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Abstract

Markov random �elds serve as natural models for patterns or textures

with random �uctuations at small scale� Given a general form of such

�elds each class of pattern corresponds to a collection of model parameters

which critically determines the abilitity of algorithms to segment or clas�

sify� Statistical inference on parameters is based on �dependent� data given

by a portion of patterns inside some observation window� Unfortunately�

the corresponding maximum likelihood estimators are computationally in�

tractable by classical methods� Until recently� they even were regarded

as intractable at all� In recent years stochastic gradient algorithms for

their computation were proposed and studied� An attractive class of such
algorithms are those derived from adaptive algorithms� wellknown in en�

geneering for a long time�

We derive convergence theorems following closely the lines proposed

by M� M�etivier and P� Priouret �	
���� This allows a transparent

�albeit somewhat technical� treatment� The results are weaker than those

obtained by L� Younes �	
����

� Introduction

Markov random �elds serve as �exible models in image analysis� speech recogni�
tion and many other �elds� In particular� textures with random �uctuations at
small scale are reasonably described by random �elds� A large class of recursive
neural networks can be reinterpreted in this framework as well�

Let a pattern be represented by a �nite rectangular array x � 	xs
s�S of
�greyvalues� or �colours� xs � Gs in �pixels� s � S where all sets Gs and S are
�nite� A 	�nite
 random 
eld is a strictly positive probability measure  on the
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	�nite
 space X �
Q
s�S Gs of all con�gurations x� Taking logarithms shows that

 is of the Gibbsian form

	x
 � Z�� exp	�K	x

� Z �
X
z

exp	�K	z

� 	�


with an energy function K on X� �Modelling� a certain type of pattern or texture
amounts to the choice of a random �eld� typical samples of which share su��
ciently many statistical properties with samples from the real pattern� Hence the
choice of K usually is based on statistical inference besides prior knowledge� A
nonparametric approach is not feasible and we restrict attention to the 	linear

parametric case� We consider families

� � f 	���
 � � � �g �

of random �elds onX� where � � R
d is the parameter space and each distribution

is a Gibbs �eld of the exponential form

	���
 � Z	�
�� exp 	h��Hi
 � � � ��

The energy is given by K� � �h��Hi where H � 	H�� � � � � Hd
 is a vector of
functions on X� � � � � R

d� and h��Hi is the Euclidean inner product�
Given a sample x � X� a maximum likelihood estimator ��	x
 maximizes the

�log�� likelihood function

L	x� �
 � � �� R� � ��� ln	x��
�

The covariance of Hi and Hj under 	���
 will be denoted by cov	Hi� Hj��

and the corresponding covariance matrix by cov	H��
� Straightforward calcula�
tions give 	����� Prop� ������


Proposition ��� Let � be open The likelihood function � �� L	x��
 is in
nitely
often continuously di�erentiable for every x The gradient is given by

�

��i
L	x��
 � Hi	x
� E 	Hi��
 	�


and the Hessean matrix is given by

��

��i��j
L	x��
 � �cov 	Hi� Hj��
 �

In particular� the likelihood function is concave

This result tells us that direct computation of ML estimators in the present
context is not possible� In fact� the expectation in the gradient is a sum over
X which may have cardinality of order ����������� Because of the mentioned
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misgivings� ML estimators on large spaces until recently were thought to be
computationally intractable� Therefore� J� Besag in ���� ��� suggested the coding
and the pseudo�likelihood method where the full likelihood function is replaced
by �pseudo�likelihoods� based on conditional probabilities only� These estimators
are computationally feasible in many cases 	cf� ���� and also ���
�

In the last decade� accompanied by the development of learning algorithms
for Neural Networks and encouraged by the increase of computer power� recursive
algorithms for the computation or at least apprioximation of maximum likelihood
estimators themselves were studied� Many of them are related to basic gradient
ascent 	which is ill�famed for poor convergence
� More sophisticated methods
from numerical analysis violate the requirement of �locality� which basically means
that the updates can be computed component by component from the respective
preceding components� In this paper� we study the asymptotics of adaptive
algorithms which we hasten to de�ne now�

We want to compute maximum likelihood estimators for Gibbs �elds� i�e�
maximize the likelihood function W � L	x� �
 for a �xed sample x � X� The
starting point is steepest ascent

��k��� � ��k� � �k��rW 	��k�
 � ��k� � �k��
�
H	x
� E	H���k�


�
	�


with gains �k 	possibly varying in time
� Given ���� � R
d� the adaptive algorithm

is recursively de�ned by

��k��� � ��k� � �k�� 	H	x
�H	�k��



P 	�k�� � z j�k � x
 � Pk	x� z
 	�


where Pk is the Markov kernel of one sweep of the Gibbs sampler for 	����k�
�
The Gibbs sampler is a Markov process on X which via a law of large numbers
gives estimates of the expectations appearing in 	�
� It will be de�ned below�
Note that 	�k� ��k�
k�� is a Markov process taking values in X � R

d 	and living
on a suitable probability space 	��F �P

� We shall be mainly interested in the
marginal process 	��k�
k���

Let us brie�y comment on the philosophy behind� Consider the ordinary
di�erential equation 	ODE


