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Abstract

The paper deals with sets of distributions which are given by moment
conditions for the distributions and convex constraints on derivatives of their
c.d.fs. A general albeit simple method for the study of their extremal struc-
ture, extremal decomposition and topological or measure theoretical proper-
ties is developed. Its power is demonstrated by the application to bell-shaped
distributions. Extreme points of their moment sets are characterized com-
pletely (thus filling a gap in the previous theory) and inequalities of Tchebysh-
eff type are derived by means of general integral representation theorems.

Some key words: Moment sets, Tschebysheff inequalities, extremal bell-shaped
distributions

1 Introduction

This paper is devoted to the study of sets of distributions on the real line defined
by both, moment constraints and convex constraints on derivatives (in the distri-
butional sense). Of particular interest are their topological and measure theoretical
properties and the characterization of extremal elements. Integral representations
u(B) = [v(B)dp(v), where p is a probability measure on the set of (known) ex-
treme points, are of interest, as well, since combined with the characterization of
extreme points they immediately give sharp inequalities of Tchebysheff type.

Important examples are moment sets of distributions which are bell-shaped to
some order with fixed turning points, for example unimodal with fixed mode. In
the context of finite mixture distributions ([14]), there is increasing interest in dis-
tributions with more than one interval of modality, as well. Further examples are
distributions which are arbitrary on some interval (—oo, z;] with n'® concave or con-
vex derivatives on the rest for even or odd n, respectively, or of distributions where
the total variation of the n'" derivative is bounded by some prescribed constant
([10], [6], [15], [8], [5])-

In the first Part of this paper, the linear map from finite signed measures to their
n™ derivatives is examined since in the present context the analysis of derivatives
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is much simpler than that of the original distributions. The derivatives are char-
acterized as finite signed measures fulfilling natural moment conditions, the inverse
map is computed and moment conditions on the distributions are transformed into
additional moment conditions on the derivatives. Plainly, everything is based on
integration by parts, but one has to proceed cautiously, since Fubini’s Theorem is
applied to the unbounded Lebesgue measure and signed measures.

In a large class of problems, the derivatives can be transformed into probability
measures by a flip of the negative part followed by a suitable normalization. This
amounts to the construction of a density s such that sy is a probability measure
for all derivatives p in question. If such a construction works then moment sets of
derivatives are affinely isomorphic to moment sets in the space of all distributions
which are much easier to handle than the original ones. Such transformations are
studied in the second Part.

The sketched paradigm is illustrated in Part 3 by way of the example of bell-
shaped distributions with fixed turning points. The extremal ones are explicitely
characterized in the cases of presence or absence of moment conditions. It is shown
that the respective moment sets are even (weakly) homeomorphic and hence well-
known integral representation results for general moment sets can be carried over to
the case of bell-shaped distributions. These in turn yield Tchebysheff type inequal-
ities.

Results of this type seem to have appeared first in the pioneering paper [10] by
MULHOLLAND and ROGERS (1956) although some of the ideas can be found in ear-
lier work, for example [4] from 1951. An integral representation theorem for moment
sets of bell-shaped measures is proved in [10] by ad hoc methods and a character-
ization of extremal elements is formulated but not verified (cf. Remark 4.17; this
seems to have been overlooked by various authors quoting this paper, cf. [5], [9], [6],
[1]). The program is carried out for the much simpler set of distributions which have
convex or concave derivatives on the right of some point x; and which are arbitrary
elsewhere in [6]. This set can be transferred to the set of (nearly) all distributions
on the real line, the extreme points of which are the point measures. Therefore the
inverse of the corresponding transformation is even induced by a Markov kernel,
which allows an elegant and simple treatment. KEMPERMAN announces an applica-
tion of his method to bell-shaped distributions in [6] but this seems never to have
appeared. The case of bell-shaped distributions is much more intricate as will be
seen below, basically since there may be several exceptional points and not only one.

We plan to work out some more of the examples mentioned above in future work,
in the first place distributions with derivatives of uniformly bounded variation.

2 Derivatives and their Moments

In this section, derivatives of distributions are defined and - if they exist - charac-
terized by moment conditions. It is more convenient to work with functions than
with measures in this context and we shall do so.
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2.1 Derivatives of Distributions

Let f be a real function on the real line R. The variation of f is denoted by [ |df| and
f is of finite variation if [ |df| < co. Since only the measure defined by a function
will be of interest, the following definition is reasonable: A real function F' on R is
differentiable (in the wide sense) with (generalized) derivative f = F' if there is a
right-continuous real function f € L'(dz) of finite variation such that

F(z) = / f(y) dy for every x € R.
Note that F' automatically has finite variation [ |dF| = [|f(y)|dy (cf. [3], Thm.
I11.2.20, p. 114) and is continuous if F” exists. Set

flat) = lim f(y), fz=)= lim_ f(y)
and write f(£oo) for the limits at +o00 (if the respective limits exist). Let further
V, denote the space of right-continuous real functions on R of finite variation such
that f(—oo) = 0 and M the space of finite signed measures on the Borel-o-field B
of the real line. An element of M will briefly be called a measure in the sequel.

Remark 2.1 The spaces V, and M are linearly isomorphic, the isomorphism and
its inverse induced by

v((—o0,z]) = f(x),x € R.

Plainly, each function f of finite variation induces some v € M; by v((z,y]) =
f(y+) — f(z+). Moreover, it has an at most countable set of jumps and hence the
right-continuous reqularization f(-+) coincides with f Lebesque almost everywhere.
Hence we may work with the regularization from the beginning and require f to be
right-continuous. This requirement (and that f vanishes at —oco) forces the map
f = v to be one-to-one.

Assume now that f = F' exists and denote the signed measures corresponding to
F and f by p and v, respectively. Let further ¢ € C°(R) be a test function. Then
integration by parts yields

—/d@z—/dﬁf—/ﬂ@ﬂ@wz—/fW=/¢W=/¢W

Hence the distributional derivative of a measure is again a measure in our setting.

For most parts of this section, right-continuity of derivatives is not essential
except in Section 2.4. Therefore the formulae will be given in a form which is
correct for functions of finite variation not necessarily right-continuous, as well.
This requires some extra ‘+’-signs but allows notational symmetry in right- and
left-hand limits.

2.2 Integration by Parts

A technical condition is formulated first.
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Definition 2.2 A real function f fulfills condition (R) if there is R > 0 such that
[ is monotone on the intervals (—oo, —R] and [R,0), respectively. Let f € R if it
is right-continuous, has finite variation, fulfills (R) and f(z) — 0 as |z| — oo.

The following integration by parts formula is convenient in the present context.

