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Abstract

Markov random fields serve as natural models for patterns or textures
with random fluctuations at small scale. Given a general form of such
fields each class of pattern corresponds to a collection of model parameters
which critically determines the abilitity of algorithms to segment or clas-
sify. Statistical inference on parameters is based on (dependent) data given
by a portion of patterns inside some observation window. Unfortunately,
the corresponding maximum likelihood estimators are computationally in-
tractable by classical methods. Until recently, they even were regarded
as intractable at all. In recent years stochastic gradient algorithms for
their computation were proposed and studied. An attractive class of such
algorithms are those derived from adaptive algorithms, wellknown in en-
geneering for a long time.

We derive convergence theorems following closely the lines proposed
by M. METIVIER and P. PRIOURET (1987). This allows a transparent
(albeit somewhat technical) treatment. The results are weaker than those
obtained by L. YOUNES (1988).

1 Introduction

Markov random fields serve as flexible models in image analysis, speech recogni-
tion and many other fields. In particular, textures with random fluctuations at
small scale are reasonably described by random fields. A large class of recursive
neural networks can be reinterpreted in this framework as well.

Let a pattern be represented by a finite rectangular array @ = (z4)scs of
‘greyvalues’ or ‘colours’ s € G, in ‘pixels’ s € S where all sets G5 and S are
finite. A (finite) random field is a strictly positive probability measure II on the
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(finite) space X = [],cg G of all configurations x. Taking logarithms shows that
IT is of the Gibbsian form

() = Z ' exp(—~K(2), Z = Y exp(~K(2)), (1)

with an energy function K on X. ‘Modelling’ a certain type of pattern or texture
amounts to the choice of a random field, typical samples of which share suffi-
ciently many statistical properties with samples from the real pattern. Hence the
choice of K usually is based on statistical inference besides prior knowledge. A
nonparametric approach is not feasible and we restrict attention to the (linear)
parametric case. We consider families

II={II(;9):9 €6},

of random fields on X, where © C R? is the parameter space and each distribution
is a Gibbs field of the exponential form

(- 0) = Z(0) " exp (9, H)),9 € ©.

The energy is given by Ky = —(, H) where H = (Hy,...,Hy) is a vector of
functions on X, ¥ € © C R?, and (¥, H) is the Euclidean inner product.

Given a sample z € X, a mazimum likelithood estimator 19(:1:) maximizes the
(log-) likelihood function

L(z,-): © — R, ¥ — InTI(xz;9).

The covariance of H; and H; under II(+; ) will be denoted by cov(H;, H;; V)
and the corresponding covariance matrix by cov(H;v). Straightforward calcula-
tions give ([15], Prop. 13.2.1)

Proposition 1.1 Let © be open. The likelihood function ¥ — L(x; 1) is infinitely
often continuously differentiable for every x. The gradient is given by

0
0v;

L(x;9) = Hi(x) — E (Hi;0) (2)

and the Hessean matrixz is given by

82
89,00,

L(z;9) = —cov (H;, H;; ).

In particular, the likelihood function is concave.

This result tells us that direct computation of ML estimators in the present
context is not possible. In fact, the expectation in the gradient is a sum over
X which may have cardinality of order 2562°¢%256_ Because of the mentioned
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misgivings, ML estimators on large spaces until recently were thought to be
computationally intractable. Therefore, J. BESAG in [2], [3] suggested the coding
and the pseudo-likelihood method where the full likelihood function is replaced
by ‘pseudo-likelihoods’ based on conditional probabilities only. These estimators
are computationally feasible in many cases (cf. [15] and also [9]).

In the last decade, accompanied by the development of learning algorithms
for Neural Networks and encouraged by the increase of computer power, recursive
algorithms for the computation or at least apprioximation of maximum likelihood
estimators themselves were studied. Many of them are related to basic gradient
ascent (which is ill-famed for poor convergence). More sophisticated methods
from numerical analysis violate the requirement of ‘locality’ which basically means
that the updates can be computed component by component from the respective
preceding components. In this paper, we study the asymptotics of adaptive
algorithms which we hasten to define now.

