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Summary: We are dealing with series of events occurring at random times 7,, and
carrying further quantitive information £,. FExamples are sequences of extrasystoles
in ECG-records. We will present two approaches for analyzing such (typically long)
sequences (7,,&,), n = 1,2,.... (i) A point process model is based on an intensity of
the form a(t) - b:(0), t > 0, with b; a stochastic intensity of the self-exciting type. (ii)
A time series approach is based on a transitional GLM. The conditional expectation
of the waiting time 0,41 = Tp41 — 7 is set to be v(7,) - h(n,(0)), with h a response
function and 7, a regression term. The deterministic functions o and v, respectively,
describe the long-term trend of the process.

Keywords: Semiparametric estimation; Trend function; Penalized least squares;
Point process; Intensity process; GLM-based time series; ECG-data

1 Introduction

Series of events can be analyzed in a dual way, namely by establishing

e point process models for the sequence 71, 72, ... of occurrence times

e time series models for the sequence oy, 0,,... of the lengths of time intervals
between events (o, = 7, — 7,,—1, 70 = 0)

(see Cox & Lewis, 1966). In the present paper, we employ

e intensity based point process models of the self-exciting type (Hawkes, 1971)

e GLM-based time series models of the transitional type (Zeger & Qaqish, 1988;
Fahrmeir & Tutz, 1994)

In both cases the model equation is factorized into a deterministic trend function and
into a stochastic part describing the short-term oscillation. As in many semiparametric
problems a major task is to separate the two factors by the estimation procedure. In
our situation of one single realization over a long time interval we will need a kind of
ergodic behaviour of the process. The trend function is estimated by penalized least
squares (l.s.) methods based on aggregated data, gained by an averaging procedure over
longer time intervals (preserving enough short-term information). For the parameter of
the stochastic component we will then employ likelihood methods, thus reversing the



order of estimation known from partial likelihood approaches in survival time analysis.
In addition to the occurrence times 7,, metrically scaled marks &, are observed, forming
p-dimensional vectors and playing the role of covariates.

The results will show that both approaches, the time series and the point process
approach, yield satisfactory trend estimations and give insight into the inner dynamics
of the process.

2 Semiparametric Point Process Model

The sequence 7,, n > 1, of occurrence times is described by an intensity process A;,
t > 0, in the multiplicative form

A= a(t)h(0), 0€0cRY, (1)

with a deterministic and smooth function a and a stochastic intensity process b. The
latter is modelled in a self-exciting form by

by = b (t,0) = flw,,t —7,) fort € (T, Tnyal, (2)
with a regression term w, being iteratively defined by

w, = U(wn—h (Um fn))

Ex. 1. f(w,s)=w, u(w,(s,2))=pew+ re’ 7
we are faced with a piecewise constant intensity function b; (Pruscha, 1983). With
wo = k equation (2) can be written in the closed form

BO1,0) = 1Y p e BT gy =0, 7 =0,

=0

Ex. 2.  f(w,s)=p+ePw, ulw,(s,z))=e"w+ kel
the intensity function b; is of the form of Hawkes’s self-exciting point process (Hawkes,
1971). In fact, with wo = 0 we can write equation (2) as

b(”)(t, H=p+r Z e (=) A TE
=1

We will close this section by deriving the conditional expectation of the waiting
times 0, = 7, — T,—1. In terms of the intensity A, the transition probabilities for o, 1,
given the information F,, = (71,&1, ..., Ta, &) of the past, can be written by

P(opt1 <s|Fo)=1—exp(—=As, 1nts),

where A,; = [ A, du. Conseqgently, the conditional expectation of ¢, is

(o | F) = [ exp(=Asn00)ds 3)

Assuming (for the moment) a piecewise constant intensity on (7,, 7,41, say A", we get
1/A on the ride hand side of (3): the factors in the following model equation (4) will
stand in a reciprocal relation to those in (1).



3 Semiparametric Time Series Model

The sequence o,, n > 1, of the waiting times between events is now analyzed within
the framework of time series. Let F,, = (01,1, ..., 00, &,) comprise the information up
to time 7, as above. Then the conditional expectation of o,.1, given F,,, is modelled
by a transitional GLM of the form

E(onp | Fu) = v(7a)h(0(0)), (4)

with a smooth, deterministic trend component v, a suitable response function %, and a
regression term 7, iteratively defined by

M = Pa—1 + 70, + G(BTE,).

Ex. 1. h(n)=nor h(n) =1/n, with no = 1, p and v nonnegative, G/(z) = exp(x)
or G(x) = x, in the latter case with a side condition 37¢ > 0

Ex. 2.  h(n)=¢€", with o =0, G(x) =

Observe that in both cases positivity of h(n) is guaranteed. Zeger and Qaqish
(1988, 2.2(iv)) used h(n) = 1/n and put 1/0, (instead o,) in the regression term 7,,.
These types of response functions h are in fact suggested by the two examples in sec. 2.
Assuming for simplicity @ = 1 then in the case of Ex. 1 in sec. 2 equation (3) yields
1/wy,, leading to the choice h(n) = 1/n; in the case of Ex. 2 we get ¢; exp(—caw,,) after
some calculations, proposing the response function h(n) = exp(n).

