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A mixed approach and a distribution free
multiple imputation technique for the estimation
of multivariate probit models with missing values

Martin Spiess* and Ferdinand Keller!

Abstract

In the present paper a mixed generalized estimating/pseudo-score equa-
tions (GEPSE) approach together with a distribution free multiple imputa-
tion technique is proposed for the estimation of regression and correlation
structure parameters of multivariate probit models with missing values for
an ordered categorical time invariant variable. Furthermore, a generaliza-
tion of the squared trace correlation (R%) for multivariate probit models,
denoted as pseudo R2T, is proposed. A simulation study was conducted,
simulating a probit model with an equicorrelation structure in the errors
of an underlying regression model and using two different missing mecha-
nisms. For a low ‘true’ correlation the difference between the GEPSE, a
generalized estimating equations (GEE) and a maximum likelihood (ML)
estimator were negligible. For a high ‘true’ correlation the GEPSE estima-
tor turned out to be more efficient than the GEE and very efficient relative
to the ML estimator. Furthermore, the pseudo R2T was close to RQT of the
underlying linear model. The mixed approach is illustrated using a psychi-
atric data set of depressive inpatients. The results of this analysis suggest,
that the depression score at discharge from a psychiatric hospital and the
occurence of stressful life events seem to increase the probability of having
an episode of major depression within a one-year interval after discharge.
Furthermore, the correlation structure points to short-time effects on hav-
ing or not having a depressive episode, not accounted for in the systematic
part of the regression model.
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1 Introduction

During the past several years a large amount of work has been devoted to the
problem of estimating multivariate probit models. However, unless simplifying
assumptions can be made, maximum likelihood (ML) estimation of these models
is hampered by the computational intractability of high-dimensional integrals.

One possibility to avoid the integration over many dimensions is to model
the dependencies between the responses via random effects, the number of which
determining the dimensionality of the problem. The ML estimator may then ap-
proximately be calculated using Gauss-Hermite quadratur. For clustered and/or
panel probit models with one or two random effects and binary responses, see
e.g. Anderson and Aitkin (1985), Bock and Aitkin (1981), Bock and Lieberman
(1970), Butler and Moffit (1982) or Im and Gianola (1988). However, ML estima-
tion of random effects models is not restricted to probit models, binary responses
or the assumption of only one or two random effects. For more general models
see e.g. Bock and Gibbons (1996), Conaway (1989), Gibbons, Hedeker, Charles
and Frisch (1994) or Hedeker and Gibbons (1994). Other approaches for the
approximate ML or non-ML estimation of random effects models are proposed
e.g. by Stiratelli, Laird and Ware (1984) or Wong and Mason (1985) and in the
context of generalized mixed models e.g. by Breslow and Clayton (1993), Lee
and Nelder (1996), McGilchrist (1994) or Schall (1991).

Alternative non-ML approaches for the estimation of general clustered and/or
panel logit or probit models have been proposed e.g. by Avery, Hansen and Hotz
(1983), Gourieroux, Monfort, and Trognon (1984), Liang and Zeger (1986) or
Schepers, Arminger and Kiisters (1991). A survey of methods for the estima-
tion of clustered and/or panel models with emphasis on logit models and binary
responses is given e.g. by Pendergast et al. (1996).

An easy to implement and computational efficient method is the ‘generalized
estimating equations’ (GEE) approach proposed by Liang and Zeger (1986). This
approach allows the consistent estimation of regression parameters even if the cor-
relation structure of the outcomes is misspecified (Liang & Zeger, 1986), using
generalized estimating equations for the estimation of regression parameters and
simple functions of residuals for the estimation of the correlation structure param-
eters. If the correlation structure is correctly specified, then the loss of efficiency
of the regression parameter estimators is small relative to the ML regression pa-
rameter estimators. On the other hand, the parameter estimators modeling the
correlation structure may be very inefficient (Liang, Zeger & Qaqish, 1992). For
a more efficient estimation of both types of parameters Prentice (1988) proposed
the estimation of both sets of parameters by generalized estimating equations.

Modeling the correlation structure of the observable outcomes, the GEE ap-
proach and its extensions described so far originally were not intended for the
estimation of functions of correlations of not observable, continuous response
variables, given the covariates. Starting with a threshold model in the context
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of probit models, however, the concept of models with partially observable (e.g.
binary) responses is used in many contexts (e.g. Ashford & Sowden, 1970; Heck-
man, 1981; Muthén, 1984; Pearson, 1900; Schepers et al., 1991). In these cases
not only the regression parameters but also functions of the correlations of the la-
tent responses given the covariates, i.e. the underlying correlations, are of interest.
Therefore, based upon the extended GEE approach proposed by Prentice (1988),
in their work Qu, Williams, Beck and Medendorp (1992) and Qu, Piedmonte and
Williams (1994) propose the simultaneous estimation of both sets of parameters,
i.e. regression parameters and functions of the underlying correlations, henceforth
called correlation structure parameters, using generalized estimating equations.

