
Toutenburg, Srivastava:

Estimation of Ratio of Population Means in Survey
Sampling When Some Observations are Missing

Sonderforschungsbereich 386, Paper 119 (1998)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/


Estimation of ratio of population means in survey

sampling when some observations are missing

H. Toutenburg
Institut für Statistik, Universität München

80799 München, Germany

V. K. Srivastava
Department of Statistics
University of Lucknow
Lucknow 226007, India

July 8, 1998

1 Introduction

In most of the developments concerning the use of auxiliary information in the
estimation of parameters in survey sampling, it is typically assumed that all
the observations on selected units in the sample are available. This may not
hold true in many practical situations encountered in sample surveys and some
observations may be missing for various reasons such as unwillingness of some
selected units to supply the desired information, accidental loss of information
caused by unknown factors, failure on the part of investigator to gather correct
information. In fact, missingness of observations is not an uncommon feature in
opinion polls, market research surveys, mail enquiries, socio-economic investiga-
tions, medical studies and other scientific experiments. In such circumstances,
the traditional procedures for deducing inferences cannot be applied straight-
forwardly.

Ratio of two population means in survey sampling is conventionally estimated
by the ratio of corresponding sample means; see e.g., Cochran (1977) and
Sukhatme, Sukhatme and Sukhatme (1984). This estimation procedure does
not work when some of the observations are missing. Assuming that some ob-
servations are missing on either the study characteristic or both the study and
auxiliary characteristics, Tracy and Osahan (1994) have considered the estima-
tion of ratio of means. In this article, we consider a situation in which there are
some observations missing on one of the characteristics at a time and thus the
missingness phenomenon occurs for both the characteristics separately but not,
of course, simultaneously. As an illustration, let the study characteristic (Y )
be the consumption expenditure of a household in the current month and the
auxiliary characteristic (X) be the consumption expenditure in the same month
three years ago. Then there may be some households for which the values of X
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are lost or could not be recorded earlier, and the households are now not able
to recall the correct value of X while the corresponding values of Y are readily
available. Similarly, there may be some households for which values of X are
available but the corresponding values of Y cannot be obtained, for instance,
when such families have gone on holidays or have permanently moved out of
town.

The plan of this article is as follows. In Section 2, we describe the data frame-
work and present four simple estimators for the ratio of population means. Large
sample approximations for their relative biases and relative mean squared er-
rors are given in Section 3 and using them a comparison of estimators is made.
Some remarks are then placed in Section 4. Finally, the derivation of results is
outlined in Appendix.

2 Estimation of Ratio

Consider a population of N units from which a random sample of size n is
drawn according to simple random sampling without replacement procedure
for the estimation of ratio R = (Ȳ /X̄) of population means X̄ and Ȳ of two
characteristics X and Y , respectively.

It is assumed that a set of (n−p−q) complete observations (x1, y1), (x2, y2), . . . ,
(xn−p−q, yn−p−q) on selected units in the sample are available. In addition to
these, observations x∗

1, x
∗
2, . . . , x

∗
p on p units in the sample are available but the

corresponding observations on Y characteristic are missing. Similarly, we have
a set of q observations y∗∗1 , y∗∗2 , . . . , y∗∗q on Y characteristic in the sample but the
associated values on X characteristic are missing. Further, the quantities p and
q denoting the number of incomplete observations are assumed to be random
following Tracy and Osahan (1994).

If we write

x̄ =
1

n − p − q

∑
xi

ȳ =
1

n − p − q

∑
yi

x̄∗ =
1
p

∑
x∗

i

ȳ∗∗ =
1
q

∑
y∗∗i (2.1)

the following estimators for the ratio R = (Ȳ /X̄) can be formulated:

r1 =
ȳ

x̄
(2.2)

r2 =
(n − q)ȳ

(n − p − q)x̄ + px̄∗ (2.3)

r3 =
(n − p − q)ȳ + qȳ∗∗

(n − p)x̄
(2.4)

r4 =
(

n − q

n − p

)
(n − p − q)ȳ + qȳ∗∗

(n − p − q)x̄ + px̄∗ (2.5)
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The estimator r1 is based on complete observations numbering (n − p− q) and
ignores all the incomplete pairs of observations. The estimators r2 and r3 make
use of incomplete observations only partly. For example, the estimator r2 utilizes
the p observations on X characteristic only while r3 uses the q observations on
Y characteristic only. The estimator r4, however, incorporates all the available
observations.