We want to compute maximum likelihood estimators for Gibbs fields, i.e.
maximize the likelihood function W = L(z;-) for a fixed sample z € X. The
starting point is steepest ascent

Die+1) = Iy + V1 VW (D)) = Dy + Vet (H(x) — E(H; 19(16))) (3)

with gains v (possibly varying in time). Given (o) € R4, the adaptive algorithm
is recursively defined by

Vps1y = Dy + Ve (H(x) — H(Epyr))
P(ii=zk=2) = P, 2) (4)

where Py, is the Markov kernel of one sweep of the Gibbs sampler for II(-; J)).
The Gibbs sampler is a Markov process on X which via a law of large numbers
gives estimates of the expectations appearing in (3). It will be defined below.
Note that (&, Ju))k>0 is a Markov process taking values in X x R? (and living
on a suitable probability space (€2, F,P)). We shall be mainly interested in the
marginal process (Y())k>0-

Let us briefly comment on the philosophy behind. Consider the ordinary
differential equation (ODE)

0(t) = VIW(0(t)), t > 0, 0(0) = Vo), (5)

where 6 = df/dt. Under mild assumptions on W, each of these initial value
problems has a unique solution (6(?)),, and 6(t) — ¥, as t — oo (cf. Proposition

6.1). Hence a process (ﬂ(k)) converges to ¥, if it stays near a solution. Steepest
ascent can be interpreted as an Euler method for the discrete approximation of
solutions of the ODE. Similarly, the paths of (4) will be compared to the solutions
of (5).
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Coupling the Gibbs sampler and an ascent algorithm like in (4 ) amounts
to adaptive algorithms which play an important role in fields of engineering like
system identification, signal modelling, adaptive filtering and others. They re-
ceived considerable interest in recent years and were studied by METIVIER and
PRIOURET (1987), [13], in a general framework. The circle of such ideas is illus-
trated, surveyed and extended in the monograph BENVENISTE, METIVIER and
PRIOURET (1990), [1], an extended English version of the French predecessor from
(1987). The monograph FREIDLIN and WENTZELL (1984), [6], had considerable
influence on the development of the theory.

The theory of adaptive algorithms was applied to ML estimation in imaging
by L. YOUNEs (1988) - (1989), [16], [17], [18]. In some respects, the theory
gets simpler in this setting due to the boundedness of the energy function K.
On the other hand, some assumptions from the general theory are not met and
therefore additional estimates are required. YOUNES (1988), [17], proves almost
sure convergence developing a heavy technical machinery. We decided to steer
a middle course: we shall follow the lines of METIVIER, PRIOURET (1987), [13],
closely in order not to obscure the main ideas by too many technical details. On
the other hand the results will be weaker than YOUNES’.

The reader we have in mind should be acquainted with general probability
spaces and conditional expectations. He or she should also have met discrete-time,
continuous-space Markov processes and martingales. Concerning martingale the-
ory, part of the six pages [14], pp. 42-47, is sufficient. For more background
information the reader may consult [15] and [7].

2 The Gibbs Sampler

To complete the definition of the algorithm (4) the Gibbs sampler is introduced
now. Let IT be a Gibbs field of the form (1) and consider the Markov chain
recursively defined by the rules:

1. Enumerate the sites in S, i.e. let S ={1,...,[S|}.

2. Choose an initial configuration z(®) € X.

3. Given x®)| pick a greyvalue y; € G; at random from II(X; = +|X; =
xgk),j # 1). Given the configuration updated in the last pizel repeat this
step for s = 2,...,|S|. Now a ‘sweep’ is finished with the result z(*+1),

The symbol |S| denotes the number of elements in S, the enumeration of S
is called a deterministic visiting scheme; the projections X — Gj, x — x; are
denoted by X; and II(A|B) is the conditional probability of A given B. Formally,
the Gibbs sampler is a homogeneous Markov chain with transition probability

P(x,y) =11, ... g,
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with the pixelwise transitions, called local characteristics, given by

(X =yl Xj = 25,5 # k) i ys\ ey = ws\(hy
Hk (.I', y) -
0 otherwise.

The conditional probabilites are easily computed:

(X =yl X; =2;,] #k) = Zk_1 exp(—K (yrrs\(k}), Zr = Zexp(K(zka\{k}).
2k

Here we adopted the notation from [15]: the symbol y,x g\ (1} denotes the config-
uration in X with "™ component 3, and which equals z off k.

Let & denote the random configuration () after the i*" sweep. The laws
Po¢&; ! of the variables & approximate the unique invariant (and even reversible)
distribution IT and and the process obeys the law of large numbers ([15], Thm.
5.1.4):

Theorem 2.1 The Gibbs sampler fulfills
P& =2) — I(x), i — oo, for every x € X.

and for every function f on X and every ¢ > 0, there is a constant ¢ such that

P (‘%ff(&) ~E(f;1)

. ) < - exp(IS|A). (6)

The constant A is the maximal local oscillation of the energy function K of II
given by

A =max{|K(z) — K(y)| : zs\{s} = Ys\{s},s € S}
and ¢ = 13||f]|? for the L'-norm ||f|| = ¥, |f(z)|. Random visiting schemes are
in use as well (and sometimes even preferable) but in the discussion below only
deterministic ones will appear. The mazximal d-dimensional oscillation

A =max {[|H(z) - H(y)|l2: v,y € X} (7)

will be needed too.