In the present paper a different approach for the simultaneous estimation of
regression and correlation structure parameters is proposed. In contrast to the
approach proposed by Qu et al. (1992) and Qu et al. (1994), the correlation
structure parameters are estimated using pseudo-score equations. Since the re-
gression parameters are estimated using generalized estimating equations, this
mixed approach will be called GEPSE approach (generalized estimating/pseudo
score equations approach). Both sets of parameters are calculated as if they
were orthogonal, thereby preserving the robustness of the regression parameter
estimators with respect to misspecification of the correlation matrix. The use of
generalized estimating equations for the estimation of regression parameters was
shown to lead to more efficient estimators than using a three-stage approach as
proposed e.g. by Schepers et al. (1991) in a Monte Carlo experiment (Spiess &
Hamerle, 1995). In contrast to the pseudo-ML approach proposed by Gourieroux
et al. (1984) where the regression parameters are estimated under the assump-
tion of independence, using the mixed approach, the regression parameters are
estimated taking the associations between the responses into account. Although
the mixed approach can be used to estimate general multivariate probit models,
the present paper focuses on the estimation of cluster or panel models with binary
responses.

The proposed approach will be illustrated analysing the impact of ‘stressful
life events’, ‘depression score at discharge’, ‘age’ and ‘gender’ of patients as well
as time effects upon the probability of having a depressive episode within a one
year interval after discharge from a psychiatric state hospital. Two types of cor-
relation structures in the assumed latent ‘depressivity’ given the covariates are
considered: Equicorrelation and an autocorrelation-like structure. An equicor-
relation structure for example could point to a prevailing impact of individual
specific factors not accounted for in the systematic part of the model, maintaining
the ‘depressivity’ level over time. On the other hand, if an autocorrelation-like
structure is present, then the assumption of a prevailing impact of factors with
decreasing effects over time on the ‘depressivity’ level, again given the covariates,
would be plausible.

Unfortunately, the ‘depression score at discharge’ is not observed for all pa-
tients. The problem of missing data is a common problem in many applications.



However, recent advances have led to a wide variety of strategies for coping with
this problem in statistical inference (e.g. Little & Rubin, 1987; Little, 1992). One
popular method is the method of multiple imputation (e.g. Rubin, 1987), where
several complete data sets are created filling in the missing values. The advan-
tage of this method is that standard methods for the analysis of complete data
sets can be applied, i.e. this technique is not tied to one particular estimation
method. In the present paper a distribution free approach is used, which is based
upon a regression of the variable which is not observed for all patients on all
other variables for the complete cases and the imputation of predicted values for
incomplete cases (e.g. Heitjan & Little, 1991, or, Schenker & Taylor, 1996). How-
ever, since the variable ‘depression score at discharge’ is treated as an ordered
categorical variable, instead of using a linear regression, the variate ‘ranks of the
depression score at discharge’ is regressed on all other variables.

To assess the fit of the systematic part of the model used to analyse the data
set described above, the pseudo R? proposed by McKelvey and Zavoina (1975)
for ordinal probit models with uncorrelated responses is extended to a pseudo
R7. for multivariate models which is a generalization of the trace correlation in
multivariate linear regression models (Hooper, 1959).

This article is organized as follows. In section 2 the model is described and
the notation introduced. In section 3 the mixed estimation procedure and the
asymptotic properties of the estimator are presented. A sketch of the proof of
the asymptotic properties is given in the Appendix. Section 4 describes the
distribution free multiple imputation technique. Section 5 provides the results of
a simulation study, comparing the proposed GEPSE estimator with a GEE and
a ML estimator in finite samples. The mixed estimation procedure is illustrated
using a psychiatric dataset in section 6. Conclusions can be found in section 7.

2 The Model

Let N (n=1,...,N) be the number of clusters (e.g. subjects), T (t =1, ...,T) be
the number of observations within every cluster and y, = (yn1, .- -, Ynr) the vec-
tor of observable binary responses for the nth cluster. Let z,; = (Zps1, - - -, Tpep)’
denote the (P x 1) vector of covariates associated with the tth observation of the
nth cluster, X,, the (T" x P) matrix of covariates associated with the nth cluster
and X the (NT x P) matrix having full column rank associated with all NT
observations. All types of ‘truly’ exogenous variables are allowed, e.g. covariates
which are invariant over clusters, invariant over observations within clusters or
covariates varying over all clusters and observations.
Throughout a threshold model (Pearson, 1900)

1 ifyr, >0,

* 1 % _
Ynt = TpyB” + Uny and y”t_{ 0 otherwise,
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is assumed, where 7, is an unobservable, continuous response variable, 5* is the
unknown regression parameter vector and v,; is an unobservable error term dis-
tributed independently of the covariates. For the multivariate probit model,
let v, ~ N(0,%), where v, = (vn1,...,U,r), and ¥ = V2R V2 where
V = diag(o?,...,0%) denotes a diagonal matrix with the diagonal elements
being the variances, o?, of v,, and R is a correlation matrix with elements
pw, the pairwise correlations between observation points ¢ and #'. Through-
out, p denotes the vector of all T'(T" — 1)/2 off diagonal elements of R, i.e.
p = (P21, P31, P32, - - -, pr(r—1))’- The structure of R depends upon the process
in the error terms v,;. For example, a stationary first-order autoregressive pro-
cess (AR(1) process) leads to an AR(1) structure in the corresponding correlation
matrix, i.e. pp = 971 9] < 1. If the error term vy, is composed of two in-
dependent terms, one cluster specific and one observation specific, m, and €,,
say, then the corresponding correlation matrix has an equicorrelation structure,
ie. pp = 0 for all t,¢' (t # t'). Of course, other correlation structures could be
modeled. Observations from different blocks are assumed to be independent.