4 Nonparametric Estimation of the Trend

In order to estimate o or v a method of rough averaging is suggested. To this end,
we divide the observation period (0,7] into K subintervals I; = (u;_1,u;] of length
Aj=u;—uj_y,j)=1,..., K, where K is assumed to be considerably smaller than the
observed number Ny of events in (0,7]. We are going to base the ls. function on the
difference Y; — IEY;, where Y; is the rate of occurrence of events or the averaged length
of time intervals between events, respectively, in the interval [;. Let for the following

ANj=N,, — N

w;_; be the number of events in [;

4.1 Point process model

Putting Y; = AANJ we have on the basis of model (1)
EY; = / IEA, ds = of / b, (
for some 7 € [u;_1,u;]. We assume, that the approximation

o(t5) ~ alty). 15 = 3 (ujn + ), )



is possible, as well as, for larger A; = u; — uj_q,

1 Uy

— Eb,(0)ds ~ b>)(0), (6)
A] Uj—1

where b(>9)(0) is independent of j. Putting a(t) = a(t) - b)(8), and using the approx-
imations (5) and (6), we can write IEY; & a(t;).

In Ex.2 of sec.2 the limit intensity value is identified as (Pruscha, 1997)

- p
6 (p,y) = ———,

1 o'(oo)'y

where 0(*) = a.s.-lim(L Y/ 7). In Ex.1 of sec. 2 the limit intensity is el

4.2 Time series model

We divide the interval (0,7], T" = 7n, as above and define Y; = AAN

moment that I; = (7, Toyn(j], i-e. AN; = n(y), for some k = k( ), we have on the
basis of model (4)

Assuming for the

:_ E(oppi) = v(t) - —— IEA(14i-1 (0
J ( pt Uk-l— 1/( ]) n(]) ; (77k+ 1( ))

for some t3 € I;. By means of approximations similar to (5) and (6) above, namely
v(t3) = u(t), t; = T(uj—1 + uj), and, for larger n(j),

n(7)
% ; IEA(niti—1(0)) =~ h(oo)(e)v (7)

we arrive at IEY; ~ a(t;), where we now have a(t) = v(t) - h{>)(8). For the regression
term 7, and the examples given in sec. 3, explicit formulas for h(>)(f) can be given,
assuming the existence of the Cesaro limits o(°), £(59) (o) " G(=)(3) of the sequences
Oy Eny My G(BTEL). Indeed, we first have for |p| < 1

10) = —— (30 4 (). g

where G(®)(3) = BT£(%) in the case G(x) = x. Then for the examples in sec. 3
Ex. 1 (with h(n) =n): A(0) = n>)(0)

Ex. 2 (with A(n) = €7): If centered variables o; and & are used, we get (> =0
from (8), such that we have A(*)(#) 2 1 4 (> =1 for all ; i.e. we can assume that
the side condition (9) below is automatically fulfilled.

4.3 An asymptotic set-up justifying the various approximations will be given below
in sec 6. We now define for both models the penalized 1.s. criterion ¥(a) = %SSE(@) +
AH®(a), with A > 0 a smoothing parameter and with

SSE(@) = (Y —a)T - W-(Y —a), H®(a)= /OT (a"(5))® ds,



where (Y — a) is a K x 1-vector having components Y; — a(f;) and where W is an
appropriate K x K-weight matrix. It is well known, that U(a) = min is solved by
natural cubic spline functions a (Green and Silverman, 1994). Note that « or v can be
estimated only in the form ¢ = a - 6(*) or a = v - A(>)

, where the second factor does

not depend on ¢, but on 6.

5 Parametric Estimation

For the parametric part of the problem we apply likelihood methods. Maximization of
the log-likelihood function I7(0), § € @ C IR, T' = 7n, is done by plugging into I7(0)
the spline solution @ from sec. 4, leading to a function I7(8), and then solving

iT(G) = max, under b(®)(#) =1 or A>)(9) = 1. 9)

The side condition should guarantee that the two factors a and b in (1) or v and h in
(4) can be separated by the estimation procedure.

Point process model: The log-likelihood function of a realization (71, ..., 7y) of the
point process has the form
N Ti .
(0 = 3 (oetar ) = [ 05,015
=1 Ti-1

where we have to insert &(1) = a(t)/b>)(9).

Time series model: Assuming that the o,’s are (conditionally) exponentially dis-
tributed, the log-likelihood function of a time series realization (o4, ...,ox) is given by
P log( i—1exp(—Ai_1 - 0y)), where A\; = 1/(v(7;) - h(n;)) cf (4). We arrive at

N

(0) = 32 (—tog st s (0) = 5T

=1 v(Tic1)h(niz1

Plugging in the solution o(t) = a(t )/h1)(0) from sec. 4 and neglecting irrelevant
terms we are led to a function ZT(G) which can (under the side condition h<°0>(0) =1)

be interpreted as the log-likelihood function of a realization (64,...,0n), with 6, =
0n/a(7,—1), fulfilling the (purely parametric) model equation
E(n41 | Fn) = h(na(0)). (10)

For the transitional GLM (10) quasi-likelihood methods from GLM software can be
employed.