��	t
 � rW 	�	t

� t � �� �	�
 � ����� 	�


where �� � d�	dt� Under mild assumptions on W � each of these initial value
problems has a unique solution 	�	t

t�� and �	t
� �� as t�	 	cf� Proposition

���
� Hence a process
�
��k�

�
converges to �� if it stays near a solution� Steepest

ascent can be interpreted as an Euler method for the discrete approximation of
solutions of the ODE� Similarly� the paths of 	�
 will be compared to the solutions
of 	�
�
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Coupling the Gibbs sampler and an ascent algorithm like in 	� 
 amounts
to adaptive algorithms which play an important role in �elds of engineering like
system identi�cation� signal modelling� adaptive �ltering and others� They re�
ceived considerable interest in recent years and were studied by M�etivier and
Priouret 	�� !
� ����� in a general framework� The circle of such ideas is illus�
trated� surveyed and extended in the monograph Benveniste� M�etivier and
Priouret 	����
� ���� an extended English version of the French predecessor from
	�� !
� The monograph Freidlin and Wentzell 	�� �
� ���� had considerable
in�uence on the development of the theory�

The theory of adaptive algorithms was applied to ML estimation in imaging
by L� Younes 	��  
 � 	�� �
� ����� ��!�� �� �� In some respects� the theory
gets simpler in this setting due to the boundedness of the energy function K�
On the other hand� some assumptions from the general theory are not met and
therefore additional estimates are required� Younes 	��  
� ��!�� proves almost
sure convergence developing a heavy technical machinery� We decided to steer
a middle course� we shall follow the lines of M�etivier� Priouret 	�� !
� �����
closely in order not to obscure the main ideas by too many technical details� On
the other hand the results will be weaker than Younes��

The reader we have in mind should be acquainted with general probability
spaces and conditional expectations� He or she should also have met discrete�time�
continuous�space Markov processes and martingales� Concerning martingale the�
ory� part of the six pages ����� pp� ����!� is su�cient� For more background
information the reader may consult ���� and �!��

� The Gibbs Sampler

To complete the de�nition of the algorithm 	�
 the Gibbs sampler is introduced
now� Let  be a Gibbs �eld of the form 	�
 and consider the Markov chain
recursively de�ned by the rules�

�� Enumerate the sites in S� i�e� let S � f�� � � � � jSjg�
�� Choose an initial con�guration x��� � X�

�� Given x�k�� pick a greyvalue y� � G� at random from 	X� � �jXj �

x�k�j � j 
� �
� Given the con�guration updated in the last pixel repeat this

step for s � �� � � � � jSj� Now a �sweep� is �nished with the result x�k����

The symbol jSj denotes the number of elements in S� the enumeration of S
is called a deterministic visiting scheme� the projections X � Gj� x �� xj are
denoted by Xj and 	AjB
 is the conditional probability of A given B� Formally�
the Gibbs sampler is a homogeneous Markov chain with transition probability

P 	x� y
 � � � � �jSj�
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with the pixelwise transitions� called local characteristics� given by

k	x� y
 �

���
��

	Xk � ykjXj � xj� j 
� k
 if ySnfkg � xSnfkg

� otherwise�

The conditional probabilites are easily computed�

	Xk � ykjXj � xj� j 
� k
 � Z��
k exp	�K	ykxSnfkg
� Zk �

X
zk

exp	K	zkxSnfkg
�

Here we adopted the notation from ����� the symbol ykxSnfkg denotes the con�g�
uration in X with kth component yk and which equals x o� k�

Let �i denote the random con�guration x�i� after the ith sweep� The laws
P � ���i of the variables �i approximate the unique invariant 	and even reversible

distribution  and and the process obeys the law of large numbers 	����� Thm�
�����
�

Theorem ��� The Gibbs sampler ful
lls

P	�i � x
 �� 	x
� i�	� for every x � X�

and for every function f on X and every 
 � �� there is a constant c such that

P

�					�n
n��X
i	�

f	�i
� E	f � 


					 � 




� c

n
�
exp	jSj"
� 	�


The constant " is the maximal local oscillation of the energy function K of 
given by

" � maxfjK	x
�K	y
j � xSnfsg � ySnfsg� s � Sg
and c � ��kfk� for the L��norm kfk �

P
x jf	x
j� Random visiting schemes are

in use as well 	and sometimes even preferable
 but in the discussion below only
deterministic ones will appear� The maximal d�dimensional oscillation

#" � max fkH	x
�H	y
k� � x� y � Xg � 	!


will be needed too�

� Main Results

The main results will be stated and discussed in this section� The proofs will be
given later� Throughout the discussion it will be assumed that