In the sequel let ®(-) denote the standard normal cumulative distribution
function, ¢(-) the standard normal density function, ®(-, -, p;) the standard bi-
variate normal cumulative distribution function and ¢(-, -, py) the standard bi-
variate normal density function.

3 Estimation of complete data sets

In the model of Section 2 only the parameter vectors 3, = o7 ' * are identifiable.
Therefore, the usual restriction o, = o for all ¢ will be adopted!. The identifiable
regression parameter then is 3 = o~!#*. Although in this paper only probit
models with correlated binary responses are considered, the proposed approach
can easily be extended to the estimation of more general probit models with
ordered categorical or mixed continuous/categorical correlated responses.

The two sets of parameters, # and 9, where in contrast to Liang and Zeger
(1986) or Prentice (1988) ¥ is a function of the underlying correlations, can be es-
timated using the generalized estimating equations for the regression parameters
(Liang & Zeger, 1986; Prentice, 1988)

S AQ e, =0 (1)

and the pseudo-score equations for the estimation of the correlation structure
parameters

S_ZZB;W;IVHZQ 2)

IThis constraint is more restrictive than necessary and could be relaxed in what follows.



where p is considered as a function f(JJ) of the structural parameter ¢, which
may be a vector or a scalar. For example, if an AR(1) structure is assumed,
f(0) = (WL, 9%,9% ..., 9Tt . 9 where ¥ is a scalar. If an equicorrelation
structure is assumed, then f(J) = 1pp_1y/20, where 1pip_1)2isa (T(T—1)/2x1)
vector with all elements equal to unity and ¥ is again a scalar.

For the probit model considered in this article,

€n = Yn — (I)(Xnﬁ)a
Q,, = Cov(yn),

with diagonal elements ®(z!,3)(1 — ®(z!,0)) and covariance, i.e. off diagonal

element, ®(z!,5,x.,0, pw) — @(z),5)@(x],3) in the tth row and #'th column
(t #1t') and

A, = X diag(p(2,,0), - .. p(2y00)).
The elements of the (T(T — 1)/2 x 1) vector v, are (2yn; — 1) (2yny — 1),

W, = diag(Pr2,1)s - - - Parr-1))

where Py = Pr(yYns, Yne| x;tﬁ, xl A, pw) is the probability of the variables v,
and y,y assuming specific values, given the covariates, the regression parameter
and correlation, and

Bn = dlag(@(aj;ﬂﬁa 1‘21187 p21)a ce QO(ZLTB? x’In(Tfl)ﬁ: PT(T—I)))'

Note that (2) is just the vector of first derivatives of the pseudo-maximum like-
lihood functions

() = Zln(ﬁ) = Z Z log Prt.1)

n t,t!
(t'<t)

with respect to ¥, where 3° ,» means summation over all probabilities P, 1),
(t'<t)
P31y, Pa32)s - - s Porr—1)- Note that Py is also a function of 3, so if neces-

sary the function /(1) will also be written as (¢, 3).

The corresponding estimators ) are similar to the pseudo ML (PML) estima-
tors described in Gourieroux et al. (1984), in that these estimators are calculated
as if the y,yp» were independent. However, contrary to Gourieroux et al. (1984)
who used PML estimators for § calculated under the assumption of an indepen-
dent probit model, in the approach proposed above the regression parameters are
estimated taking into account the assumed structure of association between the
responses. Similar to the approach proposed by Qu et al. (1992) and Qu et al.
(1994) both types of parameters are estimated simultaneously and the regression
parameters are estimated using generalized estimating equations. In contrast to
their approach, however, the correlation structure parameters are estimated using



pseudo-score equations. The GEE and the GEPSE approach will be compared
with respect to efficiency in section 5 in a simulation study.

The vector of estimates 0 = (81,19/)/ is iteratively calculated with updated
value in the (j 4 1)th iteration given by

g (—(&AmnlAn)‘l 0 ) < T Ay Qe )
—Y; = -1 le] —1
J 0 D o= ﬁZnB;Wn Vo ) oi

>
+

=Y

where

L)
_Xn:aﬁ

It can be shown that \/N(é — 6y), where 6 is the true value, is asymptoti-
cally normally distributed with zero mean and an asymptotic covariance matrix
consistenly estimated by

-1 -1
— L 0 Au Ay Y (L M
COV(")‘N<M Q) <A21 A JLo Q)

where
~(rzmara) on= (555,
( 0—i 8085
= <Z ) , <Z ene Q. 1A ) ,
n 0—0 n 0=0
_ (9P -1 101
Ay = ( > B, W, tvael Q) An>
99 n 0=0
and

(see Appendix).

