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Abstract

This article considers a linear regression model with some missing ob-
servations on the response variable and presents two estimators of re-
gression coefficients employing the approach of minimum risk estimation.
Asymptotic properties of these estimators along with the traditional un-
biased estimator are analyzed and conditions, that are easy to check in
practice, for the superiority of one estimator over the other are derived.

1 Introduction

The standard linear regression analysis assumes the availability of all the obser-
vations. Such a specification may often be violated in many practical situations,
and it may be hard to collect data on response variable in some cases. For in-
stance, in sample survey, the responses related to some delicate and sensitive
questions may not be available due to caprice nature. Or the investigator may
feel that some respondents have not deliberately provided correct information
and therefore such responses should be discarded. Similarly, in biological experi-
ments, some animals or plants may die due to some reasons which are not related
to the treatments being tested. A certain laboratory instrument or measuring
device may break down before the completion of experiment.

When some observations on response variable are missing, there are two alterna-
tives. One is to use complete observations alone and to discard the incomplete
data set while the other alternative is to substitute estimated values for miss-
ing observations and to use the thus repaired data set; see, e.g. Little (1992),
Little and Rubin (1987) and Rao and Toutenburg (1995) for an interesting ac-
count. The substitutions are generally constructed on the basis of regression
analysis of complete observations. If a weakly unbiased substitution is utilized
for missing observations and least squares procedure is applied to the model
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with the repaired data set, the estimators of regression coefficients remain same
as those obtained from the use of complete observations alone. Such a finding
has prompted us to consider biased substitutions for missing observations and
to analyze the properties of least squares estimators of regression coefficients
based on repaired data set.

In this article, we describe the model with some missing observations on re-
sponse variable in Section 2 and utilize the minimum risk approach in order
to obtain substitutions for missing observations. Such an approach yields op-
timal substitutions but they have no utility owing to involvement of unknown
quantities. We therefore consider their operational version. The thus obtained
operational substitutions are then used to repair the data set. Now we present
three estimators of regression coefficients arising from an application of least
squares procedure. In Section 3, we analyze the performance properties of these
estimators employing the small disturbance asymptotic theory. Sufficient con-
ditions for the superiority of one estimator over the other are also derived. An
elegant aspect of these conditions is that they do not involve any unknown quan-
tities and are thus easy to check in any application. Finally, the derivation of
main results is presented in Appendix.

2 Specification of model and estimators

Consider the following linear regression model

Yc = Xcβ + σεc (2.1)

Ymis = X∗β + σε∗ (2.2)

where Yc and Ymis are the column vectors of mc available and m∗ missing ob-
servations on the response variable, Xc is a full column rank matrix of order
mc × p consisting of mc observations on p explanatory variables corresponding
to available observations on the response variables, X∗ is a not necessarily full
column rank matrix of order m∗×p consisting of m∗ observations on p explana-
tory variables corresponding to missing observations on the response variable,
β is a column vector of p unknown coefficients, εc and ε∗ are column vectors of
mc and m∗ disturbances respectively and σ is an unknown scalar.

We assume that the elements of εc and ε∗ are independently, identically and
normally distributed with zero mean and unit variance.

If we employ simply the mc complete observations for the estimation of β, the
least squares estimator is given by

β̂c = (X′
cXc)−1X′

cYc (2.3)

On the other hand, if we use all the (mc + m∗) observations, the least squares
estimator of β is

β̂ = (X′
cXc + X′

∗X∗)−1(X′
cYc + X′

cYmis). (2.4)
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Observing that

(X′
cXc + X′

∗X∗)−1

= (X′
cXc)−1 − (X′

cXc)−1X′
∗
[
I + X∗(X′

cXc)−1X′
∗
]−1

X∗(X′
cXc)−1

we can express

β̂ = β̂c + (X′
cXc)−1X′

∗
[
I + X∗(X′

cXc)−1X′
∗
]−1 (Ymis − X∗β̂c). (2.5)

Obviously, this estimator has no practical utility due to involvement of miss-
ing observations. A simple solution is then to replace Ymis by an observable
quantity.