Theorem 2.3 Let f € R. Then for every k > 1,

/0 o df (x :—k/ Ay /Oooxkdf(x) :—k/oooxk_lf(x) d.

where in each equation both sides may attain the values +o0o. In particular,

[t di@) ==k [+ f()d (1)

with the usual convention that that either both integrals exist — possibly with values
+oo — or both sides do not exist.

The following simple observation is useful.
Lemma 2.4 If f — 0 for |x| — oo then f(z+), f(x—) — 0 if |z| — oc.

Proof (of Theorem 2.3). The measure df either is positive or it is negative on
[R,00). Since Lebesgue measure dx is positive and o-finite on [0, 00) the product
measure dydf (z) is defined on the rectangle [0, R)? as a finite signed measure, and
on [0,00) x [R, 00) where it is positive or negative o-finite. Letting I denote one of
these intervals Fubini’s theorem gives

// 100y (y)y* " dy df () //1 y) df (x) y*~" dy.

For I = [0, R) both sides are finite; if I = [R, co) then both sides are finite or equal
to oo depending on the sign of the product measure. Hence in view of f(o0) =0
(Lemma 2.4),

|k dr @y =k [T [Ty dydr @) =k [ [T 1m0t dydr @)
= k/O /0 Ly00)(2) d (w)y’“‘ldyz—k/o y* ' f(y) dy.

This proves the first equation. The second one is verified by the same computation.
If one of the both sides of the third equation exists, then the expressions in the first
and second equation are finite and hence the third identity holds. This completes
the proof.

Remark 2.5 The only task of requirement (R) is to ensure existence of a product
measure and applicability of Fubini’s theorem. The condition f(z) — 0, |z| — oo,
removes additive constants in the integration by parts formula.

Lemma 2.6 Let f € R and suppose y* € L*(df (y)). Then

¥ flat), 2" f(z—) — 0 as |z] = oc.
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Proof. Since y* € L'(df(y)) one can apply familiar integration by parts on compact
intervals and let the interval boundaries tend to infinity. In particular,

[ vt ar) =@ = [T s dyt =) —k [Ty ) a.

By Theorem 2.3 the integrals coincide in the limit 2 — co. Hence lim,_,o 2* f (z+)
exists and even vanishes. Integration over [z,0) gives z*f(x—) — 0 for x — oo.
This implies the result.

2.3 Moments of Derivatives

Two simple observations will be useful. The terms ‘in-" or ‘decreasing’ will be used
in the sense ‘nonde-" and ‘nonincreasing’, respectively.

Lemma 2.7 If f = F' then
f(z) — 0, |z| — oc.

Proof. Every real function f on R of finite variation is bounded and there are real
numbers ¢; and ¢, such that

f(z) — ¢, © - —o0 and f(x) — ¢, x — 0.

In fact, there are bounded increasing functions f* and f~ such that f = f* — f~
(choose for instance the minimal functions

pr=s ([ @), =5 ([ - @),

called the upper and lower variation ([3], Lemma II1.6.21, p. 154). Since [ f(z)dx
exists, the left and right integrals [°__ f(2)dx and [° f(x)dx are finite. This can
hold only if ¢, = 0 = ¢,.

In the sequel, we are concerned with higher derivatives. Define F() = F' and,
recursively, F(™ = (F (”_1))I for n > 1 provided the derivatives exist. If F(
exists it is called the n'® derivative of F and F is called n times differentiable. For
convenience of notation set F(© = F.

Lemma 2.8 The following holds:
(a) If f = F' fulfills (R) then F fulfills (R) as well.
(b) If F™ fulfills (R) then F*) € R for every k =1,...,n.

Proof. If f, for instance, decreases on, say, [R, c0) then Lemma 2.7 implies f > 0
on [R,0). Hence for R <z <y < oo,

Ply) = Fla)= [ f(z) dz 2 0

and F' increases. The other three cases are treated similarly. The rest follows from
this and Lemma 2.7
The first main result reads:
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Theorem 2. 9 Let n > 1. If F is n times differentiable and F™ fulfills condition
(R) then F™ € R, 2 € L*(dF™ (x)) for k=0,...,n and

/xk dF™(2) =0 for k=0,...,n—1, (=1" /x" dF™(z) = lim F(z). (2)

n! T—00

Remark 2.10 Since lim,_, , F(x) = 0 the total mass [ F'(x)dx of R is given by
the second equality in (2).

Proof. Let n = 1. In view of Lemma 2.8, Theorem 2.3

/ dF (z) = / FO(2) dz = — / +dFO(z)

and hence z € L'(dF™"(x)). By induction, 2" € L*(dF™(z)) for every n > 1. This
in turn implies 2* € L'(dF™(x)) foralln > 1 and k= 0,...,n.

For n = 1 and k = 0 the first integral in (2) boiles down to [ dF"(x).
This integral is finite since F(!) has finite variation. Hence it may be written as
limg 00 FV (2+) — F(2—) which vanishes by Lemma 2.8 (b). Again induction
using Theorem 2.3 yields [ 2"~ ' dF(™(z) = 0 for every n > 1. The first equation in
(2) follows from the just proved result and

/xk dF™ (1) = /xk d (F(n—k_l))(k-H) .

Similarly, starting with n =1 and k£ =1,
lim F(z) — lim F(z / dF (x / 2 dFO (),
T—>00 T——00

the second identity is verified by induction (note that lim, , ., F(z) = 0).

In the sequel, the symbol g(x)|? will denote g(b+) — g(b—) if (partial) integration
is carried out over a compact interval [a, b], or g(b—) — g(a+) for an open interval
(a,b) and so on. Let us agree that [* denotes integration over [a,b], [ over (a,b)
etc. The following result establishes the inverse of the map F +— F™.

Theorem 2.11 Suppose that F' is n times differentiable for n > 1 and F™ fulfills
(R). Then

1 T
Fa)= 5 [ @) dFO), k=1,

Proof. By Theorem 2.9 the integrals [(y — x)*dF®)(y), 0 < k < n, exist. For
k = 1 the desired identity holds since F!) € R by Lemma 2.8 and hence Lemma
2.6 implies

~ [ w-a)dFO) =~ -2 O+ [ FO@)dy-) = Fa).

Let now 2 < k < n and assume that the identity holds for £ — 1. Then by the same

arguments
[ w=arar®) = -0 O - [ FOG)dy - 2"
_ _k/ 2)k= ldFUc D(y) = F(z).

—o0
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This proves the result.

A final result allows to transform moments of functions to moments of their
derivatives. The essential range essr(G) of a function G is the set of those points
x € R such that there is (i) y < x such that G(y) # G(z+) and there is (ii) y > «
such that G(y) # G(z—).