To assess the goodness of fit of ordinal probit models with uncorrelated re-
sponses, McKelvey and Zavoina (1975) proposed a pseudo R?, that gives an
estimate of the coefficient of determination R? of the underlying linear regression
model. A generalization of R? for multivariate linear regression models is the
squared trace correlation, proposed by Hooper (1959), defined as

R =T 'tr(I - D),

where D = (X, yntl) (3, vav)), yn is a (T x 1) vector of observable responses,
is the (T'x T') identity matrix and trA denotes the trace of matrix A. The squared
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trace correlation, R%, can be interpreted as the portion of the total variance of
the jointly dependent variables that is ‘explained’ by the systematic part of the
model (Hooper, 1959).

Now consider the transformed model of section 2

Vo2 = VIV2X, B + uy,

where y = (v, ..., yir), un = V %0, and Var(u,) = R. An estimate of the
residual sum of squares and products (SSP) matrix is then given by SSPp = N R.
Let i, = V' *X,, 3%, then the fitted SSP matrix is SSPy = X2, (9 — §) (i — )
where § = N='3, 4,. Thus, an estimate of the total SSP matrix is obtained by
SSPr = SSPr + SSPg. The estimate f{ZT, or pseudo R7., is then given by?

Ry = T "tx(1 - (SSP;)7'SSPR) = T tr((SSP4) ' SSPy).

Since we restrict o, = 1 for all £, we have V =1 and B = B*. Note, that the above
partitioning of the total SSP matrix is not entirely valid since the regression pa-
rameter estimator is not unbiased. However, since it is asymptotically unbiased,
for large samples, the above partition holds asymptotically. In the case of un-
correlated responses, the pseudo R? proposed by McKelvey and Zavoina (1975)
was the one that is closest to the OLS-R? from various pseudo R? considered in
several simulation studies (Veall & Zimmermann, 1992; Veall & Zimmermann,

1996; Windmeijer, 1995). In section 5, PA{QT will be compared with the squared
trace correlation of the underlying multivariate linear model using simulated data
sets.

4 A distribution free multiple imputation tech-
nique

Filling in, i.e. imputing missing values is a popular method if not all values of
some of the variables considered are observed, since complete-data methods can
be used. However, imputing just one value for each missing value (single im-
putation) overstates precision, i.e. systematically underestimates the uncertainty
about which value to impute, typically leading to invalid tests and confidence
intervals (Heitjan and Little, 1991; Rubin and Schenker, 1986; Rubin, 1987). In
contrast, multiple imputation methods (Rubin, 1987; Rubin, 1996) lead to several
(M) completed data sets, each of which is analysed using complete-data methods.
To correctly account for the uncertainty due to missing data, in general each of
the M > 1 sets of imputations should be drawn independently according to the

~1/2

2Note that since tr(V'/ (SSPr)LsSPrV /%) = w((SSPy) VN s5Pr) =
tr((S/S\PT)ASSPF), f{QT of the transformed model is identical to f{QT of the original model.

1/2 /24 —1/



following general scheme (e.g. Rubin and Schenker, 1986). Given a model for the
data, the parameters should be drawn from their approximative posterior distri-
bution (given the observed data) and, given the drawn parameters, the missing
values should be drawn as independently and identically distributed.

The variable ‘depression score at discharge’ (‘DS’) in the data set (see section
6) is characterized by a substantial portion of missing values. It is an ordered
categorical time invariant variate which is collected only once for every patient,
i.e. at discharge from the psychiatric hospital. In the following, let z, = rg(z2%)
be the rank assigned to the nth value of the variable DS. Furthermore, let the
index ‘obs’ denote the cases having complete data on all variables and the index
‘mis’ denote those cases having missing data on the variable DS. For example,
Nyps denotes the number of cases having complete data on all variables and
Nnis =N — Ngps. Let ny =1, ..., Ngpg and ng = Ngpg +1,..., N.

The method proposed combines techniques described in Heitjan and Little
(1991) and Schenker and Taylor (1996). However, it differs from both approaches
in that a model for an ordered categorical variable needs to be specified. More
specifically, the following steps create one single set of imputations. First, a
bootstrap sample of size Ngpg from the set of cases having complete data on
all variables are drawn. This sample is used to estimate the parameters of a
regression of z,, on all other variables. Second, estimated residuals from the
complete cases are randomly selected to predict values — given the other variables
— to be imputed for the cases having missing data on the variable DS.

The model used in the first step is a linear regression of the ranks of variable
DS, z,, on all other variables (Imam and Conover, 1983), i.e. ‘age’ (‘AGE’),
‘gender’ (‘GE’), ‘stressful life events’ (‘SLE’) at each quarter of a one year in-
terval after discharge and ‘having a depressive espisode’ within each quarter of
that year. Ties are handled by assigning average ranks. In the second step,
the estimated regression parameters are then used to calculate the estimated

residuals for the complete cases and the conditional means z; and Z; , where

= E(zy,|all other variables and estimated parameters). One way to proceed
would be to randomly draw one of the residuals and predict z,, by the sum of this
residual and the conditional mean 2} (‘residual draw imputation’). However, to
adjust for local lack of fit of the regression model used, we use a ‘local residual
draw imputation’ technique (e.g. Heitjan and Little, 1991; Schenker and Taylor,
1996). More precisely, for each case with missing data five complete cases are
found that are closest to the conditional mean 2} in the sense of smallest values
d = |25 — Z: |. For every case with incomplete data, one of the corresponding
five estimated residuals is randomly drawn to create the predicted value z,, by
the sum of the conditional mean Z;  and this residual. After the values (predicted
ranks) are created, new ranks are assigned given all N observations. Again, ties
are handled by assigning average ranks. Given the completed data set, the esti-

mates according to the mixed approach described in section 3, the pseudo R or
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various test statistics can be calculated. The above steps are repeated M times
to create M sets of imputation.