3 Comparison of Estimators

For the comparison of the performance properties of the four estimators of ratio
R, we introduce the following notation:

C2
x =

1
(N − 1)X̄2

N∑
(Xi − X̄)2

C2
y =

1
(N − 1)Ȳ 2

N∑
(Yi − Ȳ )2

ρ =
1

(N − 1)X̄Ȳ CxCy

N∑
(Xi − X̄)(Yi − Ȳ )

fs = E
(

1
n − s

)
− 1

N
(3.1)

where expectation operator in the last quantity refers to all possible values of
the non-negative integer valued random variable s.

Thus we have

fp ≤ f(p+q) (3.2)
fq ≤ f(p+q) (3.3)
fp

<
> fq if p<

>q (3.4)

We now present the results which are derived in Appendix.

Theorem I: When sample size is large, the relative biases of the four estima-
tors of R can be approximated by

RB(r1) = E
(

r1 − R

R

)
(3.5)

= (Cx − ρCy)Cxfp+q

RB(r2) = E
(

r2 − R

R

)
(3.6)

= (Cx − ρCy)Cxfq

RB(r3) = E
(

r3 − R

R

)
(3.7)

= (Cxfp+q − ρCyfp)Cx
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RB(r4) = E
(

r4 − R

R

)
(3.8)

= (Cxfq − ρCyfp)Cx

It is clear from the above expressions that all the estimators are generally biased
like the traditional ratio estimator.

For the comparison of the magnitudes of biases, we consider the squared expres-
sions for the relative biases to the given order of approximation.

We first observe that the estimator r1 has always larger amount of bias in
comparison to r2. The same is true for r1 when compared with r3 provided
that the correlation coefficient ρ is negative. For positive values of ρ, this result
continues to remain true provided that the following condition is satisfied:

ρ > 2θ

(
1 +

fp

fp+q

)−1

(3.9)

where θ = (Cx/Cy).

The opposite is true, i.e., r1 has smaller bias in magnitude in comparison to r3

when

0 < ρ < 2θ

(
1 +

fp

fp+q

)−1

. (3.10)

Similarly, if we compare r1 with r4, we observe from (3.5) and (3.8) that r1 has
larger bias in magnitude than r4 when ρ is negative. The same result remains
true for positive values of ρ satisfying the following constraint:[(

f2
p+q − f2

p

f2
p+q − fpfq

)
ρ2 − 2θρ +

(
f2

p+q − f2
q

f2
p+q − fpfq

)
θ2

]
> 0. (3.11)

Next, comparing the estimators r2 and r3 which utilize the additional available
observations only partially, we find the magnitude of bias of r2 is smaller (larger)
than that of r3 when the quantity G is positive (negative) where G is defined
by

G = (f2
p − f2

q )ρ2 − 2(fp+qfp − f2
q )θρ + (f2

p+q − f2
q ). (3.12)

Finally, let us compare r4 with r2 and r3.

From (3.6) and (3.8), we observe that r4 has smaller magnitude of bias in com-
parison to r2 when any one of the following conditions is satisfied

fp > fq and 0 < ρ < 2θ

(
1 +

fp

fq

)−1

(3.13)

fp < fq and ρ > 2θ

(
1 +

fp

fq

)−1

(3.14)

fp < fq and ρ < 0. (3.15)

Similarly, it follows from (3.7) and (3.8) that r4 has smaller magnitude of bias
than r3 when

ρ <

(
fp+q + fq

2fp

)
θ (3.16)
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which is obviously satisfied at least as long as the correlation coefficient is neg-
ative.

Next, let us compare the estimators with respect to the criterion of mean squared
error. For this purpose, we have the following results derived in Appendix.

Theorem II: When sample size is large, the relative mean squared errors of
the four estimators of R are approximated by

RMSE(r1) = E
(

r1 − R

R

)2

(3.17)

= (C2
x + C2

y − 2ρCxCy)fp+q

RMSE(r2) = E
(

r2 − R

R

)2

(3.18)

= (Cx − 2ρCy)Cxfq + C2
yfp+q

RMSE(r3) = E
(

r3 − R

R

)2

(3.19)

= (Cy − 2ρCx)Cyfp + C2
xfp+q

RMSE(r4) = E
(

r4 − R

R

)2

(3.20)

= (Cy − 2ρCx)Cyfp + C2
xfq .