3 Main Results

The main results will be stated and discussed in this section. The proofs will be
given later. Throughout the discussion it will be assumed that

1>7>7%>...>0, > 7 =oc. (8)
k=1

This includes the case of constant gain v, = ~. Only Gibbs samplers with
deterministic visiting scheme, as introduced above, will be adopted. Concerning
the ODE (5) the assumptions will be:
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(1) © = R4,
Hypothesis 3.1 (2) cov(H; ) is positive definite for each ¥ € R%,
(3) the function W attains its (unique) mazimum at 9, € R%.

The last two assumptions are fulfilled with high probability, if the family of
distributions in question is identifyable and the sample z is taken on a sufficiently
large observation window S, by recent consistency results ([4], for a summary see
[15] and [7]).

For a finite time horizon 7" > 0 let

n(T)=min{n >0:v + ...+ v > T}

We shall use the notation ¢, = >3, k. Let () and (6(t)) be given by (4) and
(5), respectively. A weak approximation theorem can be stated as follows:

Theorem 3.2 There are constants C', D and L such that for every T > 0 and
e>0

P < sup Hﬁ(m) - G(tm)H2 > 6) < C(l +17) (1 + eDT) et 7§) o

m<n(T) e? =1

C
< STO+T) (1+eP") e,

Theorem 3.2 generalizes results in DEREVETSKII and FRADKOV (1974) for
independent &;. The dependent case was studied first in LJuNG (1977) - (1978).
Better bounds can be obtained tracking the constants more carefully than we
shall do (cf. for example (27)).

Remark. The bound on the right hand side tends to 0 as y; tends to 0. The
constants depend continuously on ||J(g)||2 by (19) below. Hence there are common
constants for all ¥y in a given compact set @ C R%. Assume now Y32, 77 < 0o
and suppose that at time r the algorithm is restarted in ). The theorem applied

to the process (5”’“19(”’“))@0 with gains 7, shows that the approximation

gets better and better as r tends to infinity since 3", 72 tends to 0. Let now Qg
denote the set of those w € ) for which the path (ﬁ(k)(w))k>0 returns to () again
and again. The above observation can be used to prove almost sure convergence
to U, on Q.

In the present case 6(t) — ¥, for every solution of the ODE (5). We give a
more precise quantitative estimate. Let us introduce some notation before. Let
A(Uy) < 0 be the largest eigenvalue of cov(H;v.),

My = sup{|0:;0;0,W (V)| : i, j, k,=1,...,d;9 € R |0 — ¥,]]2 < 1},

: [A(.)]
T:mln{l,W .
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and finally
Vo = f{IVW@)|3: 9 — 0.5 = p}-

Then

Lemma 3.3 Each initial value problem (5) has a unique solution (0(t))i>o and
0(t) — 9. as t — oo. Moreover,

[A0.)]

5 (t—7)> fort>r1

1608) = 0.2 < rexp (—

where T = |W (o) — W(9.)|/7r-
All this is proved in the Appendix. By these results the following makes sense.

Corollary 3.4 Given € > 0 choose T > 0 such that ||0(T) — V.||2 < e. Then

P (Hﬂ(nm) — U,

,>2) < C(m,T)

where C(y1,T) — 0 as y; — 0.
For special choices of gains almost sure convergence holds.

Theorem 3.5 (YOUNES (1988)) Let v, = (uk)™', u > 20A2. Then
V) — ¥, P —almost everywhere.

As already mentioned, the proof of this strong result is fairly technical and will
not be given here. Nevertheless, the main idea is similar to that presented below.

The following informal argument might nourish the hope that the program
can be carried out: We know that the Gibbs sampler as a time-homogeneous
Markov process obeys the law of large numbers, i.e means w.r.t. II(-;4) can be
approximated by means in time (cf. Theorem 2.1). Let v > 0 be a constant gain.
Choose r > 0 and n > 0. Then

n—1
79(7"—1—71) = 19(r) + Z (H(x) - H(§r+k+1))
k=0

= Iy + (n7) (H(x) — %nzl H (€r+k+1)>

k=0
~ U+ () VW ()

The approximation holds if (§r+k)z;3 is approximately stationary and n is large.
For the former, the parameters ¥(,,x) should vary rather slowly which is the case
for small gain and small n. The proper balance between the requirements ‘n
small’ and ‘n large’ is one of the main problems in the proof.
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4 Error Decomposition and L?-Estimates

Algorithm (4) is interpreted as steepest ascent perturbed by additive noise. The
noise term is decomposed into a sum of convenient terms by means of the Poisson
equation and L?-estimates of the single terms are derived. These are the basic
ingredients for the proof of the main result.