Note that no distributional assumption concerning the model for creating the
values to impute are made. On the other hand, the imputation method used is
restricted to the case of missingness at random (Rubin, 1987). This assumption,
however, seems not to be violated in the present case as will become apparent in
section 6.

Inference from multiply imputed data is straightforward (see Rubin, 1987).
In particular, let ém be a scalar estimate and Var,, its estimated variance for
the mth completed data set. Note, that the estimates usmg the mixed approach
are asymptotically normal. The final estimate is § M1y, fm with estimated
variance

Var = Var + (1 + M~1)B,

where Var = M1y, \//a\rm is the average variance within the completed data
sets and B = (M — 1) 1Y, (&n — €)% is the between imputation variance. Tests
of the parameter are based on a t reference distribution with degrees of freedom
v=(M—=1)(1+r1)2 where r = (1+ M~")Var 'B.

If instead of a scalar quantity a k-dimensional estimate é is of interest with
fm an estimate and C/(;/m its estimated variance for the mth completed data set,
then for the hypothesis Hy : & = & Rubin (1987) (see also Rubin and Schenker,
1991) proposes the test statistic

d = [(1+ )k (€~ &) Cov (€ - &),
where € and Cov are calculated as above and r is generalized to
= (1+ M YHtr(BCov ')/k.

Tests are based on a Fy,,, reference distribution with & and w degrees of freedom,
where for k(M — 1) > 4, w is given by w = 4+ [(M — 1)k — 4](1 + a/r)? and
a={1-2/[k(M—1)]}. If k(M —1) <4, then w = (k+ 1)v/2.

5 A Simulation Study

To obtain an idea on how efficient the GEPSE estimator is relative to the estima-
tor proposed by Qu et al. (1992) and Qu et al. (1994) and to a ML estimator, a
simple simulation study was conducted where all programs were written using the
‘interactive matrix language’ (IML) included in the SAS system (SAS Institute
Inc., 1989).

Samples were generated according to a panel model with T' = 4 observations
within each block. For each of the s = 300 replications N = 500 blocks were gen-
erated. Two covariates were generated, one uniformly distributed variate varying
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over all NT' observations and one time invariant ordered categorical variate. The
latter variate was generated having 30 different values with probabilities equal to
the relative frequencies found in the data set described in section 6 for the cases
with complete data. Instead of using the ordered categorical variate, a variate the
values of which were the ranks of the values of the ordered categorical variate was
created (denoted as z). The ‘true’ values of the parameters were 3. = —1.5 for
the constant term, $; = —.5 and B = .005 weighting the uniformly distributed
variate and the variate the values of which are the ranks of the ordered categor-
ical variate, respectively. The error terms were generated as standard normally
distributed variates according to an equicorrelation structure with p;y =9 = .2
for all ¢,¢' (Model I) and p;y = 0 = .8 for all ¢,#' (Model II), respectively. The
‘observable’ binary responses were generated according to the threshold model as
described in section 2.

After a complete data set was generated, approximately 30% of the values of
z were discarded according to the following mechanisms. A continuous variate, 7
was generated which was correlated with the uniformly distributed, time invari-
ant variates 1, ..., T4 With correlations .5. A binary variable, r,, indicating
whether the value of z, is to be deleted was generated according to the rule r, =1
if r; > ¢ and 0 else. The threshold ¢ was choosen to lead to approximately 30%
missing values of the variate z. The two missing mechanisms differed in that in
the first case a zero correlation (Mis;) and in the second a .25 correlation between
the two covariates was generated (Misy).

The combination of two different values for ¥ and two different missing mecha-
nisms leads to four different situations. Three different estimators were calculated
given each of the different situations. The estimator proposed by Qu et al. (1992)
and Qu et al. (1994) will be denoted as GEE estimator. The estimator using the
mixed approach described in section 3 will be denoted as GEPSE estimator. Both
estimators are calculated under the assumption of an equicorrelation structure in
the correlation matrix of the latent errors. As ML estimator the maximum likeli-
hood estimator of a simple random effects probit model (e.g. Butler and Moffit,
1982), where it is assumed that v,, = m, + €4, T, ~ N(0,02), €, ~ N(0,02)
and E(m,€,;) = 0, restricting the error variance, 0 = o2 + 02, to unity was cal-
culated. The ML estimator of this model can approximately be calculated using
Gauss-Hermite quadrature. However, to keep the approximation error under a
predefined level, a sufficient number of points for the approximative evaluation
of the integrals in the log likelihood function and its derivatives has to be used.
The necessary number of evaluation points mainly depends on the value of 4.
The higher the value of ¢, the larger the number of points needed and vice versa.
Therefore, if 9 = .8 then 64 evaluation points were used for the estimation results
to be stable up to four significant digits. If ¢ = .2, only 34 evaluation points were
used.