� � �� � �� � � � � � ��
�X
k	�

�k �	� 	 


This includes the case of constant gain �k � �� Only Gibbs samplers with
deterministic visiting scheme� as introduced above� will be adopted� Concerning
the ODE 	�
 the assumptions will be�
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Hypothesis ���
��� � � R

d�
��� cov	H��
 is positive de
nite for each � � R

d�
��� the function W attains its �unique� maximum at �� � R

d

The last two assumptions are ful�lled with high probability� if the family of
distributions in question is identifyable and the sample x is taken on a su�ciently
large observation window S� by recent consistency results 	���� for a summary see
���� and �!�
�

For a �nite time horizon T � � let

n	T 
 � minfn � � � �� � � � �� �n�� � Tg�
We shall use the notation tn �

Pn
k	� �k� Let 	��k�
 and 	�	t

 be given by 	�
 and

	�
� respectively� A weak approximation theorem can be stated as follows�

Theorem ��� There are constants C� D and L such that for every T � � and

 � �

P

�
sup

m�n�T �

�����m� � �	tm

���
�
� 




� C


�
	� � T 


�
� � eDT

�
e�LT

n�T �X
k	�

��k

� C


�
T 	� � T 


�
� � eDT

�
e�LT���

Theorem ��� generalizes results in Derevetskii and Fradkov 	��!�
 for
independent �k� The dependent case was studied �rst in Ljung 	��!!
 � 	��! 
�
Better bounds can be obtained tracking the constants more carefully than we
shall do 	cf� for example 	�!

�

Remark� The bound on the right hand side tends to � as �� tends to �� The
constants depend continuously on k����k� by 	��
 below� Hence there are common
constants for all ���� in a given compact set Q � R

d� Assume now
P�

k	� �
�
k �	

and suppose that at time r the algorithm is restarted in Q� The theorem applied
to the process

�
�r�k� ��r�k�

�
k��

with gains �r�k shows that the approximation

gets better and better as r tends to in�nity since
P

k�r �
�
k tends to �� Let now �Q

denote the set of those  � � for which the path
�
��k�	


�
k��

returns to Q again

and again� The above observation can be used to prove almost sure convergence
to �� on �Q�

In the present case �	t
 � �� for every solution of the ODE 	�
� We give a
more precise quantitative estimate� Let us introduce some notation before� Let
�	��
 � � be the largest eigenvalue of cov	H���
�

M
 � supfj�i�j�kW 	�
j � i� j� k�� �� � � � � d�� � R
d� k�� ��k� � �g�

r � min

�
��

j�	��
j
�M
n���


�
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and �nally
�� � inffkrW 	�
k�� � k�� ��k�� � �g�

Then

Lemma ��� Each initial value problem ��� has a unique solution 	�	t

t�� and
�	t
� �� as t�	 Moreover�

k�	t
� ��k� � r exp

�
�j�	��
j

�
	t� �




for t � �

where � � jW 	��
�W 	��
j	�r
All this is proved in the Appendix� By these results the following makes sense�

Corollary ��� Given 
 � � choose T � � such that k�	T 
� ��k� � 
 Then

P

������n�T �� � ��
���
�
� �


�
� C	��� T 


where C	��� T 
� � as �� � �

For special choices of gains almost sure convergence holds�

Theorem ��� 	Younes 	�
���� Let �k � 	uk
��� u � �� #"� Then

��n� �� �� P� almost everywhere�

As already mentioned� the proof of this strong result is fairly technical and will
not be given here� Nevertheless� the main idea is similar to that presented below�

The following informal argument might nourish the hope that the program
can be carried out� We know that the Gibbs sampler as a time�homogeneous
Markov process obeys the law of large numbers� i�e means w�r�t� 	���
 can be
approximated by means in time 	cf� Theorem ���
� Let � � � be a constant gain�
Choose r � � and n � �� Then

��r�n� � ��r� � �
n��X
k	�

	H	x
�H	�r�k��



� ��n� � 	n�


�
H	x
� �

n

n��X
k	�

H 	�r�k��





 ��r� � 	n�
rW 	��r�
�

The approximation holds if 	�r�k

n��
k	� is approximately stationary and n is large�

For the former� the parameters ��r�k� should vary rather slowly which is the case
for small gain and small n� The proper balance between the requirements �n
small� and �n large� is one of the main problems in the proof�
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� Error Decomposition and L
��Estimates

Algorithm 	�
 is interpreted as steepest ascent perturbed by additive noise� The
noise term is decomposed into a sum of convenient terms by means of the Poisson
equation and L��estimates of the single terms are derived� These are the basic
ingredients for the proof of the main result�

��� Error Decomposition

Since 	�
 can be written in the form

��k��� � ��k� � �k��

�
rW

�
��k�

�
� E

�
H���k�

�
�H 	�k��


�
	�


it amounts to gradient ascent perturbed by 	non�Gaussian� non�white
 noise

g�k� � g
�
�k�����k�

�
� g	x��
 � E	H��
�H	x
�

Control of the error term is based on a clever decomposition� It will be shown
that g can be written in the form

g	���
 � f� � P�f� 	��


where P� is the Markov kernel of one sweep of the Gibbs sampler for � � 	���

and the maps f� ful�ll 	I � P�
 f� � g� 	� will be written as a subscript if
convenient
� By 	��
 the error takes the form

g�k� � f�k� 	�k��
� Pkf�k� 	�k��


where f�k� � f��k� etc�� The cumulated error in ��k��� can be decomposed into
four terms�

E�n� �
n��X
k	�

�k��

�
E

�
H���k�

�
�H 	�k��


�

�
n��X
k	�

�k��

�
f�k� 	�k��
� Pkf�k� 	�k


�

�
n��X
k	�

�k��

�
Pkf�k� 	�k
� Pk��f�k��� 	�k


�
	��


�
n��X
k	�

	�k�� � �k
Pk��f�k��� 	�k


� ��P�f��� 	��
� �nPn��f�n��� 	�n��
 �

These terms will be estimated separately in L�� Before� the decomposition is
justi�ed� In the following proof and many estimates below the contraction coef�

cient c	P 
 of a Markov kernel P on a �nite space X will be used� It is given
by

c	P 
 � max
x�y

kP 	x� �
� P 	y� �
k 	��
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where for probability measures � and � the total variation of their di�erence is

k�� �k �
X
x�X

j�	x
� �	x
j�

It ful�lls the basic inequalities

k�P � �Pk � k�� �k � c	P 
� c	PQ
 � c	P 
c	Q
 	��


	for all basic facts concerning contraction coe�cients cf� ����� Section ���
� Now
we can prove

Lemma ��� Let  be a random 
eld� P a Markov kernel and g a function on
X Suppose that c	P 
 � �� P �  and E	g� 
 � � Then there is a function f
on X which solves the Poisson equation

	I � P 
f � g�

This is a standard result from the potential theory of Markov chains�
Proof� De�ne formally the potential kernel of P by G �

P
k�� P

k and set

f	x
 � Gg	x
� 	��


Plainly� G � I � PG� and if the in�nite series 	��
 exists�

f � Pf � Gg � PGg � Gg � 	Gg � g
 � g

as desired� Due to the assumptions�

jGg	x
j �
						
X
k��

P k	x� �
g � P kg

						
� X

k��

			 �P k	x� �
� P k
�
g
			 	��


� �kgk�
X
k��

c	P 
k�

Since c	P 
 � � the last series converges which completes the proof�

��� Preliminary Estimates

In order to derive the announced L��estimates� some preliminary estimates are
needed� The d�dimensional oscillation #" was introduced in 	!
�

The �rst estimates are obvious������k��� � ��k�
���
�
� #"�k�� 	��


k��n�k� � k����k� � #"
nX

k	�

�k 	�!


kg�k� � #" 	� 
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It is easily seen that c	P�
 � ��exp	� #"k�k�
 	����� 	���

� and hence by 	�!
�

	�� c	Pk


�� � exp

�
� #"k����k�

�
exp

�
� #"�tk

�
� C exp	Dtk
� 	��


The following estimates are less obvious�

Lemma ��� There are constants C and D such that���f�k����
�
� C exp	Dtk
 	��
���Pk��f�k��� � Pkf�k�

���
�
� C exp	Dtk��


�����k��� � ��k�
���
�

	��


Proof� By 	��
 and 	� 
�

kf�k� � � #"	�� c	P�


���

Hence 	��
 implies
kf�k�k� � � #"C exp	Dtk
�

The proof of 	��
 is technical and lengthy and hence will be postponed to Section
�� Lemma ���� For the moment� take it for granted�

Let us �nally note the simple but useful relation

������
pX

j	�

aj�j

������
�

�

�
�
� pX
j	�

aj

�
A pX

j	�

aj k�jk�� 	��


for aj � � and �j � R
d� If all aj vanish there is nothing to show� otherwise it

amounts to a modi�ed de�nition of convexity�

��� L
��Estimates

L��estimates for the four sums in 	��
 will be derived now� The �rst one is most
interesting� Set

S�n� �
n��X
k	�

�k��

�
f�k� 	�k��
� Pkf�k� 	�k


�
�

Lemma ��� There are constants C and D such that

E

�
max
m�n

���S�m�

�
k��
�
� C

n��X
k	�

exp	Dtk
�
�
k���

Proof� First we shall show that S �
�
S�n�

�
n��

is a martingale� To this end�

let Fn denote the ���eld generated by ��� � � � � �n� Note that ����� � � � � ��n� are
Fn�measurable as well� By construction of the process�

E

�
f�k� 	�k��
 jFk

�
� Pkf�k� 	�k
 �
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Hence the term in S�n� with index k � n � � vanishes conditioned on Fn� The
other summands are Fn�measurable and hence invariant under conditioning� This
proves the martingale property