4.1 Error Decomposition

Since (4) can be written in the form

Ierry = Oy + Vs (VW (V) + E (H;0)) — H (Ee41)) (9)

it amounts to gradient ascent perturbed by (non-Gaussian, non-white) noise

9 = 9 (G159 » 9(w;9) = E(H; 0) — H(x).

Control of the error term is based on a clever decomposition. It will be shown
that ¢ can be written in the form

9(59) = fo— Py fo (10)

where Py is the Markov kernel of one sweep of the Gibbs sampler for 1y = II(-; )
and the maps fy fulfill (I — Py) fy = go (¢ will be written as a subscript if
convenient). By (10) the error takes the form

9y = fey Eev1) — Prfry (Eeg1)

where f) = fﬁ(k) etc.. The cumulated error in 941y can be decomposed into
four terms:

n—1
Eny = I;)%H (E (H; 19(k)) - H (flcﬂ))

n—1
= Z Vk+1 (f(k) (&k+1) = Prfiwy (gk))
k=0

n—1

+ > Vet (Pkf(k) (&) — Pr—1foe1) (fk)) (11)
k=0
n—1

+ > (V1 — ) Pea feeny (&)

k=0
+ NPofo) (§0) = Pt fin-1) (&n=1) -

These terms will be estimated separately in L?. Before, the decomposition is
justified. In the following proof and many estimates below the contraction coef-
ficient ¢(P) of a Markov kernel P on a finite space X will be used. It is given
by

¢(P) = max||P(z,-) — P(y, )| (12)
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where for probability measures p and v the total variation of their difference is

=il = >_ In(w) = v(@)].

zeX
It fulfills the basic inequalities
|uP —vP| < |lp—v|-e(P), c(PQ) < c(P)e(@Q) (13)

(for all basic facts concerning contraction coefficients cf. [15]. Section 4.2). Now
we can prove

Lemma 4.1 Let II be a random field, P a Markov kernel and g a function on
X. Suppose that ¢(P) < 1, ILP =11 and E(g;I1) = 0. Then there is a function f
on X which solves the Poisson equation

(I-P)f=g

This is a standard result from the potential theory of Markov chains.
Proof. Define formally the potential kernel of P by G = 37, P* and set

f(z) = Gy(). (14)
Plainly, G = I + PG, and if the infinite series (14) exists,
f—-Pf=Gg—PGg=Gg—(Gg—yg)=gyg

as desired. Due to the assumptions,

Gy(x)] = > PF(x,)g — IIP*g
< X () - ) (15
< 2|lgllee Y e(P)".

k>0

Since ¢(P) < 1 the last series converges which completes the proof.

4.2 Preliminary Estimates

In order to derive the announced LZ—egtimates, some preliminary estimates are
needed. The d-dimensional oscillation A was introduced in (7).
The first estimates are obvious:

H19(lc+1)—19(lc)H2 < Avep (16)

[Imllz < Pyl + A 7 (17)
P

lgslla < A (18)
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It is easily seen that c¢(Py) < 1—exp(aAl[d]2) ([15], (5.4)), and hence by (17),
(1~ e(P)) < exp (oA ll2) exp (08%) < Cexp(Dt). (19
The following estimates are less obvious.

Lemma 4.2 There are constants C' and D such that
Hf(k) HQ < C exp(Dtk) (20)
HPk-i—lf(k—i—l) - Plcf(k)H2 < Cexp(Dtyq) Hﬁ(kﬂ) - 19(k)H

Proof. By (15) and (18),

2

I foll2 < 2A(1 — ¢(Py))

Hence (19) implies i
[ fxyll2 < 2AC exp(Dty,).
The proof of (21) is technical and lengthy and hence will be postponed to Section

5, Lemma 5.3. For the moment, take it for granted.
Let us finally note the simple but useful relation

D
> a0,
j=1

(Za]> Za] ||¢J||2 (22)

2

for a; > 0 and ¢; € R% If all a; vanish there is nothing to show; otherwise it
amounts to a modified definition of convexity.