It is seen from (3.17), (3.18) and (3.19) that both the estimators r2 and r3

(which utilize the incomplete observations on either X or Y ) are more efficient
than r1 (which ignores the incomplete observations all together) at least as long
as the correlation coefficient ρ between X and Y is negative or zero. If ρ is
positive, the estimator r2 continues to be more efficient than r1 provided that

ρ <
θ

2
(3.21)

while r3 remains more efficient than r1 when

ρ <
1
2θ

. (3.22)

We thus observe that utilizing the incomplete data partially (i.e., observations
on either X or Y characteristics) is a better proposition than ignoring them
completely so long as ρ is negative or zero. This result carries over for positive
values of ρ too, at least as long as

ρ <
1
2

min
(

θ,
1
θ

)
. (3.23)

On the other hand, it may not be worthwhile using the incomplete data set so
long as

ρ >
1
2

max
(

θ,
1
θ

)
(3.24)
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which follows from the observation that r1 is better than r2 in case 2ρ > θ and
better than r3 in case 2ρθ > 1.

Comparing r2 and r3, we find that r2 is more efficient than r3 when

ρ<
>Φ if fq

<
>fp (3.25)

while the opposite is true, i.e., the estimator r2 is less efficient than r3 when

ρ>
<Φ if fq

>
<fp (3.26)

where

Φ =
(fp+q − fp)
2θ(fq − fp)

[
1 −

(
fp+q − fq

fp+q − fp

)
θ2

]
. (3.27)

The above statement provides conditions under which use of incomplete obser-
vations on X characteristic is superior or inferior than the use of incomplete
observations on Y characteristic.

Next, let us consider the estimator r4 which utilizes all the available observations
on both X and Y characteristics. Comparing it with r1 which is based on
complete cases only, we observe from (3.17) and (3.20) that r4 is more efficient
than r1 when the correlation coefficient is negative or zero. This result holds
for positive values of ρ also provided that

ρ <
1
2θ

[
1 +

(
fp+q − fq

fp+q − fp

)
θ2

]
. (3.28)

When the positive value of ρ is such that it satisfies the inequality (3.28) with a
reversed sign, r4 is no more superior to r1 meaning thereby that it is appropriate
to discard the incomplete observations.

Now comparing r4 with r2, we find that r4 is more efficient than r2 when

ρ(fq − fp) <

(
fp+q − fp

2θ

)
. (3.29)

This inequality is satisfied when one of the following conditions holds true

(a) fq = fp

(b) ρ = 0

(c) fq < fp and ρ > 0

(d) fq < fp and ρ < 0 but |ρ| < Ψ

(e) fq > fp and ρ < 0

(f) fq > fp and 0 < ρ < Ψ

where
Ψ =

fp+q − fp

2θ|fq − fp| . (3.30)

Under any one of the above conditions, we thus observe that using all the
available observations on X and Y is a better strategy than using all the available

6



observations on X only and discarding those for which Y values are available
but X values are missing.

Just the opposite is true, i.e., using all those observations for which X values
are available is more appropriate than using the entire set of observations when
the inequality (3.29) holds true with a reversed sign. This can happen when the
magnitude of ρ is greater than Ψ provided that fq < fp for negative values of ρ
and fq > fp for positive values of ρ.

Similarly, comparing the expressions (3.19) and (3.20), it is interesting to find
that r4 is invariably more efficient than r3 implying that it is always beneficial
to use all the available observations—complete or incomplete.

4 Some Remarks

We have considered the problem of estimating the ratio of population means
when observations on some selected units in the sample drawn according to
simple random sampling without replacement on either X characteristic or Y
characteristic but not on both of them simultaneously are missing. Accordingly,
we have formulated four simple estimators for the population ratio. The first
estimator is essentially the ratio of sample means employing all the complete
pairs of observations and ignoring the rest. The second estimator uses the
incomplete pairs, in which only X values are available, in addition to complete
cases while the third estimator utilizes incomplete pairs, in which only Y values
are available, besides the complete cases. The fourth estimator is based on all
the complete as well as incomplete pairs of observations. Performance properties
of the four estimators are analyzed with respect to the bias and mean squared
error criteria using the large sample theory and the conditions are obtained for
the superiority of one estimator over the other. Such an exercise has shed light
on the role of missingness of observations on the ratio method of estimation.