6 Asymptotic Set-up

6.1 Trend function

The following set-up is known from nonparametric regression (Eubank, 1988) and from
non-stationary time series analysis (Dahlhaus, 1996). Let ay(%), t € [0, 1], be a positive

5



function with a continous derivative; define for 7" > 0

ar(t) = s (%) . Leo.T].

Let further ;7 = (uj_1,7,u;7], 3 = 1,2,..., be a division of (0, 7] into subintervals of

length A; 7. Putting Agpo) = min; A; 7, Agpl) = max; A; 7, then we consider limits of
the kind
AL

TT — 0. (11)

T — oo, Ag)) — 00,
Since for s,8" € I;r

(1)
Jar(3) = ar(s)] < Ay max o (0] < S maxaf (1)

which tends to 0 under (11), the setting (5) is established. An analogous device is used
for the trend function vp(t) = v1(¢/T), T = 7n, in the time series case.

6.2 Ergodic properties

Point process model: For each T' > 0, the counting process Ny, t € [0, 7], with intensity
process Aeqp = ar(t) - b(0),t € [0,T], may fulfil the ergodic law

1
— | Esb,(0)d b= (g
ATITT()SH (9)

for limits of the kind (11), where I7 denotes an interval of length Ay. Then the ap-
proximation (6) is justified.

Time series model: For each N € IN the variables o,,, n € {1,..., N}, satisfying the
equation

Exn(ont1 | Fn) = ve(7a)h(na(0))
(T = 7n), may fulfil the ergodic law

LS Bh((0) — K0,

nN t€ly

where [y comprises ny adjacent integers. Then the approximation (7) is justified. A
more detailed analysis will be given elsewhere.

7 Application

Data sets on long-term ECGs of patients suffering from heart arrhythmias consist of
the occurrence times 7, of ventricular extrasystoles. The covariates £, are the strength
of these events measured as the relative deviation from the normal beat (see Pruscha,
Ulm & Schmid, 1997). As an example we choose a patient with 714 extrasystoles within
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a 20-hours observation period. The reciprocal relationship of the trend functions a(t)
and v(t) becomes apparent in the plot of Fig. I.

Parameters were estimated from the data of 48 patients; 15 persons died of a later
sudden heart attack, while 33 survived. We used

e point process model (1), Ex. 2, with £ = 1 and normalized o;’s; the mean cluster
size m, is also calculated from the estimated parameters, according to a cluster
process representation by Hawkes & Oakes (1974) (v will be denoted by ypp)

o lime series model (4), Ex. 2., employing S+,glm,quasi(link=log) ,dispersion
¢ estimated for equation (10), with standardized o;’s, (v will here be denoted
by ’YTS)

The Table shows the tendency, that larger positive vpp-values and smaller mean clus-
tering sizes m, correspond to smaller ypg-values and smaller autocorrelations r;(1),
where &; = 0;/a(7i—1) as in (10).

Patient N | ~pp m, yrs  re(l) \/; p(=0)

OTDJFZ 482 1 125.0 1.008 | -0.043 -0.036 0.955 1.001
OVXSBH 714 | 2,532 1.653 | 0.043 0.092 5.872 1.001
PFQWGU 1697 | 1.981 2.019 | 0.049 0.151 1.878 1.012
OTEMQL 1788 | 1.802 2.248 | 0.151 0.194 1.619 1.014

The data of the 48 patients, labelled by their status =survival or 2=death, were
submitted to a binary logistic regression, with @ = Sz, y = \/m. — 1 and z = VES/h
as regressors. Hereby, VES/h is the average rate of extrasystoles per hour, and Sz
is the standard deviation of the time interval lengths between those two heart beats
being qualified as normal beats (not being designated as extrasystoles), vgl. Tab. 1
of Pruscha, Ulm & Schmid (1997). Then in the scatter diagram of Fig. 2, the (2',y’)
values of the 48 patients were plotted, with 2/, 3" being the @ and y values, respectively,
corrected by the variable z = VES/h on the basis of the logistic regression equation.
We have three distinct outlier cases from the group 2 lying in the "area” of group I.
The two most extremes of them are also outliers in the evaluation system of nonlinear
dynamics (Schmid et al, 1996), where the variables © = a;, and y = aygs were used.
With respect to the quality of prediction both systems perform nearly equally well.
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Legends to Figs.
Fig. 1 (above)
Extrasystoles within a 20-hours ECG record of a patient (OVXSBH). The n = 714

time points of occurrence are marked on the time scale. The occurrence frequencies n(j)
(triangles) and the mean waiting times ﬁ (circles) were plotted over the j =1,...,20

hours, together with the estimated trend functions a and v, respectively.
Fig. 2 (below)

Scatterplot of the variable Cluster Size over the variable Standard Deviation, both
corrected by VES/h on the basis of a logistic regression equation, for 48 patients.
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