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Summary� We are dealing with series of events occurring at random times �n and
carrying further quantitive information �n� Examples are sequences of extrasystoles
in ECG�records� We will present two approaches for analyzing such �typically long�
sequences ��n� �n�� n 
 �� �� � � �� �i� A point process model is based on an intensity of
the form ��t� � bt���� t � �� with bt a stochastic intensity of the self�exciting type� �ii�
A time series approach is based on a transitional GLM� The conditional expectation
of the waiting time �n�� 
 �n�� � �n is set to be ���n� � h�	n����� with h a response
function and 	n a regression term� The deterministic functions � and �� respectively�
describe the long�term trend of the process�

Keywords� Semiparametric estimation� Trend function� Penalized least squares�
Point process� Intensity process� GLM�based time series� ECG�data

� Introduction

Series of events can be analyzed in a dual way� namely by establishing

� point process models for the sequence ��� ��� � � � of occurrence times
� time series models for the sequence ��� ��� � � � of the lengths of time intervals
between events ��n 
 �n � �n��� �� 
 ��

�see Cox � Lewis� ������ In the present paper� we employ

� intensity based point process models of the self�exciting type �Hawkes� �����
� GLM�based time series models of the transitional type �Zeger � Qaqish� �����
Fahrmeir � Tutz� �����

In both cases the model equation is factorized into a deterministic trend function and
into a stochastic part describing the short�term oscillation� As in many semiparametric
problems a major task is to separate the two factors by the estimation procedure� In
our situation of one single realization over a long time interval we will need a kind of
ergodic behaviour of the process� The trend function is estimated by penalized least
squares �l�s�� methods based on aggregated data� gained by an averaging procedure over
longer time intervals �preserving enough short�term information�� For the parameter of
the stochastic component we will then employ likelihood methods� thus reversing the

�



order of estimation known from partial likelihood approaches in survival time analysis�
In addition to the occurrence times �n metrically scaled marks �n are observed� forming
p�dimensional vectors and playing the role of covariates�
The results will show that both approaches� the time series and the point process
approach� yield satisfactory trend estimations and give insight into the inner dynamics
of the process�

� Semiparametric Point Process Model

The sequence �n� n � �� of occurrence times is described by an intensity process 
t�
t � �� in the multiplicative form


t 
 ��t�bt���� � � � � IRd� ���

with a deterministic and smooth function � and a stochastic intensity process b� The
latter is modelled in a self�exciting form by

bt 
 b�n��t� �� 
 f�wn� t� �n� for t � ��n� �n���� ���

with a regression term wn being iteratively de�ned by

wn 
 u�wn��� ��n� �n���

Ex� �� f�w� s� 
 w� u�w� �s� x�� 
 �e��sw � �e�
�x�

we are faced with a piecewise constant intensity function bt �Pruscha� ������ With
w� 
 � equation ��� can be written in the closed form

b�n��t� �� 
 �
nX
i��

�n�ie����n��i�e�
��i� �� 
 �� �� 
 ��

Ex� �� f�w� s� 
 �� e��sw� u�w� �s� x�� 
 e��sw � �e�
�x�

the intensity function bt is of the form of Hawkes�s self�exciting point process �Hawkes�
������ In fact� with w� 
 � we can write equation ��� as

b�n��t� �� 
 �� �
nX
i��

e���t��i�e�
��i�

We will close this section by deriving the conditional expectation of the waiting
times �n 
 �n � �n��� In terms of the intensity 
� the transition probabilities for �n���
given the information Fn 
 ���� ��� � � � � �n� �n� of the past� can be written by

IP��n�� � s j Fn� 
 � � exp����n��n�s��

where �s�t 

R t
s 
udu� Conseqently� the conditional expectation of �n�� is

IE��n�� j Fn� 

Z
�

�
exp����n��n�s�ds � ���

Assuming �for the moment� a piecewise constant intensity on ��n� �n���� say 
�n�� we get
�

�n� on the ride hand side of ���	 the factors in the following model equation ��� will
stand in a reciprocal relation to those in ����
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� Semiparametric Time Series Model

The sequence �n� n � �� of the waiting times between events is now analyzed within
the framework of time series� Let Fn 
 ���� ��� � � � � �n� �n� comprise the information up
to time �n as above� Then the conditional expectation of �n��� given Fn� is modelled
by a transitional GLM of the form

IE��n�� j Fn� 
 ���n�h�	n����� ���

with a smooth� deterministic trend component �� a suitable response function h� and a
regression term 	n iteratively de�ned by

	n 
 �	n�� � ��n �G����n��

Ex� �� h�	� 
 	 or h�	� 
 �
	� with 	� 
 �� � and � nonnegative� G�x� 
 exp�x�
or G�x� 
 x� in the latter case with a side condition ��� � �

Ex� �� h�	� 
 e�� with 	� 
 �� G�x� 
 x�

Observe that in both cases positivity of h�	� is guaranteed� Zeger and Qaqish
������ ����iv�� used h�	� 
 �
	 and put �
�n �instead �n� in the regression term 	n�
These types of response functions h are in fact suggested by the two examples in sec� ��
Assuming for simplicity � 
 � then in the case of Ex� � in sec� � equation ��� yields
�
wn� leading to the choice h�	� 
 �
	� in the case of Ex� � we get c� exp��c�wn� after
some calculations� proposing the response function h�	� 
 exp�	��

� Nonparametric Estimation of the Trend

In order to estimate � or � a method of rough averaging is suggested� To this end�
we divide the observation period ��� T � into K subintervals Ij 
 �uj��� uj� of length
�j 
 uj � uj��� j 
 �� � � � �K� where K is assumed to be considerably smaller than the
observed number NT of events in ��� T �� We are going to base the l�s� function on the
di�erence Yj � IEYj � where Yj is the rate of occurrence of events or the averaged length
of time intervals between events� respectively� in the interval Ij� Let for the following
�Nj 
 Nuj �Nuj�� be the number of events in Ij

��� Point process model

Putting Yj 

�Nj

�j
we have on the basis of model ���

IEYj 

�

�j

Z uj

uj��

IE
s ds 
 ��t�j � �
�

�j

Z uj

uj��

IEbs��� ds

for some t�j � �uj��� uj�� We assume� that the approximation

��t�j� � ��tj�� tj 

�

�
�uj�� � uj�� ���
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is possible� as well as� for larger �j 
 uj � uj���

�

�j

Z uj

uj��

IEbs��� ds � b������� ���

where b������ is independent of j� Putting a�t� 
 ��t� � b������� and using the approx�
imations ��� and ���� we can write IEYj � a�tj��

In Ex�� of sec�� the limit intensity value is identi�ed as �Pruscha� �����

b������ �� 

�

� � �

	����

�

where ���� 
 a�s�� lim� �
n

Pn
i�� �i�� In Ex�� of sec� � the limit intensity is

�

��
 exp��	������
�

��� Time series model

We divide the interval ��� T �� T 
 �N � as above and de�ne Yj 

�j

�Nj
� Assuming for the

moment that Ij 
 ��k� �k�n�j��� i�e� �Nj 
 n�j�� for some k 
 k�j�� we have on the
basis of model ���

IEYj 

�

n�j�

n�j�X
i��

IE��k�i� 
 ��t�j� �
�

n�j�

n�j�X
i��

IEh�	k�i������

for some t�j � �Ij� By means of approximations similar to ��� and ��� above� namely
��t�j � � ��tj�� tj 


�
�
�uj�� � uj�� and� for larger n�j��

�

n�j�

n�j�X
i��

IEh�	k�i������ � h������� ���

we arrive at IEYj � a�tj�� where we now have a�t� 
 ��t� � h������� For the regression
term 	n and the examples given in sec� �� explicit formulas for h������ can be given�
assuming the existence of the Cesaro limits ����� ����� 	���� G������ of the sequences
�n� �n� 	n� G����n�� Indeed� we �rst have for j�j � �

	������ 

�

�� �

�
����� �G������

�
� ���

where G������ 
 ������ in the case G�x� 
 x� Then for the examples in sec� �

Ex� � �with h�	� 
 	�	 h������ 
 	������

Ex� � �with h�	� 
 e��	 If centered variables �i and �i are used� we get 	��� 
 �
from ���� such that we have h������ � � � 	��� 
 � for all �� i�e� we can assume that
the side condition ��� below is automatically ful�lled�

��� An asymptotic set�up justifying the various approximations will be given below
in sec �� We now de�ne for both models the penalized l�s� criterion  �a� 
 �

K
SSE�a��


H����a�� with 
 � � a smoothing parameter and with

SSE�a� 
 �Y � a�� �W � �Y � a�� H����a� 

Z T

�
�a���s��

�
ds�
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where �Y � a� is a K 	 �!vector having components Yj � a�tj� and where W is an
appropriate K 	 K!weight matrix� It is well known� that  �a� 
 min is solved by
natural cubic spline functions a �Green and Silverman� ������ Note that � or � can be
estimated only in the form a 
 � � b��� or a 
 � � h���� where the second factor does
not depend on t� but on ��

� Parametric Estimation

For the parametric part of the problem we apply likelihood methods� Maximization of
the log�likelihood function lT ���� � � � � IRd� T 
 �N � is done by plugging into lT ���
the spline solution "a from sec� �� leading to a function "lT ���� and then solving

"lT ��� 
 max� under b������ 
 � or h������ 
 �� ���

The side condition should guarantee that the two factors � and b in ��� or � and h in
��� can be separated by the estimation procedure�

Point process model	 The log�likelihood function of a realization ���� � � � � �N � of the
point process has the form

lT ��� 

NX
i��

�
log����i�b

�i�����i� ����
Z �i

�i��

��s�b�i����s� �� ds

�
�

where we have to insert "��t� 
 "a�t�
b�������

Time series model	 Assuming that the �i�s are �conditionally� exponentially dis�
tributed� the log�likelihood function of a time series realization ���� � � � � �N� is given byPN

i�� log�
i�� exp��
i�� � �i��� where 
i 
 �
����i� � h�	i�� cf ���� We arrive at

lT ��� 

NX
i��

�
� log ���i���h�	i������� �i

���i���h�	i���

�
�

Plugging in the solution "��t� 
 "a�t�
h������ from sec� � and neglecting irrelevant
terms we are led to a function "lT ��� which can �under the side condition h������ 
 ��
be interpreted as the log�likelihood function of a realization �"��� � � � � "�N�� with "�n 

�n
"a��n���� ful�lling the �purely parametric� model equation

IE�"�n�� j Fn� 
 h�	n����� ����

For the transitional GLM ���� quasi�likelihood methods from GLM software can be
employed�

� Asymptotic Set�up

��� Trend function

The following set�up is known from nonparametric regression �Eubank� ����� and from
non�stationary time series analysis �Dahlhaus� ������ Let ���t�� t � ��� ��� be a positive
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function with a continous derivative� de�ne for T � �

�T �t� 
 ��

�
t

T

�
� t � ��� T ��

Let further Ij�T 
 �uj���T � uj�T �� j 
 �� �� � � �� be a division of ��� T � into subintervals of

length �j�T � Putting �
���
T 
 minj�j�T � �

���
T 
 maxj �j�T � then we consider limits of

the kind

T 
�� �
���
T 
��

����
T

T

 �� ����

Since for s� s� � Ij�T

j�T �s�� �T �s
��j � �j�T max

Ij�T
j��T �t�j �

�
���
T

T
max
	���


j����t�j�

which tends to � under ����� the setting ��� is established� An analogous device is used
for the trend function �T �t� 
 ���t
T �� T 
 �N � in the time series case�

��� Ergodic properties

Point process model	 For each T � �� the counting process Nt� t � ��� T �� with intensity
process 
t�T 
 �T �t� � bt���� t � ��� T �� may ful�l the ergodic law

�

�T

Z
IT

IET bs��� ds
 b������

for limits of the kind ����� where IT denotes an interval of length �T � Then the ap�
proximation ��� is justi�ed�

Time series model	 For each N � IN the variables �n� n � f�� � � � � Ng� satisfying the
equation

IEN��n�� j Fn� 
 �T ��n�h�	n����

�T 
 �N �� may ful�l the ergodic law

�

nN

X
i�IN

IENh�	i���� 
 h�������

where IN comprises nN adjacent integers� Then the approximation ��� is justi�ed� A
more detailed analysis will be given elsewhere�

	 Application

Data sets on long�term ECGs of patients su�ering from heart arrhythmias consist of
the occurrence times �n of ventricular extrasystoles� The covariates �n are the strength
of these events measured as the relative deviation from the normal beat �see Pruscha�
Ulm � Schmid� ������ As an example we choose a patient with ��� extrasystoles within

�



a ���hours observation period� The reciprocal relationship of the trend functions ��t�
and ��t� becomes apparent in the plot of Fig� ��

Parameters were estimated from the data of �� patients� �� persons died of a later
sudden heart attack� while �� survived� We used

� point process model ���� Ex� �� with � 
 � and normalized �i�s� the mean cluster
size mc is also calculated from the estimated parameters� according to a cluster
process representation by Hawkes � Oakes ������ �� will be denoted by �PP �

� time series model ���� Ex� ��� employing S��glm�quasi�link�log��dispersion
� estimated for equation ����� with standardized �i�s� �� will here be denoted
by �TS�

The Table shows the tendency� that larger positive �PP �values and smaller mean clus�
tering sizes mc correspond to smaller �TS�values and smaller autocorrelations r�	����
where "�i 
 �i
"a��i��� as in �����

Patient N �PP mc �TS r�	���
q
"� "h���

OTDJFZ ��� ����� ����� ������ ������ ����� �����
OVXSBH ��� ����� ����� ����� ����� ����� �����
PFQWGU ���� ����� ����� ����� ����� ����� �����
OTEMQL ���� ����� ����� ����� ����� ����� �����

The data of the �� patients� labelled by their status ��survival or ��death� were
submitted to a binary logistic regression� with x 
 Sz� y 


p
mc � � and z 
 VES�h

as regressors� Hereby� VES�h is the average rate of extrasystoles per hour� and Sz
is the standard deviation of the time interval lengths between those two heart beats
being quali�ed as normal beats �not being designated as extrasystoles�� vgl� Tab� �
of Pruscha� Ulm � Schmid ������� Then in the scatter diagram of Fig� �� the �x�� y��
values of the �� patients were plotted� with x�� y� being the x and y values� respectively�
corrected by the variable z 
 VES�h on the basis of the logistic regression equation�
We have three distinct outlier cases from the group � lying in the #area# of group ��
The two most extremes of them are also outliers in the evaluation system of nonlinear
dynamics �Schmid et al� ������ where the variables x 
 �sin and y 
 �VES were used�
With respect to the quality of prediction both systems perform nearly equally well�
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Legends to Figs�

Fig� � �above�

Extrasystoles within a ���hours ECG record of a patient �OVXSBH�� The n 
 ���
time points of occurrence are marked on the time scale� The occurrence frequencies n�j�
�triangles� and the mean waiting times �

n�j� �circles� were plotted over the j 
 �� � � � � ��
hours� together with the estimated trend functions � and �� respectively�

Fig� � �below�

Scatterplot of the variable Cluster Size over the variable Standard Deviation� both
corrected by VES&h on the basis of a logistic regression equation� for �� patients�
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