in the Bayesian prior (1) were intro-
duced recently by C.K. Cuu, I. GLAD, F. GODTLIEBSEN AND J.S. MARRON
(1998), [4]. Suppose that the intensity in a pixel s has to be updated based on the
intensities y;, t € B(s) in a window centering around s. The least mean-square
estimator is argminy Y, (y; — ). Given ii.d. data the solution y is a BLUE.
Real jumps will be oversmoothed. Hence the sum of squares is robustified replac-
ing squares by a ¢ like above. Such an estimator will treat data beyond edges
as ‘outliers’ and hence ignore them. It smoothes reasonably over plateaus with
smooth boundaries but fine detail like spikes definitely is lost.

To preserve fine detail C.K. Cau, I. GLAD, F. GODTLIEBSEN and J.S.
MARRON (1996 - 98), ([4]), introduce a local version. Consider

By Y oY, — ).

teB(s)

Starting from the current data Y; in pixel s they choose the estimate 9* as the
local minimum next to Y; (i.e. to the left of Yy if the derivative of &, at Yy is
positive and the next one to the right otherwise). As M-function the authors
choose a negative Gauflian ¢, (Fig. 1(a) given by

g(u) = exp(—u?/2), ¢s = —g(u/o)/o, o > 0. (4)

Finally, they replace hard windows B(s) by soft ones introducing another Gauflian
@, which downweights pixels far from s and, in summary, replacing (3) by

o — Y 0o (Vi = D)pr(s — 1), (5)

The authors also give an asymptotic analysis of bias and variance.

In summary, local M-smoothers show an excellent performance, preserving
edges and spikes and smoothing across canyons (Fig 3(a)). The underlying idea
is closely related to the Bayesian with robustified prior. But, in contrast to global
(MAP-)estimation local minima are adopted.

4 Nonlinear Gauflian Filters

In contrast to linear filtering now the data will enter the filter weights (similar
to moving medians or truncated means). We shall introduce nonlinear Gauflian



filters and establish a very close connection to local M-estimators. We shall need
some notions from robust statistics with which the reader perhaps is less familiar.

We continue with notation from Section 3. Given random intensities (in a
window around pixel s) a W-estimate is determined by, ([8]),

* 1 *
v —m;w(ﬁ—ﬁ)ﬁ- (6)

Because of the normalization the linear combination on the right is convex and
6) =Y w¥; =) - (Vi —9)=0=> ¥ —v)=0, (7)
where

() = u- w(w).
Setting ¢ = ¢’ and ¥ = @' one sees that (6) and (7) are implied by

9" minimizes locally & : 9 +— Z o(Y; —0). (8)

By (8) W-estimators can be considered as local M-estimators from Section 3. To
solve (8) we may adopt gradient descent on @5. A generic iteration step has the
form

Ot = O = Y (Ve =) (0k) = On + 7 D (Ve — )
t t

= dp+ e Y w(¥e = 9k) (Ve = 9p) = 1 (Yi, 0n) D w(Y; = 9p)Y;

(assume that 7, normalizes the sum of coefficients to 1). Starting the iteration
in Y9 = ys, the sequence (J;);. (hopefully) converges to the local minimum next
to ys. Stopping after the first step defines a so-called w-estimate, [8]. It updates
the intensity in s by

R i T 2w =Ygt =9 (9)

where we introduced coefficients v” downweighting intensities far away from s
(for summation over a window v” is an indicator function). Numbers o and 7
are tuning parameters. (9) is the general form of a o-filter.

According to its derivation above, starting at ys it takes a step downwards
to the next local minimum of @, but usually does not reach it. Hence it is some
value between the data and the local M-estimate. This explains that there is
boundary preserving smoothing. Part of the wiggliness is inherited from the
noisy data since the estimate moves only part of the way from a data point
to the respective local minimum. Fig. 3(c) diplays the data as points, the local
M-estimates as a connected solid line and the result of the filter inbetween.

In summary, we established a relation between M-functions in the context of
M-estimation and the weights of certain nonlinear filters.