4.3 L2-Estimates

L*-estimates for the four sums in (11) will be derived now. The first one is most
interesting. Set

zml( (€k41) = Pufiwy (&)

Lemma 4.3 There are constants C and D such that

(max HS ) ) < Cgexp(Dtk)ﬁH.
k=0

m<n

Proof. First we shall show that S = (S(n)) - is a martingale. To this end,

let F, denote the o-field generated by &,...,&,. Note that Jq),...,0q) are
Fn-measurable as well. By construction of the process,

E (f(k) (Ekt1) |~7:k) = Pifuy (&) -
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Hence the term in S(,) with index k¥ = n — 1 vanishes conditioned on F,. The
other summands are F,-measurable and hence invariant under conditioning. This
proves the martingale property

E (St 17 ) = Stu-).
By Jensen’s inequality,
€ ([£ n)]}) = € (E (4o s[5 ))
> € (E (| )],15)") =€ (| P 0)]])

By orthogonality of increments ([14], Lemma 3.1.1),

n—1
e (js0') =& (3 o[t — swien)])
=0

By (22), the previous estimate, and (20), one may proceed with
n—1

n—1
E(IISm13) < 2E (Z %3+1||f<k)(§<k+1)||3> <20 ) Vi1 exp(2Dty).
k=0 k=0

The uniform estimate in m < n finally follows from Doob’s L2-inequality ([14],
Lemma 3.1.4):

E <g}§7§ ||5(m)||§> = 4E (IISwl3)

This completes the proof.
The remaining three estimates are straightforward.

Lemma 4.4 There are constants C' and D such that
ap = H%H (Pkf(k)(fk) - Pkflfkfl(fk)) H2 C exp(Dty)7i
b = H(’ch+1 - ’Yk)Pk—lf(kfl)(gk)H2 < Cexp(Dtg—1)(Ves1 — )
o = |nPofo) (&) - 'annflf(n—l)(fnfl)‘t < Cexp(2Dt, 1) (72— 1)

Proof. By (21) and (17),

IN

H%H(Pkf(k)(fk) - Pkflf(k—l)(fk)H2
< Y1 Cll9w) — Y|l exp(Dty) < C'v; exp(Dty,)
which proves the first estimate. The second one follows from (20). The third one

is implied by (20) and (22) with p =2, a; = 1.
Now we can put things together to derive the L2-estimate of the total error.
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Proposition 4.5 There are constants C' and D such that

E <13n13§||5<m>||§> < Cexp(Di,-1) (1 + Z’m) <Z 72) :
= k=1

Proof. We shall use (11) and Lemmata 4.3 and 4.4. By (22) for p =4 and a; =1,

2
E (max €13
n—1 2 n—1 2
< 4 (E <mgx ||S(m)||§> + (Z ak> + <Z bk> + cn> .
msn k=1 k=1

Plainly,
n—1 2 n—1 2
<Z ak> < C (Z 7,% exp(Dtk)> < exp(2Dt, <Z 'yk>
k=1 k=1
n—1 2 n—1 2
(Z bk) < C (Z(7k+1 — V) eXP(Dtk1)>
k=1

k=1
< Cexp(2Dty_o)(yn — 71)2 < C’exp(2Dtn_2)wf

Summation now gives the desired result.
For a finite time horizon the estimate boils down to

Corollary 4.6 There are constants C' and D such that for every T > 0,
n(T)

E < max ||5(m)||§> < CePT(1+yT) Z 7,%.
k=1

m<n(T)

5 Proof of the Approximation Theorem

We complete now the proof of Theorem 3.2 and append the missing estimates.
The main tool is the following discrete Gronwall lemma.

Lemma 5.1 If the real sequence (by)r>o satisfies
by =0, b, < C’—l—DZ%bk_l for r=1,...,n,
k=1
with C, D > 0 then

b, < Cexp <DZ%>.

k=1
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Proof. If C' or D vanishes there is nothing to show. Hence we may assume that
D =1 (otherwise we modify the ;). First we show

r k-1 r
1+Z’ykexp<2fyj)§exp<2'yk>, r=1,...,n. (23)
k=1 j=1 k=1

For r = 1 this boils down to 147, < exp(y;) which plainly is true. The induction
step reads

exp (g ’yk> = exp <§T: %) exp(Yri1)

k=1

> exp <Z %) + Y41 €XP ( %)
k

(S (£4)) (5

(5]
) >

The first inequality follows from exp(z 1 — 2 and the second one from the

induction hypothesis.
Since by < C' the assertion holds for » = 1. If it holds for all £ < r then using
(23), the assumption and the induction hypothesis

r+1 k—1 r+1
by <O (1 + nyk exp (Z 'y]>) < Cexp <Z fyk>
Jj=1 k=1

and the desired inequality is verified.
Solutions of the ODE (5) and steepest ascent will be compared now. Since

|(H; — E(H;))| < A
the following estimates hold:
[SW )l < A, [cova(Hs, Hy)| < A% (21)
For a smooth map t — () the chain rule reads

O WD) 0,00 )

0 ) =3
dt 0, 2 99,00,

This will be used to prove:
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Lemma 5.2 There are a constant C' and maps o) such that

Oltirs) = 0(t) = Wt VW (O(t) + age
||a(k)||2 < 0’7134-1-

Proof. If 0(t) solves (5) then
tht1
Otn) —0(t) = [ VW) dt (26)
k
By the mean value theorem

0 0 d 0
57V (0(0) = 5 W 00)) + 52 W (0 ()(t = 1)

for some s;(t) € [tg,t]. By (25) applied to ¢ — 6(t) and since 8(t) = VW (6(t))
the identity holds with

(1)) VW (s;())(t — tx) dt.