When the population mean X̄ is known one can straightforwardly develop esti-
mators for the population mean Ȳ , and the role of X characteristic in improving
the estimation of Ȳ can be examined by comparing the performance properties
of these estimators with the estimators ȳ and [(n − p − q)ȳ + qȳ∗∗]/(n − p).
Similar investigations can be carried out when some other procedure like the
product method of estimation is followed. Extending the results for more than
two characteristics with varying patterns of missingness will be an interesting
exercise.
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Appendix

Let us define

u =
(

x̄ − X̄

X̄

)

v =
(

ȳ − Ȳ

Ȳ

)

u∗ =
(

x̄∗ − X̄

X̄

)

v∗∗ =
(

ȳ∗∗ − Ȳ

Ȳ

)

so that (
r1 − R

R

)
=

v − u

1 + u
(A.1)

= (v − u)
(

1 − u +
u2

1 + u

)

whence the relative bias and relative mean squared error to order O(n−1) only
are given by

RB(r1) = E(v) − E(u) + E(u2) − E(uv) (A.2)
RMSE(r1) = E(v2) + E(u2) − 2 E(uv). (A.3)

Now we observe that

E(v) = E1 E(v|p, q)
= 0

E(v2) = E1 E(v2 |p, q)

= E1

[(
1

n − p − q
− 1

N

)
C2

y

]
= C2

yfp+q .

Similarly, we have

E(u) = 0
E(u2) = C2

xfp+q

E(uv) = ρCxCyfp+q

Substituting these results in (A.2) and (A.3), we obtain the results (3.5) and
(3.17).

Proceeding in the same manner, we can express(
r2 − R

R

)
=
[
v − (n − p − q)u + pu∗

(n − q)

] [
1 − (n − p − q)u + pu∗

(n − q)

]
+ Op(n− 3

2 )

(A.4)
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whence up to order O(n−1), we have

RB(r2) = E(v) − E
[
(n − p − q)u + pu∗

(n − q)

]
+ E

[
(n − p − q)u + pu∗

(n − q)

]2

−E
[(

1 − p

n − q

)
uv

]
− E

[(
p

n − q

)
u∗v
]

= C2
xfq − ρCxCy E1

[(
1 − p

n − q

)(
1

n − p − q
− 1

N

)]
= C2

xfq − ρCxCyfq (A.5)

to the order of our approximation. This leads to the result (3.6).

Similarly, from (A.4), we have

RMSE(r2) = E
[
v −

(
1 − p

n − q

)
u −

(
p

n − q

)
u∗
]

= E(v2) + E

[(
1 − p

n − q

)2

u2

]
+ E

[(
p

n − q

)2

u∗2

]

−2 E
[(

1 − p

n − q

)
uv

]
− 2 E

[(
p

n − q

)
u∗v
]

+2 E
[(

1 − p

n − q

)(
p

n − q

)
u∗v
]

= C2
yfp+q + C2

x E1

[(
1 − p

n − q

)(
1

n − p − q
− 1

N

)]

+C2
x E1

[(
p

n − q

)2(1
p
− 1

N

)]

−2ρCxCy E1

[(
1 − p

n − q

)(
1

n − p − q
− 1

N

)]
= C2

yfp+q + C2
xfq − 2ρCxCyfq (A.6)

dropping the terms with higher order order of smallness than n−1. This provides
the result (3.18).

Next, observing that the relative estimation error of r3 to order Op(n−1) is given
by (

r3 − R

R

)
=
[
(n − p − q)v + qv∗∗

(n − p)
− u

]
(1 − u) (A.7)

the results (3.7) and (3.19) can be easily derived in the same way as indicated
in case of r2.

Finally, let us consider the relative estimation error of r4 to order Op(n−1) which
can be expressed as(

r4 − R

R

)
= (A.8)[

(n − p − q)v + qv∗∗

(n − p)
− (n − p − q)u + pu∗

(n − q)

][
1 − (n − p − q)u + pu∗

(n − q)

]
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from which the expressions (3.8) and (3.20) for the relative bias and the relative
mean squared error to order O(n−1) can be easily found.
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