Remark 2.12 (a) Plainly, the essential range is an interval where an endpoint be-
longs to the range if and only if G has a jump there.

(b) If G = F™ and the interiour of esst(G) is (a,b) then esst(F) = (a,b). This fol-
lows from the observations that essr(F') is open since F' is continuous, F' is constant
on each open interval on which F™ =0 and F™ vanishes on any open interval on
which F' s constant.

Theorem 2.13 Suppose that F is n times differentiable and F™ fulfills (R). For
each g € L'(dF(x)) the function

g*(z) = (_1)n! /Owg(y)(w— )"ty (3)

(n—1)

is defined for every x in the essential range of F™ and

9@ ar@) = [ g'(@) dF (). (4)
If g is locally integrable w.r.t. Lebesgue measure then g* is defined everywhere.

Proof. By the same justification as for Theorem 2.3 Fubini’s theorem applies.
For x > 0 one computes

(="
(n—1)!

= %/0 9(v) /yoo(w—y)”ldF(”)(w)dy

/Ooo /Ow 9(y)(x — y)" " dy dF ™ (x)

_1)(r-1) reo y
= S [T [ @t aE e dy

= [ oGy [ @y

(n

o0

= /Ooog(y)F(l)(y)dyZ/O 9(z) dF (z)

where the integrand g¢*(z) in the first line exists for dF™(z) almost every z. The
third identity holds since the integrals w.r.t. dF™(z) of polynomials of degree less
than n vanish. Addition of the corresponding identity on (—oc, 0) gives the desired
formula for F™ almost all z.

If g*(z) exists for one particular value z then it exists for each x inbetween 0 and
z. Hence the set D(g*) where g*(z) exists is an interval containing 0. If now the
essential range of F(™ is an interval with interiour (a,b), where b > 0 then (¢, b] is
not a dF ™ (x)-nullset for each ¢ < b and there is some = € (c,b] such that g*(z) is
defined. This shows that g*(z) is defined on [0, b) and even on (0, b] if F™ jumps at
b. Now either @ > 0 — and then we are done — or a < 0 and then the same arguments
prove the result. Therefore the identity holds on essr(F™). The rest is clear.
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Example 2.14 Of particular interest are the powers g(x) = x”, for natural numbers
r > 0. For them one computes

r!

(T n n)!xr—l—n (5)

g*(x) = (=1)"

(which is defined everywhere). The proof is straightforward. Denote g* by g™ to

indicate the order of differentiability. Then ¢\V(z) = —2"*'/(r + 1) and (usual)

integration by parts gives the recursion g = —g,ﬁ;l) which proves the identity.

In particular, even if g is bounded then g* in general is not bounded since 1* =

(—=1)"z"/n!.

2.4 The Inverse

Next higher derivatives of differentiable functions are characterized. This amounts
to the inverse of Theorem 2.9.

Theorem 2.15 Let G € R and suppose that for n > 1, 2™ € L'(dG(x)) and
/xde(a:) =0, k=0,...,n— 1.

Then G is the n'" derivative of some F € V.

Remark 2.16 Let G be of finite variation only. The moment condition for k = 0
amounts to lim, , . G(x—) = lim, ,oo G(x+) (and the existence of these limits).
The requirement G € R implies the normalization lim,_ ., G(x+) = 0.

Proof. Let 1 < k < n. By assumption and Theorem 2.3, integration by parts
applies and gives

/(y—xﬁdG() —(a - 2)*G(a— —k/ 251G (y) dy
for every a € R. One may let a tend to —oo which in view of Lemma 2.6 results in

[ =2y dGw) =~k [ (y—2" G ay.

Hence the integrals

Pbmﬂ:—/

— 00

x

exist. Moreover

-1
/:1:’“’1 dF, 1(z) = /wk’lG(x) de = T/xk dG(x)
for k =0,...,n which implies

(-
(n—1)!

/w"’l dF, 1(z) = (=1)" /m" dG(x), /xk dF, 1(z) =0,k=0,...,n—2.
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Finally,
Fo_1(c0) = /G(x) dxz—/xdG(m)zO if n > 2,
Fo_1(c0) = /G(x) dr = —/xdG(m) ifn=1.

In summary, F,_; € R with the correct moment conditions and derivative G if
n > 2and G = F' if n = 1 where F' = F;,. Hence (backward) induction works and
the theorem is proved.

Here is a summary of the previously proved results. Let D, denote the set of
those functions F' € V, which are n-times differentiable such that F™ fulfills (R).
Let further D" denote the set of those G € R which fulfill the moment conditions

2" € LNdG(x)), /a:de(x)zo, k=0,...,n— 1. (6)
Theorem 2.17 The map
®:D, —V,, Fr— F™.

18 a linear isomorphism from D,, onto D". Its inverse is given by

o 1.:D" —D, Gr— F=3dQ), F(z) = = /I (x —y)"dG(y)

TL' —00

and, moreover,

F(OO) _ (_1)n /xn dF™

n!

Proof. This is a summary of Theorems 2.9, 2.15, 2.11 and formula (2).

3 Switching Measures

The characterization of extreme points of a convex set frequently can be reduced to
the construction of an affine bijection onto another convex set with known extreme
points. The simple method to be introduced below allows to transform certain
functions of finite variation to probability measures on some Borel sets S of R.
This is convenient since the extremal probability measures on S just are the Dirac
measures €,(A) = 14(z), x € S, where A runs through the Borel sets B(S) of S.

Notation gets simpler if one switches from functions f of finite variation to the
associated signed measures p and we shall do so.

3.1 Convex Sets and Extreme Points

The main instrument for the characterization of extreme points will be the purely
geometric Theorem 3.1 proved in [19]. Some definitions will be needed. A subset K
of a linear space L is convex if it contains with any two points x and y the (compact)
line-segment [x,y] = {z € L : z = ax+ (1 —a)y,0 < a < 1} (other types of intervals
are also defined like on the real line). Suppose now that K is convex. An element
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x € K is an extreme point of K if it is not in the interior (x,y) of a line-segment in
K; the set of extreme points is denoted by exK. K is said to be linearly compact if
its intersection with a straight line in L either is empty or a line-segment compact
in the (order-) topology of the line. Finally, K is a (Choquet-) simplex if the cone
C={a-(z,1) ¢ LxR:a>0,z € K} is a lattice cone in its own order (i.e. the
linear space C' — C' is a vector lattice with nonnegative cone taken to be C, cf. [2],
§28).

Theorem 3.1 Suppose that K is a convexr and linearly compact subset of a real
linear space. Suppose further that A : K — R" is an affine map and W is a convex
subset of A[K|. Set H= A"Y(W). Then

(a) H is a convex subset of K and

exH C {xEH:x:Zaiei, e; € exK, ai>0,2ai:1,
i=1 i=1
{A(ey),..., Alen)} affinely independent, 1 < m <n+1}.