For every completed data set not only the regression and correlation structure
parameter estimates but also pseudo R%. and, since the underlying responses are
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available, R was calculated. For a given simulated data set M = 4 sets of
imputations were generated. To predict the values to be imputed for each case
with missing data, five neighbours were used to randomly draw an estimated
residual from. The ‘final’ estimates, (¢, Bu, B, using the GEE, GEPSE or ML
approach, as well as their estimated variances were calculated as described in
section 4. The ‘final’ estimates 1) as well as the values of pseudo R% and R% were
calculated using Fisher’s Z-transformation. Corresponding transformations were
used to calculate the estimate of the variances of 0.

To compare the results, the following measures were used: (1) the arithmetic
mean of the ‘final’ estimates over the s = 300 replications® (M), (2) the estimated
standard deviation defined as SD = (s~ Y°5_, Var(fy,))"/2, where Var(fy,) is the
estimated asymptotic variance of the kth element of 6, (r=1,...,s), (3) the root
mean squared error (RMSE) of the estimates, defined as RMSE = (s™* 3°_, (0, —
0;)?)'/? and (4) the proportion of rejections (REJ) at the 5% level of significance
of the null hypothesis that the parameter is identical to the ‘true’ value against
a two-sided alternative.

To save space, only the results for Model IT are given. For ¢ = .2 (Model I) the
differences between GEE, GEPSE and ML estimators for both, Mis; and Miss,
were negligible with respect to the measures defined above. The picture becomes
quite different for ¥ = .8 (Model II, see Table 1). If the regression parameters
are considered, there is virtually no difference between the GEE and GEPSE
estimators concerning the measures M, SD and RMSE. The difference between
these two approaches and the ML approach is only small, with the ML estimator
being slightly more efficient in terms of smaller SD and RMSE. However, the GEE
and GEPSE approaches clearly differ with respect to the correlation structure
parameter: The GEPSE approach leads to a correlation structure parameter
estimator which has smaller SD and RMSE under both missing mechanisms.
Again, the difference between the GEPSE and the ML estimator is only small.
To summarize, considering the measures SD and RMSE for all parameters, the
most efficient estimator is the ML estimator followed by the GEPSE estimator.
The GEE estimator is the most inefficient estimator, if ¥ = .8.

‘ Insert Table 1 about here ‘

Since all experiments were conducted with s = 300 replications, the critical
values for a test of the hypothesis of the proportions of rejections being 0.05
are approximately 0.05 &+ 0.025 (o = 0.05). The statistic REJ lies outside this
interval in five cases, however close to the bounds and in an non-systematic way
(see Table 1).

3The arithmetic means of R% and pseudo R3 were calculated using Fishers’ Z-
transformation.
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Note that the above results are valid for both missing mechanisms, although
Mis, leads to missings which are not missing at random, since the variate r is
no more independent of the variate z. For the example considered, it may be
concluded that at least in the case of a slight violation of the missing at random
assumption all three estimation approaches still lead to satisfactory results.

The arithmetic means of R are .51 and .48 for Mis; and Miss, respectively.
The arithmetic means of pseudo R% are .51 and .48 for Mis; and Mis,, respec-
tively. These arithmetic means are the same for all three estimation approaches.
Clearly, as in the univariate case, the arithmetic means of the values of pseudo
R7. are very close to those of R7.. This result also holds for Model I, i.e. if ¥ = .2.

It should be noted, that the same general results were obtained if the same
missing mechanisms and models as above, except that s = 500, N = 250 and
B, = .01, were used.

6 Example

In this section the GEPSE approach described in section 3 together with the
multiple imputation method described in section 4 is illustrated using a sample
of depressed inpatients with a major depression according to DSM-III-R.

The dataset! consisted of 139 individuals, 93 females and 46 males, with
mean age of 50.4 (SD = 14.7). The data were collected at two points in time,
i.e. at discharge from the psychiatric hospital and one year after discharge. The
year after discharge was divided into four 3-month intervals. At the end of this
year subjects were asked to remember relevant information for the time varying
variates using different clues in time as e.g. birthdays or holidays.

The following variates were assumed to have an impact on the probability
of having a depressive episode within each of the four 3-month intervals after
discharge: age (‘AGE’) and gender (‘GE’; female: 0, male: 1) of the patients, the
rank of their depression score at discharge (‘DS’, Beck Depression Inventory) as
time invariant covariates and whether or not stressful life events were experienced
(‘SLE’) within each of the four 3-month intervals as a time varying covariate. A
depressive episode was defined by fulfilling the operational criteria and the num-
ber of symptoms required for a major depression according to DSM-III-R. Several
other variables occasionally considered to be relevant in prediction research for
the course of depression (e.g. number of previous episodes, dysthymia; see e.g.
Belsher and Costello, 1988; Keller, 1990) were omitted since preliminary analysis
failed to confirm substantial relations to relapse. To control for time effects three
dummy variables were also included in the model (TIME2 — TIME4), where the
first time interval served as reference category.