Since |t — t| < Ygq1 if tp <t <jy1 and by (24),
|@(k),z'| < dA?”Y/zH

which implies the inequality.

These and the previous L?-estimates are combined with the Gronwall lemma
to prove the main result.

Proof of Theorem 3.2. Let (6;)¢>o be a solution of (5). By (9) and Lemma
5.2,

ﬁ(k) = 19( +’kaW(19 )+’ykg(k 1)
O(t—1)) + VW (0(te-1)) + o—1).

>
—~

~
=
S—

Hence

n—1 n—1

Vi) — O Z%H VW () = VIW(O(tk))) + Ewy — D_ o).
By Lemmata 5.2 and 5.1,

n—1 n—1
[0y = 0(t)ll. < L Z Yestl Oy = OCtR)llz + 1E€mll2 + C 30 %

(||f: ||2+02m1) exp (LZ%) -

k=1

IN
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If ¢, <7T then

n—1 2
[y = 0(ta) I3 < 2 <||5(n>||§ +C? (Z %3+1> ) exp(2LT).
k=0
By (22),
n(T) 2
(Zvﬁ) < Z%Z%<%TZ%
k=1 k=1 =

Together with Proposition 4.5 this 1mp11es

n(T)
E < gla(x |19 (m) (tm)||§> < {20 exp(DT)(1+7T)+2C*y, T} exp(2LT) > V2,
m k=1
Since y; < 1 the last quantity is dominated by an expression of the form
n(T)
C(1+T)(1+ exp(DT)) exp(2LT) > ;. (27)
k=1

Application of Markov’s inequality now completes the proof.
Finally, the estimate (21) is verified.

Lemma 5.3 There are constants C and D such that

0
a—ﬁjfﬁ,i

| Priifierr) — Pefaylle < Cexp(2Dteg1) [[9rg1) — Iiyll2-

Proof. Existence of partial derivatives and the first estimate will be proved si-
multaneously. By (14), fs = X>0 Pkgs. Since

Es(gs) = 0, TyP} gy, (28)

< Cexp(2D||9||2)

one has
ZZHﬁ (Pﬂgﬁy) Py (!, ?J) Zsﬁ
k>0 2,y k>0

Since v and k will be fixed for a while, they will be dropped.
(1) The chain rule gives

8?9 st = 23?9 (') (PH(a,y) = PH',9)) gi(y)

+ZH <iP’“( )—a%P’“( ))gi(y)

+ ZH (P'C (x,y) — Pk(x',y)) aiﬁ]gz(y)

_ . R<1> L R® 4 RO (29)
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It is easy to see that

[RO| +|RD| < 2(A% + L)e(P)¥; (30)
in fact,
aiﬁjﬂ(x') = II(2") InII(z")

and hence by Proposition 1.1,

) _
9 e < A
‘aﬁj ()] <

which proves the estimate of RY). Concerning R use Proposition 1.1 and (24).
(2) Estimating R® is cumbersome and tricky. First the partial derivatives
have to be computed. For s € S and x,y € X the local characteristic is given by

H{S}(IE, Z) = 1175\{5}:25\{3} (Z)H(ZS|ZS\{S}).
Proposition 1.1 for conditional Gibbs fields yields

0 0
8—19]-H (ZS|ZS\{5}) = <8—19] In H(ZS|ZS\{5})> (25 )25\ {5y

= (H;(2) — E(Hj|25\(s))) s (2] 25\ (s})

= ¢s(2)I(25]25\(s}) (31)
which implies 5
(2, 2) = ¢s(2) 5y (2, 2).