(b) If in addition K is a simplex and W is a singleton then equality of sets holds in

(a).

Linear compactness is inherited by special subsets: a convex subset F' of K is a
face if (z,y) N F # () for z,y € K implies z,y € F.

Lemma 3.2 Let F be a face of the convex set K . Then
(a) exF' = F NexK.

(b) If K is linearly compact then F' is linearly compact.
(c) If K is a simplex then F' is a simplex.

Proof. If x € F is contained in an open line-segment [ of K then I C F and x
is not extremal in F'. Hence each extreme point of F' is extremal in K. The rest
of (a) is obvious. To verify (b) denote the intersections of F' and K with a fixed
line by I and J, respectively. If I is empty or a singleton there is nothing to prove.
Otherwise there is an inner point in I C J. Since F'is a face, [ = J and [ is
compact since K is linearly compact. For the last part, choose x € F' and assume
that (z,1) dominates a(y, 1), y € K, a > 0, in the own order of C' (defined above).
This means that there are z € K, § > 0, such that x* = ay + $z. Let h denote the
linear functional on the linear span of C' taking the constant value 1 on K x {1}.
Then o + 3 = h((z,1)) = 1 and = is a convex combination of y and z. Since F is
a face, y,z € F and, in particular, a(y,1) is an element of the cone generated by
F x {1}. Hence this cone inherits the lattice property from C' (cf. [2]) and F is a
simplex.

Lemma 3.3 The image of a linearly compact set under an affine isomorphism s
linearly compact.

Proof. Let K be linearly compact. An affine isomorphism on K induces an affine
isomorphism T between the affine spaces aff K and aff Y (K) generated by K and
Y (K), respectively, which restricted to a line is a homeomorphism onto the image
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of the line (in the line-topologies). Hence the intersection of a line L in affY(K)
with T(K) is compact if and only if the intersection of T~1(L) with K is compact.
The latter holds by assumption and the assertion is proved.

Let P(Q2) denote the set of probability measures on a measurable space (2, F)
and D(Q) the set of Dirac measures; for £ C P(f2) and a family G of F — B-
measurable functions set

KS={pek:Gc L)

Lemma 3.4 PY(Q) is a face in P(Q). In particular, it is linearly compact and a
simplez. If, moreover, exP(2) = D(Q) then exP9(Q) = D(Q).

Proof. PY9(Q) is a face since p € (p1, p2) implies p; < ap for some o > 0 and
hence [ |f|dp; < a [|f|dp < co. Linear compactness follows from Lemma 3.2 since
Ry -P(Q) is a lattice-cone in its own order and hence P(2) is linearly compact ([7],
condition 2° and p. 369). By the same lemma, P9 ((2) inherits the simplex property
from P (). Plainly, e, € P9(Q) for every x € Q and hence D(Q2) C exPY(2). The

reverse inclusion follows from Lemma 3.2

Remark 3.5 On arbitrary measurable spaces the extreme probability measures are
those taking values 0 and 1 only. Fortunately, in most practical cases they are the
Dirac-measures (cf. [19], Examples 2.1). This holds in particular for subsets Q0 of
Fuclidean spaces endowed with the Borel-sigma field F = B(f2).

3.2 Switch Functions

A Borel function s will be called a switch function for p € M with support S € B
if s € L'(u), R\S is a p-nullset, s # 0 on S and sy € P(S) where sy is given by

sp(A) = /Asdu, A e B(S).

Given s and S let g be the collection of all © € M for which s is a switch
function. Finally, set ¢ = 1/s on S. We shall identify measures on S and their
canonical extensions to R if convenient.

Lemma 3.6 Let G be a family of Borel functions.
(a) Ks and KS are conver. The map

T:Kg — PU(S), pr—s sp
1 an affine bijection with inverse
T P(S) — Ks, pr— tp.

Moreover, T(K$) = P9 (S).
(b) The extreme points of both, Ks and K%, are the point measures t(z)e,, x € S,
and both sets are linearly compact and simplices.



G. Winkler 12

Proof. Convexity of sets and affinity of T are clear. Since s does not vanish on S
and R\S is a null-set for all u € Kg, the trivial identities

u:/t-sdu, p:/s-tdp

for p € Kg and p € P (S) show that T is bijective. A measurable function A is
p-integrable if and only if the restriction of ¢ - h to S is spu-integrable. This proves
the equality of sets in (a). The sets P1}(S) and P{HY9(S) are linearly compact and
simplices by Lemma 3.4 and hence Kg and K¢ as well by Lemma 3.3. Finally, the
extreme points of P (S) and PIY9(S) are the Dirac measures ¢, on S by Lemma
3.4 and Remark 3.5. These are transformed by YT~! to t(z)e,, v € S.

Remark 3.7 (a) In general, the construction does not yield an affine isomorphism
onto P(S) since there may exist p € P(S) for which t is not integrable.

(b) Without the condition that S is a nullset, the map Y may fail to be one-to-one;
cf. Example 4.11.

4 Bell-Shaped Distributions: Extreme Points

Important special unimodal distributions are the bell-shaped ones. They will be
introduced below and extreme points of their moment sets will be characterized.
The concept in [10] is embedded into the present setting.

4.1 Definition and Basic Properties

Let us introduce a notion of bell-shaped distributions.

Definition 4.1 A function F € D, is bell-shaped to the n'™ order with turning-
points 1 < --- < x, if F™ is continuous at 1, ...,x, and (—1)’"F(") imcreases on
(TryTpy1), 7 =0,1,...,n, where 1o = —00 and Ty 41 = 00.

Note that bell-shaped functions are bounded since they are of finite variation. Let
us give some simple examples.

Example 4.2 We are particularly interested in cumulative distribution functions
(c.d.f.) F. C.d.f. of uniform distributions on intervals are bell-shaped to the first
order but not to the second one; those with a triangular density are bell-shaped to the
second order but not to the third one; etc. Let d be the well-known Cantor function on
[0,1] (“devil’s staircase’) which is continuous, increasing from d(0) =0 to d(1) =1
and differentiable outside Cantor’s discontinuum with vanishing derivative (cf. [12],
p.145). Let f =1—d on (0,1], f(x) =d(x+1) on [-1,0] and f(z) =0 off [-1,1].
This function f is the probability density of a c.d.f. F which is bell-shaped to the
first but not to the second order.