If we employ a weakly unbiased substitution X∗β̂c for missing observations in
(2.5), i.e.,

E(X∗β̂c) = E(Ymis) (2.6)

the resulting operational version of β̂ is nothing but the estimator β̂c itself. This
is a celebrated result due to Yates; see, for instance, Little and Rubin (1987,
chap. 2) or Rao and Toutenburg (1995, chap. 8).

Let us next consider biased substitutions for the vector of missing observations.
If we consider substitutions of the type AcYc with matrix Ac of order m∗ × mc

for the replacement of X∗β in (2.5) and choose Ac such that the risk under a
general quadratic loss function is minimum, the optimal substitution for X∗β is
given by

[
β′X′

cYc

β′X′
cXcβ + σ2

]
X∗β (2.7)

which is again not operative; see, for example, Rao and Toutenburg (1995,
p. 161). A simple operational version of it, however, can be deduced by using
unbiased estimators of β and σ2 based on complete observations. This yields
the following operational substitution for Ymis:

[
β̂′

cX
′
cYc

β̂cX′
cXcβ̂c + σ̂2

c

]
X∗β̂c =

[
1 − σ̂2

c

β̂cX′
cXcβ̂c + σ̂2

c

]
X∗β̂c (2.8)

where

σ̂2
c =

1
(mc − p)

(Yc − Xcβ̂c)′(Yc − Xcβ̂c). (2.9)

Putting it in place of Ymis in (2.5) leads to the following estimator of β:

b1 = β̂c −
[

σ̂2
c

β̂cX′
cXcβ̂c + σ̂2

c

]
(X′

cXc)−1X∗
[
I + X∗(X′

cXc)−1X′
∗
]−1

X∗β̂c

(2.10)
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In the same spirit, if we consider A∗Ymis instead of AcYc, we get the following
optimal substitution for X∗β:

[
β′X′

∗Ymis

β′X′∗X∗β + σ2

]
X∗β (2.11)

of which an operational version is

[
β̂′

cX
′∗X∗β̂c

β̂cX′∗X∗β̂c + σ̂2
c

]
X∗β̂c =

[
1 − σ̂2

c

β̂c
′
X′∗X∗β̂c + σ̂2

c

]
X∗β̂c. (2.12)

Substituting it in place of Ymis in (2.5) provides another estimator of β:

b2 = β̂c −
[

σ̂2
c

β̂c
′
X′∗X∗β̂c + σ̂2

]
(X′

cXc)−1X′
∗
[
I + X∗(X′

cXc)−1X′
∗
]−1

X∗β̂c.

(2.13)

We have thus formulated two estimators b1 and b2 arising from the minimum
risk approach.

3 Properties of estimators

For analyzing the relative performance of the estimators, we first observe that
bc is unbiased for β and its variance covariance matrix is given by

V(bc) = E(bc − β)(bc − β)′ (3.1)
= σ2(X′

cXc)−1.

Next, let us consider the estimators b1 and b2 which are biased for β. Expres-
sions for their bias vectors and mean squared error matrices can be derived
but they will be sufficiently intricate and will not lead to any clear conclusion.
We therefore consider their approximations employing the small disturbance
asymptotic theory.

Theorem I: If we write

S = X′
∗
[
I + X∗(X′

cXc)−1X′
∗
]−1

X∗ (3.2)

then, according to small disturbance asymptotic theory, the bias vectors of the
estimators b1 and b2 to order O(σ2) are given by

B(b1) = − σ2

β′X′
cXcβ

(X′
cXc)−1Sβ (3.3)

B(b2) = − σ2

β′X′∗X∗β
(X′

cXc)−1Sβ. (3.4)
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These expressions are obtained from the result (A.1) of Appendix by putting
Q = (X′

cXc) and Q = (X′
∗X∗) respectively.

It is seen that both the estimators of β are biased which means that the process
of operationalization of estimator β̂ introduces bias. Further, the elements of
bias vector have a sign which is opposite to the sign of corresponding elements
in (X′

cXc)−1Sβ.

If we compare the estimators with respect to the criterion of magnitude of bias
or equivalently the length of bias vector, we find that the estimator b1 is better
than b2 when

β′X′∗X∗β
β′X′

cXcβ
< 1 (3.5)

which is satisfied at least as long as the largest eigen value of X′∗X∗ in the metric
of X′

cXc is less than one. The opposite is true, i.e., b2 is better than b1 with
respect to the criterion of magnitude of bias as length of bias vector so long as
the smallest eigen value of X′∗X∗ in the metric of X′

cXc exceeds one.