0V,
In one sweep z € X is reached from x with positive probability along precisely
one path zg =z, z1,..., 2, = 2 and hence

P(l’, Z) - H H{s}(zsfla Zs)

s=1

where it is tacitly assumed that S = {1,...,0} and that the sites are visited in
increasing order. By the product rule

0

gy, L (0:2) = Ple:2) 3 0u(a) =: Pz, 2)6(x: 2)

where

|6z, 2)| < oA (32)

Repeating this argument for

P¥(z,y) = > Px,z)-...-Plz-1,y), k> 1,

Rlyeeey Rk—1
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gives

o B -
aTP (z,y) = Z Z¢(Zr—lazr)P($=Z1) o Plzoo1,y)

Z1yeesZ—1 7=1

where zp = x and z, = y. Rearranging summation gives

0

ﬁpk z,y) ZZ¢ w, v)P(u,v) P" (z,u) P* " (v, y). (33)
r=1 u,v

(3) Plugging (33) into R® results in

Z > 1) (P (w,u) = PN w)) Plu,v)g(u, 0)->- PTM (0, ) gi(y).

r=1z" u,v Y

By (28) the last sum ), ... can be replaced by
G ) (P (0, y) = P (w,9)) 9i(y)

which can be estimated by 2|g;||scc(P)* 1.

bounded by 20Ake(P) . In summary,

Similarly, the remaining term is

[R®)| < Che(P)* . (34)

Note finally that R® =0 if k = 0.
(4) Putting (29), (30) and (34) together yields

0 < C @30 o(Py)F + gjo(k + 1)0(1%)'“)

— 0V; _ =
= C(A—c@) "+ 1 -c(Py)?)
< 20 (1 —c(Py))? < 2C exp (2D||9]|2)

S’ﬁz

where (19) was used in the last line. This shows that derivatives of partial sums
converge uniformly on every compact subset of RY; hence differentiation and
summation may be interchanged and the first inequality holds.

(5) For the second inequality, use the triangle inequality
) Pn+1f(n+1)(y) - Pnf(n)(y)H
H(Pn—l—l - P) f(n—l—l)(y)
A+ B.
Setting 7,0(8) = 19(n) +s (19(n+1) — ?9(,1)), (32) implies

IN

n (f(n-H) - f(n)) (y)H2

Ld
Pastoa) = Paa =| [ 5Pt

1
‘ /0 (1) = Vm)s VPy(s) (2, y)) ds

< Hﬁ(nJrl) - 19(@”2 VdoA.
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Hence by (20),
A < Cexp(Dty)

(nt1) — ﬁ(n)HZ :

By (17), both ¥(,) and ¥(,1) are contained in a ball B of radius C' + Aty
around 0 € R? and by convexity 1(s), s € [0, 1] as well. Hence the first inequality
implies

Sy
IN

| (Fnny = fom) W], = ‘/01<?9<n+1) = V), Vf(s) ds
< Hﬁ(nﬂ) - 19(n)H2 Cexp (2Dt 1) .

The estimates of A and B imply the second inequality.

6 Appendix: How Close is 6(t) to 9.7

It is shown now that each of the initial value problems (5) has a unique solution
and that each solution converges to the (unique) maximum likelihood estimator.
Moreover estimates are given for the time one has to wait until a solution enters a
given neighbourhood of ¥,. This yields an estimate of the finite time horizon 71" in
Theorem 3.2 needed to guarantee a prescribed precision of the approximation of
v, by the algorithm (4). This appendix is included for convenience of the reader
only since all arguments are standard.

Let || - [|ar denote the matrix norm.

Proposition 6.1 FEach initial value problem (5) has a unique solution 0(t),t > 0,
and 0(t) — 0, as t — oo.

Proof. By Proposition 1.1, the estimates (24) and (25) applied to the map J(t) =
¥ + (0" — ¥), one has the estimate

H—vw < oo H N sl D0 < AN (35)
Hence
VW) = TWWb < [ | Sowe)| d < di?| — o,

and thus the right hand side of (5) is Lipschitz continuous. In particular, each
initial value problem (5) has a unique solution 6(t),¢ > 0. Solutions of (5)
converge to ¥, as t — oo which follows from elementary stability theory: We
have

d 2
W o 0(t) = —[VIV(0(1))|
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by the chain rule and (5). Hence W is a global Ljapunov function for the gradient
system (5) and, moreover, ¥, is the only critical point. This completes the proof.

A rough estimate for the distance between the solution of the differential
equation (5) and the limit 9, will be derived now. It will first be stated in a
general form. Consider the gradient system

O(t) = —VV(0(t)), (0) = V. (36)
Throughout the discussion the following hypothesis will be assumed:

(1) V € C}3(R",R), V(0) =0, V(9) > 0 if 9 # 0.
Hypothesis 6.2 (2) The Hessean matriz C' of V' is positive definite at 9 = 0.
(3) For each p >0, v, = inf{|[VV(I)[3 : [|9]3 = p} > 0.