Fig. 1. M-function ¢, derivative 1, weights w

Ezample 1. Truncated squares as M-functions correspond to truncated means as
nonlinear filters, Fig. 1. Gaufiian M-functions correspond to (negative) Gaufian
weights (Fig. 2):

p(u) = —exp (—u?/2), P(u) = ¢'(u) = uexp(—u’/2) = —up(u),

w(u) = 9/u=—p(u) = exp (~u’/2)

® (0 w

Fig. 2. The Gauflian case

If w” and v™ are GauBian then (9) defines the nonlinear Gauffilter studied e.g.
in [6] and [15].

5 Chains of Nonlinear Gauflian Filters

with varying scale-parameters in the involved kernels; they are developed and

studied in a series of papers by V. AURICH and his group (1994 — 98), [1],

[2], [11], [15]'. They perform similar to local M-smoothers but are considerably

faster. The link to the local M-smoother is given by the preceding observation.
This filter is an iterative procedure with steps given by

1 o T
0= e = V(=) & 7Y (o

where 0 > 0 and 7 > 0 are scale parameters, for instance the standard deviation
if v and w are Gauflian densities. The chain is given by

Fok:Tk o ... o FOLTLY

where 1 < k < n and the sequences (o) and (7) are decreasing and increas-
ing, respectively. The authors recommend o} = 2' "¢ and 7, = 2”~!'7. In an
additional step the final weights can be applied to the raw data Y to achieve
a reconstruction with less distinct plateaus. the algorithm is very fast and in a
large variety of applications the chain gives excellent results.

! Source code under Aurich’s website



6 Adaptive Weights Smoothing

is addressed in J. POLZEHL AND V.G. SPOKOINY (1998), [12], [13], [14]. We
restrict ourselves to the algorithm proposed in [12] and [13]. It is formally sim-
ilar to the above filter chain but computes the quantities corresponding to the
parameters o and 7 there locally from the data. That is why the authors call
the method adaptive.

In advance, some parameters are fixed: For each design point s an increasing
sequence of windows UF around s containing ngk) pixels, respectively, is chosen. It
is assumed that consistent estimates V; of the unknown variances of the variables

Y, are given. The algorithm is initialized with £ = 0 and

1 1
_ 0) — -

w2 Ve VO =—5 3V
n . n .

s jeu? s jeu?

YS(O) -

In the following steps for £ > 0 and s € S weights are computed according to

(k—1) (k—1)

Y, -,

w® (s;6) = g <—s ) >
AVs

for all points t € UF and g similar to (4). In contrast to the filters above the
weights here are not symmetric. New estimates of Y and V are computed as

5 Z w® (s;)%V.
(Sicvs w) (i) vevs

The outcome is then controlled in the following way: Let K = {0,1,2,4,...,2,...}.
For every l € IC, | < k, it is checked whether

v ® —y 0 5y

If this inequality holds for one such [ then the above estimates are rejected and
and the previous Ys(kfl) and Vs(kfl) are kept. The algorithm is stopped if either
k exceeds a given bound or if Y(#) =y (k=1),

The authors discuss the choice of parameters, which is critical, from an em-
pirical point of view. In accordance with Aurich’s choice of bandwidths the
neighbourhoods Us(k) increase exponentially, for example like n§°) o« 2*. They
may be chosen as the 2* points nearest to s in the Euclidean distance or those
in suitably increasing balls.

The control step prevents the algorithm of loosing previously detected dis-
continuities. It is necessary, since (unlike in the nonlinear filter chain) in each
step the original raw data are processed. For large k it may be time consuming.
The results of this method seem to be very good.
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Fig. 3. The same step function corrupted by Gaufiian noise with standard deviation
0.25 after local M-smoothing (0 = 0.2, 7 = 0.8) (a), the filter chain (o1 = 0.8,
71 = 0.02) (b) and the RBF network (d). (c) compares local M-estimation with the
Sigmafilter. The lower pictures show the contour lines of (s,9) — &,(¥9).(For colour
see http:.../gwinkler/Documents)



7

Local Radial-Basis-Function Networks

from K. HAHN AND TH. WASCHULZIK (1998), [7], include a generalization of the
regression of the data similar to a spline interpolation. They are local and the
networks readily apply to noisy discontinuous data. Performance on the test data
is illustrated in Fig. 3(d). The method reveals its real power in more dimensions.
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