Theorem II: The asymptotic approximations for the mean squared error matri-
ces of the estimators b1 and b2 to order O(σ4) are given by

M(b1) = σ2(X′
cXc)−1 − σ4

β′X′
cXcβ

[2(X′
cXc)−1S(X′

cXc)−1 (3.6)

− mc − p + 2
(mc − p)β′X′

cXcβ
(X′

cXc)−1Sββ′S(X′
cXc)−1

− 2
β′X′

cXcβ
{ββ′S(X′

cXc)−1 + (X′
cXc)−1Sββ′}]

M(b2) = σ2(X′
cXc)−1 − σ4

β′X′∗X∗β
[2(X′

cXc)−1S(X′
cXc)−1 (3.7)

− mc − p + 2
(mc − p)β′X′∗X∗β

(X′
cXc)−1Sββ′S(X′

cXc)−1

− 2
β′X′∗X∗β

(X′
cXc)−1(X′

∗X∗ββ′S + Sββ′X′
∗X∗)(X′

cXc)−1].

These expressions are obtained from the result (A.2) of Appendix.

Let us first compare the estimators b1 and b2 with bc according to the criterion of
mean squared error matrix to the order of our approximation. For this purpose,
we employ the following two results for any m × m positive definite matrix G
and a column vector g:

1. The matrix (G − gg′) is nonnegative definite if and only if g′G−1g ≤ 1, see,
e.g., Yancey, Judge and Bock (1974).

2. The matrix (gg′ − G) cannot be nonnegative definite for m > 1; see, e.g.
Guilkey and Price (1981).
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Now from (3.1) and (3.6), we observe that the variance covariance matrix of
bc exceeds the mean squared error matrix of b1 to order O(σ4) by at least a
positive semi-definite matrix when the matrix

2(X′
cXc)−1S(X′

cXc)−1 − (mc − p + 2)
(mc − 2)β′X′

cXcβ
(X′

cXc)−1Sββ′S(X′
cXc)−1

− 2
β′X′

cXcβ
{ββ′S(X′

cXc)−1 + (X′
cXc)−1Sββ′}

= 2(X′
cXc)−1S(X′

cXc)−1 − δδ′ +
4(mc − p)

(mc − p + 2)β′X′
cXcβ

ββ′ (3.8)

is nonnegative definite where

δ =
[

mc − p + 2
(mc − 2)β′X′

cXcβ

] 1
2

[
(X′

cXc)−1S +
2(mc − p)

(mc − p + 2)
I

]
β. (3.9)

As the matrix

(X′
cXc)−1S(X′

cXc)−1 = (X′
cXc)−1 − (X′

cXc + X′
∗X∗)−1

is nonnegative definite, the matrix expression (3.8) will be nonnegative definite
at least as long as

2(X′
cXc)−1S(X′

cXc)−1 − δδ′ (3.10)

is nonnegative definite. For this to be true, using the first result, a necessary
and sufficient condition is that the quantity

1
2
δ′X′

cXcS
−1X′

cXcδ

= 2 +
mc − p + 2
2(mc − p)

β′Sβ

β′X′
cXcβ

+
2(mc − p)
mc − p + 2

β′X′
cXcS

−1X′
cXcβ

β′X′
cXcβ

(3.11)

does not exceed 1. Obviously, this condition cannot hold true implying that b1

cannot be superior to bc.

Next, if we consider the matrix [M(b1)−M(bc)], we observe that it is nonnega-
tive definite when the matrix expression (3.8) with reversed sign is nonnegative
definite. This cannot be true by virtue of second result. This means that bc

cannot be superior to b1.

We thus observe that neither the estimator bc dominates nor is dominated by
the estimator b1 according to the mean squared error matrix criterion to the
order of our approximation. In a similar manner, it can be easily demonstrated
that the estimator b2 is neither dominated by bc nor dominates bc.