Note that 0 € R? now plays the role of ¥, in the previous discussion. Hence the
maximal solution @ of (36) is defined on [0,00) and 6(¢) — 0 as t — oco. Let

M, = sup {|aiajakvw)| i k=1,...,d;0 € R ||, < 1}

and let A(0) denote the smallest eigenvalue of C'(¥). By (2) in Hypothesis 6.2
one has A(0) > 0. Finally set

. A(0)
r = mln{l, W} .

The following result yields the desired estimate for the distance between 6(¢) and
the optimal ,.

Theorem 6.3 Assume that the above hypothesis hold. Let (0(t)) be the solution
of (36) and
V(W)

Yr

(o) =

Then the following holds:
(i) If ||0(7o)||2 < 7 for some 79 € R, then

10@)]l> <7 - exp <—@(t - 7'0)> Jor t > 7.
(ii) In fact,
10(7 (Do) ||2 < 7.

The following is straightforward. For a d x m-matrix A let ||A]| = max; ; |4, ;|

Lemma 6.4 For any d X m-matrix A and any orthogonal d x d-matriz T,

ITAlloe < V- [|Alloes AT |loo < Vd - [|Aljoo-
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The next Lemma is of Gerschgorin type. Let o(M) denote the set of eigenvalues
(in the complex plane) of a complex d x d-matrix M.

Lemma 6.5 Let M be a complex d x d-matriz. Then

i=1
where B(r;) is the closed ball in the complex plain with radius r; and r; =
Zj;éi |sz|

Proof. Let A be an eigenvalue of M with eigenvector v # 0. Let further ¢ denote
the index with |v;| = max; |v;|. Then }°; Mjjv; = Av; implies

| My — A||vi| =

< 1|

> Mijv;

JFi

and hence |M;; — A| < r;. This completes the proof.
Next the Hessean matrix is estimated.

Lemma 6.6 For v,w € R, ||v]l; <1, |Jw]js <1,
|Cij(v) = Cii(w)| < V/nMs|lv—wl||y for all i, j.

Proof. This follows from the elementary computation

1
[V Cstto + (1= w)v —wydt| < sup [VCy(E)lkllo — wla

llzll2<1

d
— sup \l Z(@kaﬁjW(z))?Hv —wlz < VnM;s|lv — ws.

llzll2<1 \ k=1
The last Lemma estimates eigenvalues.
Lemma 6.7 Suppose that ||[V||s < r. Then
A(W) > A(0)/2.
Proof. Let ||J]|; < r. By Lemma 6.6,
C(09) =C(0) + A, ||Afoo < Vd- M;-r.

There is an orthogonal matrix 7" such that 7*C(0)T = D, where T* denotes
the transpose of T" and D is the diagonal matrix with the eigenvalues Aq,..., Ay
as diagonal elements; we may assume A\; = A(0) > 0. Further, 7*C (V)T =
D+ T*AT =: D + A and by Lemma 6.4,

[Alloo < Vd - V|| Ao < 1% Myr.
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Since o(C(9)) = o(T*C(V)T'), Lemma 6.5 gives

A) € LnJ (A + Ay + B(rs)),

i=1
where 7; = 3, |Aij| < (d — 1)||Al|. By the definition of 7,
AW) 2 A = A = (d = Df|Alle = M1 — d]|All
= M0) —n||A]|ec = A0) — &2 Msr = X(0)/2
which had to be shown.

Now the preparations for the proof of the Theorem are complete.
Proof of Theorem 6.3. For ||v|| <7 Lemma 6.7 yields the estimate

(v, VV () = <v,/010(tv) o) :/01<U,0(tv)y> dt

A0
> [l de > 2 o)

For the proof of (i) assume that ||@(7)||2 < 7. The set
I ={s€[r,00):]|0(t)] <rforallt e [r,s|}

is a closed interval. We are going to prove I = [rp,00). If 8(79) = 0 then the
solution stays there and the assertion clearly holds. Otherwise 6(s) # 0 for some
s > 1. Let U(t) = ||0(t)||3 for ¢ > 7. If s € I then

U(s) = (0(s),6(s)) = —(8(s), VV (6(5)))
< 2Dyaoi = 20 <o,
Hence I is also open in [r9,00). Since 79 € I this implies I = [r9,00). The

estimate for U implies
U(s) < U(ry) exp(=A(0)(s — 1g)) fors > o,

and hence

which proves (i).
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For the proof of (ii) assume ||0(7(dg))||2 > 7. Then ||0(s)||2 > 7 on [0, 7(J)]
by part (i). By the very definition of -, and (36),

diivw(s)) = —|[VV ()3 <~

for s € [0, 7(Yy)] and hence
V(0(7(00))) < V() = %7 (o) =0

which contradicts 8(7(dy)) # 0 and the first hypothesis. We conclude ||0(7(0y))]]2 <
r and the proof is complete.
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