The values of the variable DS were observed only for N = 107 patients (73
females and 34 males with mean age of 49.9 and SD = 14.3). However, this

4The data set is available upon request from the first author.
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was due to organizational reasons and did not depend upon the values of DS.
Therefore, it is reasonable to assume that the values are missing at random in
the sense of Rubin (1987).

Beside the effects of the covariates, the structure of the correlation matrix
as well as the values of the corresponding correlations between the underlying
‘depressivity’ given the covariates were of interest. Two different correlation
structures are considered. An equicorrelation structure would point to persisting
factors not controlled for in the systematic part of the regression model (e.g. a dis-
position or persisting environmental variables) influencing the probability of being
in one of the two states, i.e. having a depressive episode vs. having no depressive
episode, at different points in time. On the other hand, an autocorrelation-like
structure would point to short-time effects of factors — again not controlled for
in the systematic part — leading to a higher probability of being in different
states at different points in time. To distinguish between the contributions of
long-time vs. short-time effects, a Toeplitz correlation matrix was modeled, i.e.
f(19) == (191, ?92, 191, ey 79T—17 e ,?91)’.

The regression and correlation structure parameters of this model were esti-
mated using the mixed approach and M = 4 completed data sets. For every case
with missing data, the estimated residual used to predict the value to be imputed
was randomly drawn from five neighbours. Beside the estimates of the parame-
ters and their variances, the pseudo R3, and an estimate defined as ém =C 1§m,
where C = ((1] ?j , together with its variance estimate was calulated for every
completed data set. The latter estimates were used to calculate the test statistic
d and test the hypothesis Hy : (7 = U35 A ¥9 = 03). The ‘final’ estimates were
calculated as described in section 4. The estimation results of this model are
presented in Table 2.

‘ Insert Table 2 about here ‘

From the results in Table 2 it may be concluded, that both the depressive
score at discharge and experiencing stressful life events seem to have an effect
(v = .05) on the probability of having an episode of major depression within a
one-year interval after discharge: The higher the depressive score at discharge,
the higher the probability of having a depressive episode. Experiencing stressful
life events also leads to a higher probability of having a relapse. Corresponding
effects cannot be shown for the other covariates. The estimates 191, 192 and 193
point to an autocorrelation-like association structure, i.e. smaller correlations
with increasing distances in time. Since the hypothsis Hy : (¥ = U5 A 9y = 93)
can be rejected at the 5% level and Y3 cannot be shown to be significantly different
from zero whereas ¥; and ¥, are significantly different from zero at the 5% level,
it may be concluded that persistent factors not accounted for in the systematic
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part of the regression model cannot be shown to be important with respect to
the probability of having or not having an episode of major depression.

The value of pseudo RZ. is rather low. Although the impact of two covari-
ates can assumed to be significant, the proportion of variance ‘explained’ by the
systematic part of the model is small. Clearly, more work is needed to identify
additional variables having a significant impact on the probability of experiencing
a relapse into a major depression. The search for those variables is assisted by
the results concerning the correlation structure, since they suggest to search for
variables having only temporarily limited effects. On the other hand, it should
be noted that it is questionable whether a relatively small set of variables is re-
sponsible for having a relapse. Rather many variables are expected to have only
moderate effects, maybe interacting in a complicated way (c.f. Kendler, Kessler,
Neale, Heath & Eaves, 1993). This, however, leads to the necessity of consider-
able larger sample sizes which is prohibitive in many applications. Therefore, the
example shows that it may not only be important to focus on exogenous, observ-
able variates but also to account for variables not explicitely considered in the
systematic part of the model which then enter into the error term of the model.
Furthermore, of course, modeling the correlation structure carefully simply leads
to more efficient estimators of the regression parameters.

7 Discussion

The approach proposed in section 3 allows the estimation of multivariate probit
models. In the present paper, a model for binary clustered or longitudinal data
as a special case of a multivariate probit is considered. Although the results of
the simulation study in section 5 should not be overgeneralized, they suggest the
GEPSE approach — at least for the models considered — to lead to estimators
which are — in finite samples with missing values of an ordered categorical time
invariant variable — very efficient relative to the ML estimator and for high ‘true’
correlations to more efficient estimators relative to the GEE estimator proposed
by Qu et al. (1992) and Qu et al. (1994). Furthermore, the proposed multiple im-
putation technique using a regression of the ranks of the values of a variate with
missing values on all other variabels for those cases having complete data to pre-
dict missing values worked well in the simulations. The proposed pseudo R3. was
found to be close to the ‘true’ R% for the underlying linear model and can there-
fore be recommended for applications. This result mirrors corresponding results
in the univariate case (e.g. Veall & Zimmermann, 1992; Veall & Zimmermann,
1996; Windmeijer, 1995). Clearly, more systematic simulations are necessary to
assess the properties of the GEPSE estimator relative to alternative estimators
using the proposed multiple imputation technique under different standard and
non-standard conditions.

However, the above results suggest, that if one is interested not only in the
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regression parameters but also in the correlations of the errors of the underlying
model or in functions thereof, than the GEPSE approach is recommended if no
ML estimator is available.