E

�
S�n� jFn

�
� S�n����

By Jensen�s inequality�

E

����f�k� 	�k��

����
�

�
� E

�
E

����f�k� 	�k��
����
�
jFk

��

� E

�
E

����f�k� 	�k��

���
�
jFk

���
� E

����Pkf�k� 	�k
����
�

�
�

By orthogonality of increments 	����� Lemma �����
�

E

�			S�n�			�
�
� E

�
n��X
k	�

��k��
���f�k�	�k��
� Pkf�k�	�k


����
�



�

By 	��
� the previous estimate� and 	��
� one may proceed with

E

�
kS�n�k��

�
� �E

�
n��X
k	�

��k��kf�k�	��k���k��


� �C

n��X
k	�

��k�� exp	�Dtk
�

The uniform estimate in m � n �nally follows from Doob�s L��inequality 	�����
Lemma �����
�

E

�
max
m�n

kS�m�k��
�
� �E

�
kS�n�k��

�
�

This completes the proof�
The remaining three estimates are straightforward�

Lemma ��� There are constants C and D such that

ak �
����k��

�
Pkf�k�	�k
� Pk��fk��	�k


����
�
� C exp	Dtk
�

�
k

bk �
���	�k�� � �k
Pk��f�k���	�k


���
�
� C exp	Dtk��
	�k�� � �k


ck �
�����P�f���	��
� �nPn��f�n���	�n��


���
�
� C exp	�Dtn��


�
��n � ���

�

Proof� By 	��
 and 	�!
�

����k��	Pkf�k�	�k
� Pk��f�k���	�k

���
�

� �k��Ck��k� � ��k���k� exp	Dtk
 � C ���k exp	Dtk


which proves the �rst estimate� The second one follows from 	��
� The third one
is implied by 	��
 and 	��
 with p � �� aj � ��

Now we can put things together to derive the L��estimate of the total error�
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Proposition ��� There are constants C and D such that

E

�
max
m�n

kE�m�k��
�
� C exp	Dtn��


�
� �

nX
k	�

��k


�
nX

k	�

��k



�

Proof� We shall use 	��
 and Lemmata ��� and ���� By 	��
 for p � � and aj � ��

E

�
max
m�n

kE�m�k��
�

� �

�
�E�max

m�n
kS�m�k��

�
�

�
n��X
k	�

ak


�

�

�
n��X
k	�

bk


�

� cn

�
A �

Plainly�

�
n��X
k	�

ak


�

� C

�
n��X
k	�

��k exp	Dtk



�

� exp	�Dtn��


�
n��X
k	�

��k




�
n��X
k	�

bk


�

� C

�
n��X
k	�

	�k�� � �k
 exp	Dtk��



�

� C exp	�Dtn��
	�n � ��

� � C exp	�Dtn��
�

�
� �

Summation now gives the desired result�
For a �nite time horizon the estimate boils down to

Corollary �� There are constants C and D such that for every T � ��

E

�
max

m�n�T �
kE�m�k��



� CeDT 	� � ��T 


n�T �X
k	�

��k�

� Proof of the Approximation Theorem

We complete now the proof of Theorem ��� and append the missing estimates�
The main tool is the following discrete Gronwall lemma�

Lemma ��� If the real sequence 	bk
k�� satis
es

b� � �� br � C �D
rX

k	�

�kbk�� for r � �� � � � � n�

with C�D � � then

bn � C exp

�
D

nX
k	�

�k



�
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Proof� If C or D vanishes there is nothing to show� Hence we may assume that
D � � 	otherwise we modify the �k
� First we show

� �
rX

k	�

�k exp

�
�k��X
j	�

�j

�
A � exp

�
rX

k	�

�k



� r � �� � � � � n� 	��


For r � � this boils down to ���� � exp	��
 which plainly is true� The induction
step reads

exp

�
r��X
k	�

�k



� exp

�
rX

k	�

�k



exp	�r��


� exp

�
rX

k	�

�k



� �r�� exp

�
rX

k	�

�k




� � �

�
� rX
k	�

�k exp

�
�k��X
j	�

�j

�
A
�
A� �r�� exp

�
rX

k	�

�k




� � �

�
�r��X
k	�

�k exp

�
�k��X
j	�

�j

�
A
�
A �

The �rst inequality follows from exp	x
 � � � x and the second one from the
induction hypothesis�

Since b� � C the assertion holds for r � �� If it holds for all k � r then using
	��
� the assumption and the induction hypothesis

br�� � C

�
�� � r��X

k	�

�k exp

�
�k��X
j	�

�j

�
A
�
A � C exp

�
r��X
k	�

�k




and the desired inequality is veri�ed�
Solutions of the ODE 	�
 and steepest ascent will be compared now� Since

j	Hi � E	Hi

j � #"

the following estimates hold�

krW 	�
k� � #"� jcov�	Hi� Hj
j � #"�� 	��


For a smooth map t �� �	t
 the chain rule reads

d

dt

�

��i
W 	�	t

 �

dX
j	�

��

��i��j
W 	�	t



d

dt
�j	t
� 	��


This will be used to prove�
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Lemma ��� There are a constant C and maps ��k� such that