Normal c.d.f. F are bell-shaped to any order. This holds since F1"t = h . H,_,
where h does not vanish anywhere and H, is the n™™ Hermite polynomial (which
has precisely n real roots). All normal distributions with mean x; are bell-shaped to
the first order with turning point x1, there is precisely one of the second order with
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turning points x1, Ty (having mean m = (x1+ x2)/2 and standard deviation xo —m)
and at most one of order n > 3 with prescribed turning points xy,...,Ty,.

Let us agree that a (possibly higher) derivative f of a bell-shaped function

changes direction precisely r times if there are real numbers 2; < --- < 2z, such
that (—1)*f increases and is not constant in (zy,xj.1), where zg = —00, 2,11 = 00
and 0 < k <.

Lemma 4.3 Suppose that F is bell-shaped to the n'™ order and is not identically
constant. Then:

(a) F™ changes direction precisely n times.

(b) F is bell-shaped to each order 1 < k < n.

(c) F(o0) is finite and strictly positive; the measure p associated to F is positive
with p(R) = F(c0).

All arguments in the following proof appear in a similar form in the proofs of Lemma
4 and its Corollary in [10].

Proof. Let n = 1. Since f = F() vanishes at +00 and does not vanish
identically bell-shapedness implies that f is strictly positive somewhere. Moreover,
continuity at x; implies f(z;) > 0 and f(z) > 0 for some point z < z; and some
point > x;. Hence f increases on (—oo,z;) and decreases on (z,00) and is not
constant on any of these intervals. This shows that f changes direction precisely
once. Let now n > 2. Suppose that f = F(™ changes direction precisely 7 times.
Plainly, 7 < n and f changes sign at most r — 1 times. Hence F(™~Y changes
direction at most r — 1 times. Similarly, F(!) changes direction at most r —n + 1
times and at least once. Hence r < n and r —n—+1 > 1 and thus » = n. This proves
(a). Since derivatives of order k < n are continuous part (b) holds as well. Finally,
FW is positive, nonconstant and fulfills F(co) = [ f(z) dz which implies (c).

Remark 4.4 Since (—1)"F™ increases on [x,,z,.1) and is right-continuous, the
function (—1)" F=Y is convex on this interval. Since F is bell-shaped to the order
one F is convex on some interval (—oo,&) and concave on (§,00). Hence it is
unimodal with mode & (for example in the sense of [4]).

4.2 Bell-Shaped Distributions Extremal under Constraints

We are going to characterize the extreme points of sets H = H(x1,...,z,) of c.d.f.
which are bell-shaped to the n'" order with prescribed turning points z; < -+ - < @,
and of subsets defined by restrictions on their moments. For F' € H let y = W(F™)
be the measure associated to F™, J = W o ®(H) and

(1) = [T~ 2), 1) = —— S =R\{ ) )

s(x) =—||(z; —x), t(z)=—, S = Tiyevey Tyt

=1 s(x)
Lemma 4.5 The function s is a common switch function for all p € J. More
precisely,

/CSDJZ{MGICg:/fdMZO,fGQ}, where G = {z* : 0 <k <n—1}.
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Proof. Choose F' € H and let u = W(F™). Since F™ is continuous at each
the turning points form a p-nullset. By Theorem 2.17, F() € D™ with n'® moment
equal to (—1)"n!. Hence s € L'(u) and [sdu = 1. By definition, the measures
(—1)"p are positive on (z,,x,,1) and s has sign (—1)" on this interval. Since s does
not vanish on S we conclude that s is a switch function for p. This proves J C Kg
and the validity of the moment equalities.

To verify the remaining inclusion, choose p € Kg satisfying the moment condi-
tions and let G = WU~!(y). Plainly 2" € L'(u) and hence G = F™ for some F € V),
by Theorem 2.17. G is continuous at all x; since s(z;) = 0. By the form of s and
since sy is a positive measure (—1)"G increases on (x,,%,41). In summary, F is
bell-shaped to the n'® order. It is even a c.d.f. since by Lemma 4.3 the moment
conditions and [sdu = 1 imply F(co) = ((—=1)"/n!) [ 2" dp = 1.

Things can be put together now to characterize extreme points of moment sets
in H. Given H C My, a collection G of Borel-measurable functions and a subset D
of RY a generalized moment set is defined by

H(G,D) = {u €H:GC L) </gdu>geg € D}.

If G = 0 then H(G,D) = H. In most applications G is finite and D a single-
ton representing the prescribed values of moments or — more generally - a product
[Tyeg(—00,ay]. If G = {g1,...,9,} and D = {(dy,...d,)} we shall write H(G,d) for
H(G, D). The case G = () is included setting p = 0 and H((),d) = H.

Theorem 4.6 Let G = {¢1,...9p} and d = (di,...,d,). Precisely those functions
F in H(G,d) are extremal which are of the form

F(l‘): Z’yk(l‘_flﬂ)na €0<<§m7 7k7£05 nggma

&<z

{(1, k- &1 91 (&), - - ,g;(gk)) 0<Ek < m} linearly independent,
n<m<n+p.

FEach interval (x;, x;11) contains at least one of the points . If some of the moment
conditions are given by inequalities [ g; du < d; then each extremal element has the
stated form.

This is one (and the more heavy) half of Theorem 6 in [10] (cf. Remark 4.17).

Remark 4.7 (a) Plainly, the mass of the measure associated to an extremal c.d.f.
F' is concentrated on [&y, &)

(b) The extremal c.d.fs.
F(x) =3 g 00 () (x = &)"
k=0

are polynomial splines of n'" order with knots &, given in terms of the highest order
elements 1ig, o) () (@ — &)™ of the natural base (cf. [13], p. 111).

For later use, part of the proof is formulated separately.
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Lemma 4.8 The map Vo ® is an affine isomorphism from H(G, D) onto
o B(H(G, D)) = (G, D)

where
Gt = {1,x,...,x”’1}u{g*:g€ G}, D*={0} x D C R"*P,

Proof. By Theorem 2.13
/ gdp = / g dp

for each g € L'(dp) where p € H(G,d), p = ¥ o ®(p), g* is defined over essr(P(p))
and given there by (3). Thus ¢* is defined even on

U {essr(q)(p)) ipE ’H{g}} :

This implies the assertion.

Proof of the Theorem. The moment set is lifted to the level of n'® derivatives
or rather the associated measures. Because of Lemma 4.8 the proof is a straightfor-
ward application of Theorem 3.1(b) to

K = K¢,
A K—)R”+”,ul—><</xkdu,0§k§n—1>,</g;‘du:1§i§p>>,
W o= {d*} CR"™P, H=AY(W)=J(G" d)

The assumptions of Theorem 3.1 are met by Lemmata 3.6 and 4.5. Since by Lemma
3.6(b) the extreme points of K are the point measures t(z)e, the extremal elements
v of J(G*,d*) are characterized by the conditions

V:Zakt(fk)gfka ak>oaz&k:17 £0<<£m657 (8)
k=0 k=0

linearly independent, 0 < m < n + p.