Although a non-orthogonal estimation of the two sets of parameters would
be possible in the same way as described in Zhao and Prentice (1990) for the
GEE estimators, the efficiency gain can be expected to be only negligible. Fur-
thermore, the robustness property of the regression parameters with respect to
misspecification of the association structure would be lost.

Several generalizations to the mixed approach are possible. For example, in
a slightly more general framework, the regression parameter estimates are not
restricted to be identical over different observations within blocks. Furthermore,
the model may be extended to handle ordered or unordered categorical responses
as well.

In the example presented in Section 6 an AR(1)-like structure was found
in the estimated correlation matrix pointing to short-time effects of factors not
accounted for in the systematic part of the regression model. However, a structure
like this could also arise from variables not accounted for in the systematic part of
the model being autocorrelated and not independent from the covariates included
in the model. In this case an assumption made in Section 2 would be violated
and the regression estimator may not be consistent any more. As this cannot
be completely ruled out in the example presented, as well as in many other
applications, it is not yet clear how severe the effects on the properties of the
estimators are if one or more of the different assumptions are violated. This is a
point that clearly needs more careful investigation.
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Appendix

Let 0 = (8,9'), wi(8,9) = ¥, ALQte, and uy(3,9) = 225, B, W, 'v,,, then,
using a Taylor expansion, vV N (é — 6y) can — under some regularity conditions
— be approximated by

_10U,(8,9) 1 fow B\ 17!

_i . 1_3 a(%ﬁ) ! Y 1(6 8?&1”) ] i N (@ )i (A1)

— Us 5 — U 5 '
N 1( o ) N 09 =0

It can then be shown, that the functions (N=/2u{(8,9), N~"/2u}(8, 9))j_, have
an asymptotic normal distribution as N — oo with mean zero and covariance
matrix

lim N !

N—o0
Y, AL Q- 1Cov(y,) QA (=0 AL, E(en v, W, )By) 22 42)
08 5 BLE(W, vael ) A 55 (5, BLE(W, 'vav, W, )B,) 26 |

Again, under mild regularity conditions, it can be shown that as N — oo

AL G/ T <ZA;QH1AH> ,
o6 ™ 6=0,

leaula(g,ﬁ) L)
—lau2(ﬁal9) p —1 a2ln(197ﬁ)
N—p5— — & (; B0V )HO

and

L 0us(8,9) (= PP LL(0)
1 2\M» p 1
Ny — N (Eﬂ: 290V ),_,

Therefore, the matrix in (A.1) converges as N — oo to

SOAQTA, 0
lim N_I[ 92 1,(0.9) 02 1, (9
X Ho0p 2n 819819’ 0o

N—x

(A.3)

=vo

Combining (A.3) With (A 2), inserting estimates # for # and estimating Cov(yy),
E(e,v. W, 1), E(W, tvpe! ) and E(W, 'v,,v/ W 1) by epel e, v! W, 1 W v, el and
W v, vt Wt respectively, leads to the covariance matrix estimator described in
Section 3.
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Table 1: Mean (M), estimated standard deviation (SD) root mean squared error
(RMSE) and proportion of rejections (REJ) for Model 1I with N = 500, T' = 4,
30% missing values, B = —1.5, By = —.5 and By = .005 over s = 300 replications

M
§5 MiSl MiSZ
RMSE | GEE GEPSE ML GEE GEPSE ML
REJ
-1.479 -1.479 -1.474 -1.495 -1.495 -1.491
B 1413 1413 .1405 1377 1377 1371
¢ 1223 1222 1226 .1206 .1208 1199
.03 .027 .037 .023 .023 .027
-.0003 -.0004 -.0000 -.0045 -.5045 -.0041
B .0357 .0357 .0352 .0364 .0364 .0361
" .0334 .0334 .0334 .0332 .0332 .0331
.05 .05 .047 .037 .037 .03
.0049 .0049 .0049 .0050 .0050 .0050
B .0005 .0005 .0005 .0005 .0005 .0005
' .0004 .0004 .0004 .0004 .0004 .0004
.04 .04 .047 .027 .027 .023
7965 .8001 .8003 7970 7997 7994
9 .0354 .0287 .0282 .0336 0277 .0275
.0317 .0252 .0242 .0302 .0247 .0245
.02 .04 .04 .037 .027 .02



Table 2: Estimates, estimated standard deviations (SD), degrees of freedom (v)

and t-values using M = 4 completed data sets

Estimate SD v t—wvalue

Intercept -1.242 0.319 322 -3.89
AGE -0.004 0.005 > 500 -0.84
GE 0.130 0.185 > 500 0.70
DS 0.011 0.002 47 4.41
SLE 0.301 0.124 > 500 2.42
TIME2 0.178 0.102 > 500 1.75
TIME3 0.147 0.139 > 500 1.06
TIME4 0.096 0.153 > 500 0.63
21 0.794 0.046 > 500 19.49
) 0.432 0.110 > 500 3.88
I3 0.228 0.156 > 500 1.51

pseudo R? = .15

d =10.98 with k¥ =2 and w = 1281