Similarly, if we analyze the expressions (3.6) and (3.7), it is interesting to find
that between the estimators b1 and b2, no one is superior to the other with
respect to the mean squared error matrix criterion.
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Next, let us compare the risk functions, associated with these estimators, under
a quadratic loss structure with loss matrix as (X′

cXc). Now we observe from
(3.1) and (3.6) that

�(bc; b1) = E(bc − β)′X′
cXc(bc − β) − E(b1 − β)′X′

cXc(b1 − β)

=
σ4

β′X′
cXcβ

[
2 trS(X′

cXc)−1 − 4
β′Sβ

β′X′
cXcβ

−
(

mc − p + 2
mc − p

)
β′S(X′

cXc)−1Sβ

β′X′
cXcβ

]
. (3.12)

Let λ1, λ2, λ3, . . . be the eigen values of X∗(X′
cXc)−1X′

∗. These are then the
eigen values of X′∗X∗ in the metric of X′

cXc. Further, let λL and λS denote the
largest and smallest values among the nonzero eigen values. Now we observe
that

(
λS

1 + λL

)2

≤ β′S(X′
cXc)−1Sβ

β′X′
cXcβ

≤
(

λL

1 + λS

)2

(3.13)

(
λS

1 + λL

)
≤ β′Sβ

β′X′
cXcβ

≤
(

λL

1 + λS

)
(3.14)

whence it follows that the difference (3.12) is positive so long as

∑
i

(
λi

1 + λi

)
>

(
λL

1 + λS

) [
2 +

(mc − p + 2)λL

2(mc − p)(1 + λS)

]
(3.15)

which is a sufficient condition for the superiority of b1 over bc.

Similarly, the difference (3.12) is negative meaning thereby the superiority of bc

over b1, with respect to the criterion of risk function, at least as long as

∑
i

(
λi

1 + λi

)
<

(
λS

1 + λL

)[
2 +

(mc − p + 2)λS

2(mc − p)(1 + λL)

]
. (3.16)

In a similar manner, if we compare the risk functions of bc and b2 using (3.1)
and (3.7), it can be easily seen that b2 is superior to bc so long as

∑
i

(
λi

1 + λi

)
>

(
λL

1 + λS

) [
2 +

(mc − p + 2)
2(mc − p)(1 + λS)

]
(3.17)

where use has been made of the following results

λS

(1 + λL)2
≤ β′S(X′

cXc)−1Sβ

β′X′∗X∗β
≤ λL

(1 + λS)2
(3.18)

(
λS

1 + λL

)
≤ β′X′∗X∗(X′

cXc)−1Sβ

β′X′∗X∗β
≤

(
λL

1 + λS

)
. (3.19)

7



Just the opposite is true, i.e., bc is superior to b2 when

∑
i

(
λi

1 + λi

)
<

(
λS

1 + λL

)[
2 +

(mc − p + 2)
2(mc − p)(1 + λL)

]
. (3.20)

Finally, let us compare the risk functions of the biased estimators b1 and b2.

It is easy to see from (3.6) and (3.7) that b1 is better than b2 when

[(
β′X′∗X∗β
β′X′

cXcβ
− 1

)
tr(X′

cXc)−1S + 2
(

β′SX′∗X∗β
β′X′∗X∗β

)]

>

[
2

(
β′Sβ

β′X′
cXcβ

)(
β′X′∗X∗β
β′X′

cXcβ

)

+
mc − p + 2
2(mc − p)

{(
β′X′∗X∗β
β′X′

cXcβ

)2

− 1

}
β′S(X′

cXc)−1β

β′X′∗X∗β

]
. (3.21)

For this inequality to hold true, several sufficient conditions can be deduced em-
ploying the results (3.13), (3.14), (3.18) and (3.19). For instance, the inequality
(3.21) is satisfied so long as

[
(λS − 1)

∑
i

(
λi

1 + λi

)
+

2λS

1 + λL

]
>

(
λL

1 + λS

)[
2λL +

(mc − p + 2)(λ2
L − 1)

2(mc − p)(1 + λS)

]
.

(3.22)

Similarly, the opposite is true, i.e., b2 is better than b1 when the inequality
(3.21) holds with a reversed sign. This happens, for instance, as long as

[
(λL − 1)

∑
i

(
λi

1 + λi

)
+

2λL

1 + λS

]
>

(
λS

1 + λL

)[
2λS +

(mc − p + 2)(λ2
S − 1)

2(mc − p)(1 + λL)

]
.