Multiplication by s(&) and taking into account the form of s shows that the
vectors in (9) can be replaced by

{(Lfk,---afgagf(fk)a---ag;f(fk)) 10 <k <m}.

By Lemma 4.3 (a) and bell-shapedness, each of the measures in (8) must charge
each interval (x;,2;,1) and hence n < m < n + p.

The representation of v in (8) can be simplified as well. Each v is of the form
Yoreo Brce, with real numbers 3, # 0. On the other hand, such an element of J
can be written in the form (8) setting ay = (&) since s is a switch function and
hence S(fk)ﬂk > 0 and Zs(fk)ﬁk =1.

The corresponding statement for inequality constraints follows in the same way
and application of the inversion formula completes the proof.

Extremal bell-shaped functions (without restrictions) can be characterized ex-
plicitely.
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Theorem 4.9 A c.d.f. F is an extreme point of H if and only if it is of the form

1
F(r) = Z Vi@ —&)"y Tx <& <Thg1, M=o, 0<k<n
foe (& — &)

Proof. We shall continue with the proof of Theorem 4.6 setting G = () and p = 0.
Plainly, we have m = n. The extreme points of J are precisely those elements in J
which have the form

v=> Bree B 20, & <+ <& €S, {(1,&,...,&)} linearly independent,
=0

(10)
Since each interval is charged by v, zx < & < xk11. The vectors in (10) are auto-
matically linearly independent, since the values §; are mutually distinct and thus the
Vandermonde determinant V' (of the Vandermonde matrix (fi)) does not vanish.
The condition ¥ € J can be removed as well. For a measure v = 7} B¢, the
moment conditions boil down to the system of linear equations

Zﬁkfk—o 0<j<n-1 Zﬁkgk— )”'
Given xy < & < w41, Cramer’s rule gives the unique solution

G = VD) T (&) !

L 11
i<jyi itk Hj#k(fj - gk) ( )

In summary, a discrete measure Y, Bree, is in J and even extremal there if and
only if its coefficents are given by (11). Application of the inversion formula com-
pletes the proof.

Remark 4.10 For any extreme point p of J and any Borel function h the integral

”  h(&)
/hd = OH#k(fg &) 12)

is the n' divided difference of h w.r.t. the nodes & (cf. [13]). This is intimately
connected with the moment conditions (6) since they mean that the functional defined
by (12) is ‘exact of degree n — 1°.

Finally, Remark 3.7 is completed.

Example 4.11 The map p — sy is not one-to-one on {pn € My : sp € PI(S)}
stnce mass in turning points s annihilated. For instance, in the casen =1, let & <
z1, p= (21— &) g, and v = (x1— &) teg + (o — x1) ten,. Then su=eg = sv.
On the other hand, t(su) = v = t(sv).
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4.3 Related Notions

The following definition was given in [10] and adopted by various authors (for in-
stance [8] or [5]). Classical n'® (left- and right-hand) derivatives will be denoted by
F'" F™ and F") respectively. For simplicity of notation let F{0 = F.

Definition 4.12 (i) A function F is smooth to the n'-order, n > 1, Fi™ egists
and is continuous, except perhaps in a finite number of points, and " and Fi”}
exist everywhere and are left- and right-continuous, respectively.

(ii) F is bell-shaped to the n'" order in the narrow sense (of [10]) with turning-points
Ty < o <y if it is smooth to the n™ order, F1"} is continuous at z+, ..., z, and
(—I)TFER} and (—l)rFin} increase on (z;,x,41), 7 = 0,1,...,n, where gy = —oo
and x,.1 = 00.

In contrast to the previous definition the last one allows unbounded functions. Under
the additional requirement of boundedness Definition 4.12 is more restrictive than
Definition 4.1.

Proposition 4.13 Let F be bell-shaped to the n'™ order in the narrow sense and
bounded. Then F is n times differentiable with F'*®) = Fik} forallk=1,...,n and
F®™) fulfills (R). In particular, F is bell-shaped.

For the proof of Proposition 4.13, Lemma 4 from [10] will be borrowed. Note that it
is a (simple) isolated result derived directly from the definitions. Note further that
the requirement on F' to be a c.d.f. is not needed since boundedness is sufficient
(c.f. p. 210 in the same reference).

Lemma 4.14 Let F be bell-shaped to the n'™ order in the narrow sense and bounded.
Then:

(a) FI (z) = 0 as 2] — .

(b) F is bell-shaped to the k™ order for all k =1,... n.

Proof (of Proposition 4.13). FJ{F"} is piecewise monotone by definition. It is bounded
by the smoothness assumption and by Lemma 4.14 (a). Hence it is of finite variation.
By part (b) of the lemma, this property is inherited by each Fik}. For k < n these
functions are continuous and their derivatives exist in all except perhaps a finite
number of points. Hence they are absolutely continuous and the Fikﬂ} are gener-
alized derivatives. Since all functions in question are right-continuous we conclude
that Fik} = F® for all k = 1,...,n. Finally, F™ fulfills (R) by the monotonicity
requirement.

Let now H denote the set of c.d.f. bell-shaped to the n'™ order in the sense of
Definition 4.12 and H as defined on page 13. If a distribution p has a bell-shaped
c.d.f. then p will be addressed as a bell-shaped distribution

Example 4.15 There are bell-shaped distributions which are not bell-shaped in the
narrow sense, i.e. H C H, H # H. The density constructed from devil’s staircase
i Example 4.2, for example, violates the differentiability conditions.

On the other hand, H is a pleasant subset of .
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Proposition 4.16 H is a face in H and exH = exH.

Proof. By Proposition 4.13, #H C . The inclusion exH C H is obvious. Therefore
and by Lemma 3.2 it is sufficient to verify that # is a face in H. To this end, choose
F € H and assume that F = oG + (1 —a)H for G, H € H and « € (0, 1). Since the
derivatives G*) and H® are continuous for k =0, ..., n— 1, they are derivatives in
the classical sense. The n'' derivative F(®) = Fin} exists and is continuous except
on the finite set J of finite jumps. At a point z the functions G™ and H™ either
are continuous or have a finite jump since they are of finite variation. If F is
continuous at = then G and H™ are continuous at x too since by bell-shapedness
possible jumps of these two functions have the same direction. Hence G™ or H™
may jump at points x € J only. At points x ¢ J the function GV thus is
continuously differentiable and G{™(x) = G (z). Suppose now that g = G has
a jump at £&. We claim that g(&) = Gi"}(f). There is € > 0 such that g is continuous
on [€,&+2¢]. Choose a sequence &, — £ in (&,&+¢) and set h,(z) = G® D (z+&,)
and h(z) = G" V(2 4+ £). Then h, — h on [0,e] pointwise by continuity of G™~1).
Each h,, is differentiable on [0,¢], and hi}(z) = g(z + &,) — g(z + £) uniformly on
[0,¢] since g is continuous on the compact interval [£, € + ¢]. This proves that g is
the derivative of G"~1 on [¢, £ +¢] and, in particular, that the right-hand derivative
at & exists and is right-continuous there. The corresponding property of left-hand
derivatives is verified similarly. We conclude that G and also H are elements of H
and hence this set is a face of 7. This completes the proof.