�	tk��
� �	tk
 � �k��rW 	�	tk

 � ��k�

k��k�k� � C��k���

Proof� If �	t
 solves 	�
 then

�	tk��
� �	tk
 �
Z tk��

tk
rW 	�	t

 dt� 	��


By the mean value theorem

�

��i
W 	�	t

 �

�

��i
W 	�	tk

 �

d

dt

�

��i
W 	�	si	t


	t� tk


for some si	t
 � �tk� t�� By 	��
 applied to t �� �	t
 and since ��	t
 � rW 	�	t


the identity holds with

��k��i �
Z dX

j	�

��

�i�j
W 	�	si	t


rW 	si	t

	t� tk
 dt�

Since jt� tkj � �k�� if tk � t �k�� and by 	��
�

j��k��ij � d #"
��k��

which implies the inequality�
These and the previous L��estimates are combined with the Gronwall lemma

to prove the main result�
Proof of Theorem ���� Let 	�t
t�� be a solution of 	�
� By 	�
 and Lemma

����

��k� � ��k��� � �krW 	��k���
 � �kg�k���

�	tk
 � �	t�k���
 � �krW 	�	tk��

 � ��k����

Hence

��n� � �	tn
 �
n��X
k	�

�k��	rW 	��k�
�rW 	�	tk


 � E�n� �
n��X
k	�

��k��

By Lemmata ��� and ����

k��n� � �	tn
k� � L
n��X
k	�

�k��k��k� � �	tk
k� � kE�n�k� � C
n��X
k	�

��k��

�
�
kE�n�k� � C

n��X
k	�

��k��



exp

�
L

nX
k	�

�k



�
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If tn � T then

k��n� � �	tn
k�� � �

�
�kE�n�k�� � C�

�
n��X
k	�

��k��


�
�
A exp	�LT 
�

By 	��
� �
�n�T �X

k	�

��k

�
A
�

�
n�T �X
k	�

�k

n�T �X
k	�

�
k � ��T
n�T �X
k	�

��k�

Together with Proposition ��� this implies

E

�
max

m�n�T �
k��m� � �	tm
k��



� f�C exp	DT 
	����T 
��C���Tg exp	�LT 


n�T �X
k	�

��k�

Since �� � � the last quantity is dominated by an expression of the form

C	� � T 
	� � exp	DT 

 exp	�LT 

n�T �X
k	�

��k� 	�!


Application of Markov�s inequality now completes the proof�
Finally� the estimate 	��
 is veri�ed�

Lemma ��� There are constants C and D such that					 ���j f��i
					 � C exp	�Dk�k�


kPk��f�k��� � Pkf�k�k� � C exp	�Dtk��
k��k��� � ��k�k��
Proof� Existence of partial derivatives and the �rst estimate will be proved si�
multaneously� By 	��
� f� �

P
k�� P

k
�g�� Since

E�	g�
 � �� �P
k
�g�� 	� 


one has

f�	x
 �
X
k��

X
x��y

�	x
�

�
P k
� 	x� y
� P k

� 	x
�� y


�
gi	y
 ��

X
k��

S
�k�
� 	x
�

Since � and k will be �xed for a while� they will be dropped�
	�
 The chain rule gives

�

��j
S
�k�
i �

X
x��y

�

��j
	x�


�
P k	x� y
� P k	x�� y


�
gi	y


�
X
x��y

	x�


�
�

��j
P k	x� y
� �

��j
P k	x�� y




gi	y


�
X
x��y

	x�

�
P k	x� y
� P k	x�� y


� �

��j
gi	y


� � R��� �R��� �R�
�� 	��
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It is easy to see that 			R���
			� 			R�
�

			 � �	 #"� � L
c	P 
k� 	��


in fact�
�

��j
	x�
 � 	x�
 ln	x�


and hence by Proposition ���� 					 ���j	x
�


					 � #"

which proves the estimate of R���� Concerning R�
� use Proposition ��� and 	��
�
	�
 Estimating R��� is cumbersome and tricky� First the partial derivatives

have to be computed� For s � S and x� y � X the local characteristic is given by

fsg	x� z
 � �xSnfsg	zSnfsg	z
	zsjzSnfsg
�
Proposition ��� for conditional Gibbs �elds yields

�

��j

�
zsjzSnfsg

�
�

�
�

��j
ln	zsjzSnfsg




	zsjzSnfsg

� 	Hj	z
� E	HjjzSnfsg

s	zsjzSnfsg

� � �s	z
	zsjzSnfsg
 	��


which implies
�

��j
fsg	x� z
 � �s	z
fsg	x� z
�

In one sweep z � X is reached from x with positive probability along precisely
one path z� � x� z�� � � � � z� � z and hence

P 	x� z
 �
�Y

s	�

fsg	zs��� zs


where it is tacitly assumed that S � f�� � � � � �g and that the sites are visited in
increasing order� By the product rule

�

��j
P 	x� z
 � P 	x� z


�X
s	�

�s	zs
 �� P 	x� z
�	x� z


where
j�	x� z
j � � #"� 	��


Repeating this argument for

P k	x� y
 �
X

z������zk��

P 	x� z�
 � � � � � P 	zk��� y
� k � ��
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gives
�

��j
P k	x� y
 �

X
z������zk��

kX
r	�

�	zr��� zr
P 	x� z�
 � � � � � P 	z���� y


where z� � x and z� � y� Rearranging summation gives

�

��j
P k	x� y
 �

kX
r	�

X
u�v

�	u� v
P 	u� v
P r��	x� u
P k�r	v� y
� 	��


	�
 Plugging 	��
 into R��� results in

R��� �
kX

r	�

X
x��u�v

	x�

�
P r��	x� u
� P r��	x�� u


�
P 	u� v
�	u� v
�X

y

P r�k	v� y
gi	y
�

By 	� 
 the last sum
P

y � � � can be replaced byX
w�y

	w

�
P k�r	v� y
� P k�r	w� y


�
gi	y


which can be estimated by �kgik�c	P 
k��� Similarly� the remaining term is
bounded by �� #"kc	P 
r��� In summary�			R���

			 � Ckc	P 
k��� 	��


Note �nally that R��� � � if k � ��
	�
 Putting 	��
� 	��
 and 	��
 together yields					

�X
k	�

�

��j
S
�k�
��i

					 � C

�
�X
k	�

c	P�

k �

�X
k	�

	k � �
c	P�

k




� C
�
	�� c	P�



�� � 	�� c	P�


��
�

� �C 	�� c	P�


�� � �C exp 	�Dk�k�


where 	��
 was used in the last line� This shows that derivatives of partial sums
converge uniformly on every compact subset of Rd� hence di�erentiation and
summation may be interchanged and the �rst inequality holds�

	�
 For the second inequality� use the triangle inequality���Pn��f�n���	y
� Pnf�n�	y

���

�
���	Pn�� � Pn
 f�n���	y


���
�
�
���Pn �f�n��� � f�n�

�
	y

���
�

� � A �B�

Setting �	s
 � ��n� � s
�
��n��� � ��n�

�
� 	��
 implies

jPn��	x� y
� Pn	x� y
j �
					
Z �

�

d

dt
P��s�	x� y
 ds

					
�

				
Z �

�
h��n��� � ��n��rP��s�	x� y
i ds

				 � �����n��� � ��n�
���
�

p
d� #"�
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Hence by 	��
�

A � C exp 	Dtn

�����n��� � ��n�

���
�
�

By 	�!
� both ��n� and ��n��� are contained in a ball B of radius C � � #"tn��

around � � R
d and by convexity �	s
� s � ��� �� as well� Hence the �rst inequality

implies

B �
����f�n��� � f�n�

�
	y

���
�
�
				
Z �

�
h��n��� � ��n��rf��s� ds

				
�

�����n��� � ��n�
���
�
C exp 	�Dtn��
 �

The estimates of A and B imply the second inequality�

� Appendix� How Close is ��t� to ��	

It is shown now that each of the initial value problems 	�
 has a unique solution
and that each solution converges to the 	unique
 maximum likelihood estimator�
Moreover estimates are given for the time one has to wait until a solution enters a
given neighbourhood of ��� This yields an estimate of the �nite time horizon T in
Theorem ��� needed to guarantee a prescribed precision of the approximation of
�� by the algorithm 	�
� This appendix is included for convenience of the reader
only since all arguments are standard�

Let k � kM denote the matrix norm�

Proposition �� Each initial value problem ��� has a unique solution �	t
� t � ��
and �	t
� �� as t�	

Proof� By Proposition ���� the estimates 	��
 and 	��
 applied to the map �	t
 �
� � t	�� � �
� one has the estimate

����� ddtrW 	�	t



�����
�

� kcov	H��	t

kMk ��	t
k� � d #"�k ��	t
k�� 	��


Hence

krW 	��
�rW 	�
k� �
Z �

�

����� ddtrW 	�	t



�����
�

dt � d #"�k�� � �k�

and thus the right hand side of 	�
 is Lipschitz continuous� In particular� each
initial value problem 	�
 has a unique solution �	t
� t � �� Solutions of 	�

converge to �� as t � 	 which follows from elementary stability theory� We
have

d

dt
W � �	t
 � �jrW 	�	t

j�
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by the chain rule and 	�
� Hence W is a global Ljapunov function for the gradient
system 	�
 and� moreover� �� is the only critical point� This completes the proof�

A rough estimate for the distance between the solution of the di�erential
equation 	�
 and the limit �� will be derived now� It will �rst be stated in a
general form� Consider the gradient system

��	t
 � �rV 	�	t

� �	�
 � ��� 	��


Throughout the discussion the following hypothesis will be assumed�

Hypothesis ��
��� V � C
	Rn�R
� V 	�
 � �� V 	�
 � � if � 
� �
��� The Hessean matrix C of V is positive de
nite at � � �
��� For each � � �� �� � inffkrV 	�
k�� � k�k�� � �g � ��

Note that � � R
d now plays the role of �� in the previous discussion� Hence the

maximal solution � of 	��
 is de�ned on ���	
 and �	t
� � as t�	� Let

M
 � sup
n
j�i�j�kV 	�
j � i� j� k � �� � � � � d�� � R

d� k�k� � �
o

and let �	�
 denote the smallest eigenvalue of C	�
� By 	�
 in Hypothesis ���
one has �	�
 � �� Finally set

r � min

�
��

�	�


�M
n���


�

The following result yields the desired estimate for the distance between �	t
 and
the optimal ���

Theorem �� Assume that the above hypothesis hold Let 	�	t

 be the solution
of ���� and

�	��
 �
V 	��


�r
�

Then the following holds	
�i� If k�	��
k� � r for some �� � R� then

k�	t
k� � r � exp
�
��	�


�
	t� ��




for t � ���

�ii� In fact�
k�	�	��

k� � r�

The following is straightforward� For a d�m�matrix A let kAk� � maxi�j jAi�jj�
Lemma �� For any d�m�matrix A and any orthogonal d� d�matrix T �

kTAk� �
p
d � kAk�� kATk� �

p
d � kAk��
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The next Lemma is of Gerschgorin type� Let �	M
 denote the set of eigenvalues
	in the complex plane
 of a complex d� d�matrix M �

Lemma �� Let M be a complex d� d�matrix Then

�	M
 �
d�
i	�

Mii �B	ri


where B	ri
 is the closed ball in the complex plain with radius ri and ri �P
j 		i jMijj

Proof� Let � be an eigenvalue of M with eigenvector v 
� �� Let further i denote
the index with jvij � maxj jvjj� Then PjMijvj � �vi implies

jMii � �jjvij �
						
X
j 		i

Mijvj

						 � rijvij

and hence jMii � �j � ri� This completes the proof�
Next the Hessean matrix is estimated�

Lemma � For v� w � R
d� kvk� � �� kwk� � ��

jCij	v
� Cij	w
j �
p
nM
kv � wk� for all i� j�

Proof� This follows from the elementary computation				
Z �

�
hrCij	tv � 	�� t
w
� v � wi dt

				 � sup
kzk���

krCij	z
k�kv � wk�

� sup
kzk���

vuut dX
k	�

	�k�i�jW 	z

�kv � wk� �
p
nM
kv � wk��

The last Lemma estimates eigenvalues�

Lemma �� Suppose that k�k� � r Then

�	�
 � �	�
	��

Proof� Let k�k� � r� By Lemma ����

C	�
 � C	�
 � $A� k $Ak� �
p
d �M
 � r�

There is an orthogonal matrix T such that T �C	�
T � D� where T � denotes
the transpose of T and D is the diagonal matrix with the eigenvalues ��� � � � � �d
as diagonal elements� we may assume �� � �	�
 � �� Further� T �C	�
T �
D � T � $AT �� D � A and by Lemma ����

kAk� �
p
d �
p
dk $Ak� � n
��M
r�
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Since �	C	�

 � �	T �C	�
T 
� Lemma ��� gives

�	�
 �
n�
i	�

	�i � Aii �B	ri

�

where ri �
P

j 		i jAijj � 	d� �
kAk�� By the de�nition of r�

�	�
 � �� � jA�� � 	d� �
kAk� � �� � dkAk�
� �	�
� nkAk� � �	�
� d���M
r � �	�
	�

which had to be shown�
Now the preparations for the proof of the Theorem are complete�
Proof of Theorem ���� For kvk � r Lemma ��! yields the estimate

hv�rV 	v
i �
�
v�
Z �

�
C	tv
 dt � v

�
�
Z �

�
hv� C	tv
vi dt

�
Z
�	tv
kvk�� dt �

�	�


�
kvk���

For the proof of �i� assume that k�	��
k� � r� The set

I � fs � ����	
 � k�	t
k � r for all t � ���� s�g

is a closed interval� We are going to prove I � ����	
� If �	��
 � � then the
solution stays there and the assertion clearly holds� Otherwise �	s
 
� � for some
s � ��� Let U	t
 � k�	t
k�� for t � ��� If s � I then

�U	s
 � h�	s
� ��	s
i � �h�	s
�rV 	�	s

i
� ��	�


�
k�	s
k�� � ��	�
U	s
 � ��

Hence I is also open in ����	
� Since �� � I this implies I � ����	
� The
estimate for �U implies

U	s
 � U	��
 exp	��	�
	s� ��

 for s � ���

and hence

k�	s
k� � k�	��
 exp
�
��	�


�
	s� ��





� r exp

�
��	�


�
	s� ��




for s � ��

which proves �i��
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For the proof of �ii� assume k�	�	��

k� � r� Then k�	s
k� � r on ��� �	��
�
by part �i�� By the very de�nition of �r and 	��
�

d

ds
V 	�	s

 � �krV 	�	s

k�� � ��r

for s � ��� �	��
� and hence

V 	�	�	��


 � V 	��
� �r�	��
 � �

which contradicts �	�	��

 
� � and the �rst hypothesis� We conclude k�	�	��

k� �
r and the proof is complete�
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