(3.23)

It is interesting to note that the sufficient conditions for the superiority of one
estimator over the other are free from unknown quantities and are easy to check
in any practical situation.

Appendix

If we define

b = β̂c −
[

σ̂2
c

β̂′
cQβ̂c + σ̂2

c

]
(X′

cXc)−1Sβ̂c

with Q as a nonstochastic symmetric matrix and S given by (3.2), the bias
vector to order O(σ2) is
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B(b) = E(b − β) (A.1)

= − σ2

β′Qβ
(X′

cXc)−1Sβ

and the mean squarred error matrix to order O(σ4) is given by

M(b) = E(b − β)(b − β)′ (A.2)

= σ2(X′
cXc)−1 − σ4

β′Qβ
(X′

cXc)−1

[
2S − mc − p + 2

(mc − p)β′Qβ
Sββ′S

− 2
β′Qβ

(Qββ′S + Sββ′Q)
]

(X′
cXc)−1

Proof: Using (2.1), we can write

β̂c = β + σ(X′
cXc)−1X′

cεc

σ̂2
c =

σ2

mc − p
ε′c

[
I − Xc(X′

cXc)−1X′
c

]
εc

so that

σ̂2
c

β̂′
cQβc + σ̂2

c

=
σ2ε′c

[
I − Xc(X′

cXc)−1X′
c

]
εc

(mc − p)

[
β′Qβ + 2σβ′Q(X′

cXc)−1X′
cεc

+σ2

{
ε′cXc(X′

cXc)−1Q(X′
cXc)−1X′

cεc +
ε′c

[
I − Xc(X′

cXc)−1X′
c

]
εc

(mc − p)

}]−1

=
σ2ε′c

[
I − Xc(X′

cXc)−1X′
c

]
(mc − p)β′Qβ

[
1 + 2σ

β′Q(X′
cXc)−1X′

cεc

β′Qβ
+ Op(σ2)

]−1

Expanding and retaining terms up to order O(σ3) only, we get

σ̂2
c

β̂′
cQβ̂c + σ̂2

c

=
σ2ε′c

[
I − Xc(X′

cXc)−1X′
c

]
εc

(mc − p)β′Qβ

−2σ3 ε′c
[
I − Xc(X′

cXc)−1X′
c

]
εcβ

′Q(X′
cXc)−1X′

cεc

(mc − p)(β′Qβ)2
+ Op(σ4)

Using it we can express

(b − β) = σξ1 − σ2ξ2 − σ3ξ3 + Op(σ4)

9



where

ξ1 = (X′
cXc)−1X′

cεc

ξ2 =
ε′c

[
I − Xc(X′

cXc)−1X′
c

]
εc

(mc − β)β′Qβ
(X′

cXc)−1Sβ

ξ3 =
ε′c

[
I − Xc(X′

cXc)−1X′
c

]
εc

(mc − β)β′Qβ
(X′

cXc)−1S(
I − 2

β′Qβ
ββ′Q

)
(X′

cXc)−1X′
cεc.

Thus the bias vector to order O(σ2) is

B(b) = σ E(ξ1) − σ2 E(ξ2)
= −σ2ξ2

which is the result (A.1).

In a similar way, the mean squarred error matrix to order O(σ4) is given by

M(b) = σ2 E(ξ1ξ
′
1) − σ3 E(ξ2ξ

′
1 + ξ1ξ

′
2) − σ4 E(ξ3ξ

′
1 + ξ1ξ

′
3 − ξ2ξ

′
2).

By virtue of normality of εc, it is easy to see that

E(ξ1ξ
′
1) = (X′

cXc)−1

E(ξ2ξ
′
1) = 0

E(ξ1ξ
′
2) = 0

E(ξ3ξ
′
1) =

1
β′Qβ

(X′
cXc)−1S

(
I − 2

β′Qβ
ββ′Q

)
(X′

cXc)−1

E(ξ1ξ
′
3) =

1
β′Qβ

(X′
cXc)−1

(
I − 2

β′Qβ
Qββ′

)
S(X′

cXc)−1

E(ξ2ξ
′
2) =

mc − p + 2
(β′Qβ)2

(x′
cXc)−1Sββ′S(X′

cXc)−1.

Substituting these expressions, we obtain the result (A.2).
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