Remark 4.17 MULHOLLAND and ROGERS (1958) ([10]) claim:
A c.d.f. F € H is an extreme point of H if and only if it is of the form

§i<wz
{(1,&,...,&"), 0<i<m} linearly independent, 0 < m < n,

cf. their Theorem 6. They prove that every c.d.f. bell-shaped in the narrow sense
15 o mizture of c.d.f. having the just specified form. They further claim that all
extreme points of H are such functions and argue that this can be proved along the
same lines as for ordinary moment sets of c.d.f. Inspection of their respective proof
reveals that they crucially appeal to the fact, that if an extreme point is the barycenter
of a probability measure on the extremal set then this measure is the Dirac measure
in the extreme point. A common sufficient condition for this is measure convexity of
the set in question (cf. Remark 5.5). On the other hand, H definitely is not measure
convex as will be shown in Remark 5.5. Hence additional arguments — for instance
those given above — are needed to identify the extreme points.

5 Bell-Shaped Distributions: Extremal Decom-
position and Bounds for Moments

Suppose that for each element 1 of some set H of measures there is a decomposition

p(A) = [ v(A)dp(v), A€ A (13)
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where M is a subset of H, A is the o-algebra on which the measures in H live and
py is a probability measure on the evaluation o-algebra (M) on M generated by
the functions v — v(B), B € B. Suppose further that for some cost function C on

H
Cln) < [ Cw)dpu(v)

Then

sup C(p) < sup C(v)dp(v) <sup{C(v):ve M} =U(C)

neH peEP(M) I M
and U(C) is a best upper bound of C' on H. Frequently C(u) is the mass u(A)
of a set, a moment [*du(x) or a generalized moment [ gdpu, for instance with
9(2) = 1jg,00)(z — a), a > 0 in the case of stop-loss premiums in insurance (cf. [17]).
By this paradigm best upper and lower bounds for functionals on sets of measures
can be determined.

In the present setting, H is defined by moment and by differentiability condi-
tions. Integral representations as in (13) will be obtained by a transformation to a
pure moment set i.e. the differentiability conditions are transformed into moment
conditions by the previously developed methods. For such moment sets integral
representation results with M = exH exist and can be applied. Combined with the
identification of extremal elements in the previous sections they provide the desired
bounds for functionals.

5.1 Measure Theoretic Preparations

We shall show now that the map F — F™ = su where p is the signed measure
induced by F™_ i.e. in the previously introduced notation

O©:F+— spu=s(ToWod(F)),

has the best properties we can hope for.

Some notation is needed. If €2 is a Borel set of the real line with Borel-o-algebra
B(£2) then the functionals v — [ ¢ dv with bounded continuous functions ¢ induce
the weak topology on P(L2). For any subset H of P(Q2) let v(H) be trace of the weak
topology on H and B(H) the corresponding (Borel-)o-algebra. Further, recall the
definition of the switch function s and the set S in (7) and note that measures will
be identified with their c.d.f. where this makes sense and is convenient.

Theorem 5.1 The map © is an affine weak homeomorphism from H(xy, ..., x,)
onto

@(’H):{MEP(S):/W]Z_:E)GZ,U:O;k:(),...,n—l}.

Proof. By Theorem 2.17 and Lemma 3.6, the image ©(H) has the asserted
form and © is one-to-one and onto. To verify continuity of ©~! choose a sequence
pn converging weakly to p in ©(H) (all spaces in question are metrizable). The
sequence ©(u,) converges to ©~!(p) if and only if

[0d0 (1) — [ 60w, n— oo,
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for each function ¢ on S with compact support supp(¢) contained in one of the open
intervals (x;, z;41). By (4),

[od07 W) = [ =y ) 6@~y dy vt

where v either denotes pu or p,. By the special form of ¢ the integrand ¢* - ¢
is defined everywhere, continuous and has compact support in (z;, z;41) equal to
supp(¢). Hence

[ 040 () = [0t — [ ¢ -tdu= [ o ()

and thus ©~! is continuous.
Now choose p,, weakly convergent to p in H and a test function ¢ of the above
type. We may and shall assume that ¢ even is infinitely often differentiable. Then

[odow) = (=1 [ 6 - sav,
again with v equal to p or p,. The integrand

. 1

¢(x) = l(ﬂf — ;) - ¢! (2)

!
n! -

on the right-hand side is bounded and continuous and hence

[ 6d0Gn) = [ ddun — [dn= [ pdo)

which shows that © is continuous.

Remark 5.2 In [6], (5.37), there is a map T which in a similar but simpler setting
corresponds to our map ©~'. To verify that T is a homeomorhism erroneously weak
compactness of P(R) is assumed (and the set T(P(R)) corresponding to our set H
is not compact). On the other hand, the proof can be rectified by the arguments in
Theorem 5.1. Unfortunately, the mentioned (minor) error has propagated through
the literature, see for example [1], p. 62.

Plainly, the set H is not weakly closed in P(R) but it inherits all pleasant topo-
logical and measure theoretical properties from the pure moment set O(H).

Proposition 5.3 On O(H) and H the evaluation o-algebra and the Borel o-algebra
coincide:

OH) € (P(5)) = B(P(S)), E(O(H)) = B(O(#H)), E(H) = B(H).

Furthermore, exH is a Gs set in H and © is affine and bimeasurable w.r.t. L(O(H))
and X(H).

Proof. The first relations were proved in Theorem 3 of [16]. By the same reference,
the extreme points form a Gs-set in O(H) and by Theorem 5.1 the extremal set in
‘H shares this property. Again by this result and the just mentioned equalities of
o-algebras © is bimeasurable.
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5.2 Decomposition and Tchebyscheff Inequalities

Extremal decompositions of bell-shaped distributions will be derived now. If H is a
convex set of nonnegative measures and N a Borel set then Hy denotes the subset of
those u € H with u(N) = 0. Since Hy is a face in H one has exHy = HNexH. By
Proposition 4.16, the following result generalizes Theorem 6 of [10]. In particular,
the proof there is completed (cf. Remark 4.17).

