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Abstract� We introduce recent and very recent smoothing methods and
discuss them in the common framework of �energy functions�� Focus is on
the preservation of boundaries� spikes and canyons in presence of noise�

� Introduction

There is rapidly increasing interest in models and methods for discontinuous
phenomena� both in the mathematical and statistical community� The focus is
on the identi�cation of discontinuities in data perturbed by noise� This is of
particular importance in imaging� where noise has to be removed from image
data while preserving relevant basic features like jumps� spikes and boundaries�
Plainly� methods dealing for instance with boundary extraction have a long

tradition in imaging and are an own �applied art�� Nevertheless� recent contribu�
tions from mathematics and statistics promise new approaches and�or a deeper
analysis of statistical properties and performance�
With this slender paper we try to contribute to the communication between

the imaging and the statistical community� We shall introduce and compare a
couple of recent and very recent methods� some developed by the authors 	
��
�

�
� 
��
� 
�
� 
�
� and some by others 	
�
� 
�
� 
�
� 
��
� 
��
� 
��
 
�
�� We shall point
out their relationship to Bayesian image analysis 	
��
� and robust statistics 	
�
�

�
��
Let us �x some notation� An image or pattern will be given by a family

x � 	xs�s�S where S represents a 	�nite� set of pixels s and xs the intensity in
pixel s� Spacial context is captured by an indirected graph on S� Pixels s and
t are called neighbours if they are connected by an edge in the graph which is
indicated by s � t� The most common example is a �nite square grid with a
four�neighbourhood�



� A Bayesian Model

It allows consistently to combine empirical data and prior knowledge and ex�
pectations about the image� A comprehensive account is given in G� Winkler

	������ 
��
� It became popular in imaging by the paper S� and D� Geman
	������ 
�
� Independently� A� Blake and A� Zisserman 	������ 
�
� suggested
a completely deterministic approach� which can naturally be interpreted as a
Bayesian model 	
��
� The prior probabilities �	x� � ��

P
x�	x� � �� rate

	favourable� regularity properties of the x� For each x� data y � 	ys�s is ob�
served with probability 	density� �	yjx�� the likelihood of y given x� Given y
the prior is modi�ed to the posterior �distribution� �	xjy� � �	x��	yjx���	y��
The most popular estimate of the �true image� is the maximum posterior mode
	MAP� x� � argmaxx�	xjy�� Reformulation in the Gibbsian form gives

�	x� � exp	�K	x��� �	yjx� � exp	�D	x� y��� �	xjy� � exp	�K	x��D	x� y���
	provided strict positivity� and x� � argminxK	x� �D	x� y��
We consider now a prior for piecewise smooth images� In addition to the

intensities xs boundary variables bst � �� are introduced for neighbours s � t�
If bst � � we say that there is an edge between s and t� Otherwise there is none�
Thus fs � t � bst � �g is a �contour�� Let� for � � ��

K	x� b� �D	x� y� �
X
s�t

��	xs � xt�
�� �z �

smoothing

	�� bst�� �z �
on�o�

� �bst��z�
penalty� �z �

h��

�D	x� y�� �z �
data

� 	��

The terms �bst penalize boundary elements by � � �� their sum is � times
contour length� Hence short 	and thus �smooth�� contours are favourable� If bst �
� then the quadratic smoothing term is switched o� which � in view of the
penalty � pays o� if 	xs � xt�

� � �� Small intensity di�erences are favourable�
Thus the prior favours smooth regions but allows for abrupt changes in intensity
where there is evidence for a boundary in the data � The MAP�estimate 	x�� b��
minimizes H	�� �� and the following are equivalent�

min
x�b

D	x� y� �
X
s�t

h��	xs � xt� bst�

�� min
x

D	x� y� �
X
s�t

min
bst����

h���	xs � xt� bst�

�� min
x

D	x� y� �
X
s�t

minf��	xs � xt�
�� �g� �z �

��xs�xt�

�� min
x

D	x� y� �
X
s�t

		xs � xt� 	��

where 	 is the cup�function given by

		u� � minf	�u��� �g 	��



	cf� Fig� �	a��� The boundary b� can be reconstructed from x� since b�st � � if
and only if jxs � xtj � 
 �

p
����

In summary� explicit edges tend to suppress smoothing in presence of high
data jumps provided boundaries are well�organized� By 	��� use of explicit edges
is equivalent to a robusti�cation of the prior by score functions redescending to
zero in the sense of F�R� Hampel� 
�
� We shall meet such �cup�functions� 	 in
all methods below� Robusti�ed priors are studied in H�R� K�unsch 	������ 
��
�

� Local M�Smoothers

Local M�estimators with score functions like in the Bayesian prior 	�� were intro�
duced recently by C�K� Chu� I� Glad� F� Godtliebsen and J�S� Marron

	������ 
�
� Suppose that the intensity in a pixel s has to be updated based on the
intensities yt� t 	 B	s� in a window centering around s� The least mean�square
estimator is argmin�

P
t	yt � ���� Given i�i�d� data the solution �y is a BLUE�

Real jumps will be oversmoothed� Hence the sum of squares is robusti�ed replac�
ing squares by a 	 like above� Such an estimator will treat data beyond edges
as �outliers� and hence ignore them� It smoothes reasonably over plateaus with
smooth boundaries but �ne detail like spikes de�nitely is lost�
To preserve �ne detail C�K� Chu� I� Glad� F� Godtliebsen and J�S�

Marron 	���� � ���� 	
�
�� introduce a local version� Consider

�s � � 
��
X

t�B�s�

		Yt � ���

Starting from the current data Ys in pixel s they choose the estimate �
� as the

local minimum next to Ys 	i�e� to the left of Ys if the derivative of �s at Ys is
positive and the next one to the right otherwise�� As M�function the authors
choose a negative Gau�ian 	� 	Fig� �	a� given by

g	u� � exp	�u����� 	� � �g	u�
��
� 
 � �� 	��

Finally� they replace hard windowsB	s� by soft ones introducing another Gau�ian
	� which downweights pixels far from s and� in summary� replacing 	�� by

�s � � 
��
X
t

	�	Yt � ��	� 	s� t�� 	��

The authors also give an asymptotic analysis of bias and variance�
In summary� local M�smoothers show an excellent performance� preserving

edges and spikes and smoothing across canyons 	Fig �	a��� The underlying idea
is closely related to the Bayesian with robusti�ed prior� But� in contrast to global
�MAP��estimation local minima are adopted�

� Nonlinear Gau�ian Filters

In contrast to linear �ltering now the data will enter the �lter weights 	similar
to moving medians or truncated means�� We shall introduce nonlinear Gau�ian



�lters and establish a very close connection to local M�estimators� We shall need
some notions from robust statistics with which the reader perhaps is less familiar�
We continue with notation from Section �� Given random intensities 	in a

window around pixel s� a W�estimate is determined by� 	
�
��

�� �
�P

w	Yt � ���

X
t

w	Yt � ���Yt� 	��

Because of the normalization the linear combination on the right is convex and

	����
X

w	Yt � ��� � 	Yt � ��� � ���
X

�	Yt � ��� � �� 	��

where
�	u� � u � w	u��

Setting � � 	� and � � �� one sees that 	�� and 	�� are implied by

�� minimizes locally �s � � 
��
X

		Yt � ��� 	��

By 	�� W�estimators can be considered as local M�estimators from Section �� To
solve 	�� we may adopt gradient descent on �s� A generic iteration step has the
form

�k�� � �k � �k
X
t

		Yt � ���	�k� � �k � �k
X
t

�	Yt � �k�

� �k � �k
X
t

w	Yt � �k�	Yt � �k� � �k	Yi� �k�
X

w	Yi � �k�Yi

	assume that �k normalizes the sum of coe cients to ��� Starting the iteration
in �� � ys� the sequence 	�k�k 	hopefully� converges to the local minimum next
to ys� Stopping after the �rst step de�nes a so�called w�estimate� 
�
� It updates
the intensity in s by

�� � 	FY �s � �P
t w

�	Yt � Ys�v� 	t� s�

X
t

w�	Yt � Ys�v
� 	t� s�Yt 	��

where we introduced coe cients v� downweighting intensities far away from s
	for summation over a window v� is an indicator function�� Numbers 
 and �
are tuning parameters� 	�� is the general form of a 
��lter�
According to its derivation above� starting at ys it takes a step downwards

to the next local minimum of �s but usually does not reach it� Hence it is some
value between the data and the local M�estimate� This explains that there is
boundary preserving smoothing� Part of the wiggliness is inherited from the
noisy data since the estimate moves only part of the way from a data point
to the respective local minimum� Fig� �	c� diplays the data as points� the local
M�estimates as a connected solid line and the result of the �lter inbetween�
In summary� we established a relation between M�functions in the context of

M�estimation and the weights of certain nonlinear �lters�



� ��
�
�
�
�
�

w

Fig� �� M�function �� derivative �� weights w

Example 	� Truncated squares as M�functions correspond to truncated means as
nonlinear �lters� Fig� �� Gau�ian M�functions correspond to 	negative� Gau�ian
weights 	Fig� ���

		u� � � exp ��u���� � �	u� � 	�	u� � u exp	�u���� � �u		u��
w	u� � ��u � �		u� � exp ��u����

� � w

Fig� �� The Gau
ian case

If w� and v� are Gau�ian then 	�� de�nes the nonlinear Gau
�lter studied e�g�
in 
�
 and 
��
�

� Chains of Nonlinear Gau�ian Filters

with varying scale�parameters in the involved kernels� they are developed and
studied in a series of papers by V� Aurich and his group 	���� � ���� 
�
�

�
� 
��
� 
��
�� They perform similar to local M�smoothers but are considerably
faster� The link to the local M�smoother is given by the preceding observation�
This �lter is an iterative procedure with steps given by

	FY �s � �P
t w

�	Yt � Ys�v� 	t� s�

X
t

w�	Yt � Ys�v
� 	t� s�Yt

where 
 � � and � � � are scale parameters� for instance the standard deviation
if v and w are Gau�ian densities� The chain is given by

F�k��k � � � � � F�����Y

where � � k 
 n and the sequences 	
k� and 	�k� are decreasing and increas�
ing� respectively� The authors recommend 
k � �

��n
 and �k � �
n��� � In an

additional step the �nal weights can be applied to the raw data Y to achieve
a reconstruction with less distinct plateaus� the algorithm is very fast and in a
large variety of applications the chain gives excellent results�

� Source code under Aurich�s website



� Adaptive Weights Smoothing

is addressed in J� Polzehl and V�G� Spokoiny 	������ 
��
� 
��
� 
��
� We
restrict ourselves to the algorithm proposed in 
��
 and 
��
� It is formally sim�
ilar to the above �lter chain but computes the quantities corresponding to the
parameters 
 and � there locally from the data� That is why the authors call
the method adaptive�
In advance� some parameters are �xed� For each design point s an increasing

sequence of windows Uk
s around s containing n

�k�
s pixels� respectively� is chosen� It

is assumed that consistent estimates Vs of the unknown variances of the variables
Ys are given� The algorithm is initialized with k � � and

Y ���
s �

�

n
���
s

X
j�U�

s

Yt� V ��� �
�

n���
�
s

X
j�U�

s

Vs�

In the following steps for k � � and s 	 S weights are computed according to

w�k�	s� t� � g

�
Y
�k���
s � Y

�k���
t

�V
�k���
s

�

for all points t 	 Uk
s and g similar to 	��� In contrast to the �lters above the

weights here are not symmetric� New estimates of Y and V are computed as

Y �k�
s �

�P
t�Uk

s

w�k�	s� t�

X
t�Uk

s

w�k�	s� t�Yt�

V �k�
s �

�	P
t�Uk

s

w�k�	s� t�

� X

t�Uk
s

w�k�	s� t��Vs�

The outcome is then controlled in the following way� LetK � f�� �� �� �� � � � � �l� � � �g�
For every l 	 K� l � k� it is checked whether

jY �k�
s � Y �l�s j � �

q
V
�l�
s �

If this inequality holds for one such l then the above estimates are rejected and

and the previous Y
�k���
s and V

�k���
s are kept� The algorithm is stopped if either

k exceeds a given bound or if Y �k� � Y �k����
The authors discuss the choice of parameters� which is critical� from an em�

pirical point of view� In accordance with Aurich�s choice of bandwidths the

neighbourhoods U
�k�
s increase exponentially� for example like n

���
s � �k� They

may be chosen as the �k points nearest to s in the Euclidean distance or those
in suitably increasing balls�
The control step prevents the algorithm of loosing previously detected dis�

continuities� It is necessary� since 	unlike in the nonlinear �lter chain� in each
step the original raw data are processed� For large k it may be time consuming�
The results of this method seem to be very good�



�a� �b�

�c� �d�

Fig� �� The same step function corrupted by Gau
ian noise with standard deviation
���� after local M�smoothing �� � ���� � � ���� �a�� the �lter chain ��� � ����
�� � ����� �b� and the RBF network �d�� �c� compares local M�estimation with the
Sigma�lter� The lower pictures show the contour lines of �s� �� �� �s�����For colour
see http�� � ��gwinkler�Documents�



	 Local Radial�Basis�Function Networks

fromK� Hahn and Th� Waschulzik 	������ 
�
� include a generalization of the
regression of the data similar to a spline interpolation� They are local and the
networks readily apply to noisy discontinuous data� Performance on the test data
is illustrated in Fig� �	d�� The method reveals its real power in more dimensions�
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