Theorem 5.4 Suppose that G is a countable set of Borel functions and D a closed
and convex subset of R9. Choose u € H(G, D), let N denote the complement of
esst ') - with the c.d.f. F of p - augmented by the turning points x; and

M ={veexH(G,D):v(N)=0}.

Then there is a probability measure P on X(M) such that
u(B) = / v(B)dP(v), B € B. (14)
M

A straightforward monotone class argument shows that the barycentrical formula
(14) is equivalent to

w(h) :/ v(h)dP(v), g measurable and bounded,
M
where v(h) = [ hdv, and to
F(z) = / G(z)dP(G), = € R, (15)
M

with the respective c.d.fs. F' and G of p and v. The distribution p is called the
barycenter of P and P is said to represent pu (on M).

Remark 5.5 (a) In general, H is no (Choquet) simplex (cf. page 9), or, which is
equivalent, the representing probability measure P of u is not unique ([16], Theorem
2). In fact by Proposition 5.3, H shares this property if and only if O(H) does. A
most simple example can be constructed forn=1. Let x; =0 and vy =¢ 1/3+2-
52/3, Vo = 2- 6_2/3 —|—61/3. Then
1 2 1 1 2

M—5-(1/14-1/2)—6'6_24—6'5_1—1-6'61—1-6'62.
But 1 = p1/3+2-pa/3 for p1 = (e_14¢1)/2 and py = (e_a+¢€2)/2. Since p € H and
Vi, pi € exH, we have a member of H with two different extremal decompositions.
(b) Whereas each P on X(H) has a barycenter in the weak closure of H (since M;
is a complete and locally convex linear space in the weak topology, cf. [18], Corol-
lary 1.2.3.), the set H is not measure convex i.e. this barycenter is not necessarily
in H. Assuming n = 1 and x, = 0, for ezample, the measure P = 32,2 kg,
where g, is concentrated in a distribution with rectangular density equal to 281 on
[—27%72 27%2) does not have a barycenter in H.
(c) The theorem shows that if there is any bell-shaped distribution fulfilling the mo-
ment conditions then there is also an extremal one doing so.
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The following partial result is of independent interest.

Lemma 5.6 Under the hypothesis of Theorem 5./,
OH(G. D) = {pe P(S): G L'(p). [gdpe D5 € G},

where G = {tg* : ¢g* € G*}, and © is an affine isomorphism from H(G, D) onto this
set bimeasurable w.r.t. the respective evaluation-o-algebras.

Proof. Combine 2.13 and Proposition 5.3.

Now the last Theorem can be proved.

Proof (of Theorem 5.4). Let H be the moment set in Lemma 5.6. By Lemma
5.6 and [16], Corollary 2, for each p € H there is a probability measure () on X(exH)
such that

p(B) = [ (B)dQ(r). BeB(S).

Let now p = O(p) and P denote the image measure @ o © of ) under ©~' defined
on X(exH(G,D)) by P(A) = Q(O(A)). For any bounded Borel function h the
associated function & = t - h* with h* from Theorem 2.13 is defined everywhere and
integrable for each x € H. Hence the barycentrical formula holds for A by [19],
Proposition 3.1, i.e.

p(h) = [ w(h)dQ(w)

Since
O YexH) = {v € exH(G,D) : v(S) =1} = M’

this implies

p() = p(h) = [ w(h)dQ(p) = [ O ()0 dQw) = [ v(w)ar.  (16)

Since p(N) = 0 the identity (16) implies P{v : ¥(N) = 0} = 1 and P can be
restricted to

ex’H(Q’, D)N = ’H(Q’, D)N N ex’H(Q’, D) =M.

This completes the proof.
A functional C' on H(G, D) is called measure affine if it is integrable for each
probability measure on (M) with barycenter p in H(G, D) and fulfills the barycen-

trical formula
Cw) = [ cw)arw).
In view of the introductory remarks one has

Corollary 5.7 Under the hypothesis of Theorem 5.4 each measure affine functional
fulfills

inf{C'(p) : p € H(G, D)} = nf{C(p):pe Mj,
sup{C'(n) : p € H(G, D)} = sup{C(p): p € M}. (17)

This holds in particular if C(u) = [ ¢ du, where ¢ is a Borel function integrable for
each 1 € H(G, D).
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Proof. The general part is clear and pu — u(¢) is measure affine by standard
monotone class arguments ([18], Proposition 1.1.2).
In particular, for F' € H(G, D),

L(z) =inf{G(z): G e M} < F(z) <sup{G(z): G € M} =U(x),
and L and U are best possible lower and upper envelops for H(G, D) (cf. [8]). Note
that L and U increase and can be used to estimate fractiles.

Remark 5.8 Theorem 5.4 and Corollary 5.7 hold for bell-shaped distributions with
unspecified turning points as well. In this case the set M has to be replaced by the
set

M= J{reH(z1,....,20;G,D) s 21 <+ 3,}
(in self-explaining notation).

If G is finite and the moment conditions are given by equalities, i.e. D is singleton
{d} then the concrete description of M can be plugged into (17) to obtain more
explicit bounds.

Example 5.9 By Lemma 5.6, H(G, D) # 0 if and only if
{p eP(S):GC Ll(p),/gdp eD* e 5} )
To be more specific, consider the standard moment conditions
/a:r du(z) =d,, 1 <r<p. (18)

Letting g,(z) = z", the identity (5) gives

Gnir(x) = t(z)(2")* = (=1)"t(2) r <r +n> T

(r +n)! n " (=)

Hence there is some u, bell-shaped to the n'™™ order with turning points 1, ..., ,
and satisfying (18), if and only if there is some (general) distribution p satisfying

J/‘Z
| Ty @

"t r+n
T @) = d, 1<r<p.
|y ) ( n ) !

This generalizes Theorem 1 in [4], where this result is proved for n =1 and x1 = 0.
In this case the above identities boil down to

/x’l dp(z) =0, /a:r dp(x) = (r+1)d,, 1 <r <p.

By these observations, the program in [4] could be carried out for arbitrary n and
arbitrary turning points, presumably at the expense of heavy calculations (In this
paper, the condition [~ dp = 0 does not appear, since there a c.d.f. is unimodal
if it is convex on the left and concave on the right of a fized point. Hence it needs
not to be differentiable. ).

By special methods, MALLOWS in [8] obtains precise bounds (17) under moment
conditions (18) in the cases (n,r) = (0,2q), (1,2q) and (n,?2).

We thank H.v. Weizsécker for helpful and encouraging discussions and R. Lasser
who provided the economic basis to write this paper.
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