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Note on Two Estimators for the Polynomial Regression
with Errors in the Variables

By CHI-LUN CHENG and HANS SCHNEEWEISS
Institute of Statisti- Institute for Statistics, Univer-
cal Science, Academia Sinica, sity of Munich, Munich, Ger-
Taipei, Republic of China many

SUMMARY: This Note generalizes two estimators of the quadratic regression with
measurement errors by Fuller and Wolter and Fuller to the polynomial case.

1 Introduction

Fuller (1987) and Wolter and Fuller (1982) consider quadratic functional relation-
ships with errors in the variables for two different cases regarding the presence (case
1) or absence (case 2) of errors in the equation. They develop estimators for the
parameters of the quadratic relationship in both cases, assuming that, in case 1, the
error variance of the regressor variable or, in case 2, the error variances of dependent
and regressor variables be known. In case 1 the errors of dependent and regressor
variables are assumed to be uncorrelated. In both cases the errors are taken to be
normally distributed.

Both these estimators can be generalized to the model of a polynomial functional
relationship of any degree and with correlated errors of dependent and regressor
variables and with not necessarily normal errors. In case 1 the resulting estimator is
seen to be the same as the one developed by Cheng and Schneeweiss (1996). These
authors derived in their paper the asymptotic covariance matrix of the estimator of
case 1. The same will be done in this note for the estimator of case 2.

2 Case 1: Errors in the equation

Consider a polynomial functional relationship with errors in the equation:

yi = mitei=P0+Bli+ B +. .+ Bl +e (1)

zi = &i+0;
i=1,...,n, where (0;,&;) are i.i.d. random errors with expectation 0 and covariance
matrix

2
Q= % 9% ),
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The &;,i = 1,...,n, are unobservable (latent) nonstochastic variables. The regressor

error variance ag and the covariance o4, of regressor error ¢ and dependent variable



error ¢ are assumed to be known. The variance o2, which contains the error-in-the-
equation variance component, is unknown. If the error variables are jointly normally
distributed we have

(N) (di,€:) ~ N(0,9).

It is well-known that replacing the latent variable ¢ by its observable counterpart
z in the polynomial relationship and estimating the parameters 3; in the resulting
polynomial regression by OLS yields inconsistent estimates, Grilliches and Ringstad
(1970). As a first step to remove this inconsistency, Fuller (1987) suggests to view the
powers of ¢ as k+ 1 different latent regressor variables, for which as their observable
counterparts unbiased estimates ¢, computable from the data are available, so that
a linear functional relationship results:

yi = okl + P&l o+ Bl e

try = 5;{14‘61"2'7 TZO)"'akai:L“Wn’
where the e,; are the new measurement errors, with Ee,; = 0. Let ¢; = (£,. .. ,ff)',
/8 = (/807 v 7/819)’7 t; = (tOiu v 7tki)la €, = (60i7 T 7eki)l7 then the model can be
written as

_ ,
i = GPFe i=1,....n (2)
ti = Gite

For this linear functional relationship a consistent estimator of # can now be con-
structed if unbiased estimates V; and 9; of, respectively, the covariance matrix
Vi = E(e;e}) and the covariance vector v; = E(e;¢;) are available. The error adjusted
least squares normal equations are given by (all summations are for 1 = 1,...,n)

S(tit, —Vi)B = S(twi — o),

or

' - V)B =1ty —9, (3)

where the ~ denotes averages over ¢ = 1,...,n; cf. Fuller (1987, p.212) for the
quadratic relationship.

Following an idea of Chan and Mak (1985) the estimates ¢,; of & are easily con-
structed as certain polynomials in x; of degree r. Their coefficients depend on higher
moments of d; up to the order of 2r, which are assumed to be known. In case of (N)
only og needs to be known, and the ¢,; can be computed by the recursive relation
tr41,i = Tity; — 02rty_1,; with tg = t_; = 1, cf. Cheng and Schneeweiss (1996).

The covariance matrix V; is given by

Vi = E(ti— )t —G) (4)
= E(tit;) — Gi¢;,



The elements of {;¢; are powers of & and can therefore be estimated by the variables
tr. Let

to; t1; - tri
ti; toi .. kg1

Hi = . . . 3
tki Tyl - ok

then EH; = (;{/. Thus, an unbiased estimate of V; is given by
Vi = tit) — H;.

Similarly,

v = E{(tz — Cz)gz} = E(tié‘i).
Cheng and Schneeweiss (1996) derive an unbiased estimate of E(t,;e;) in terms of
a linear combination of the ¢,;, the coefficients of which depend on Eéé and F ((5%@)

~

only, I =1,...,r, and which they denote by E(trisi). Thus 0; = E(t;e;). In case of

(N)a E(tm'gi) = O04e 'rtr—l,i-

The normal equations (1) can now be written as

~

with H = %EHZ', h = %Ehi, and h; = t;y; — E(tisi).

This is exactly the normal equations system for the ALS estimator of Cheng and
Schneeweiss (1996).

3 Case 2: No errors in the equation

Wolter and Fuller (1982) construct an estimator of the quadratic functional relation-
ship when the whole of 2 is known. This corresponds to the case where there is no
error in the equation but only measurement errors in the variables and the covari-
ance matrix of the measurement errors is known. The estimator can be computed
without any iterations. It can be generalized to the case of a polynomial functional
relationship.

Let z; = (yi, t;)" and let W; be the error covariance matrix of z; and

its estimate. Furthermore let M = % Y ziz), My = %Ztiyi, My = %Etit;,
myy:%EyE, so that

My M
M = vy ty .
( My My
Then a generalization of Wolter and Fuller’s estimator is given by

~ ~

B = (My — AV) L(myy, — 3), (5)



where X is the smallest positve root (eigenvalue) of
det(M — AW) = 0;

see also Moon and Gunst (1995) for the special case (N).

4 The asymptotic covariance matrix of B in case 2

Under general conditions \/ﬁ(ﬁ — [3) is asymptotically normally distributed with an
asymptotic covariance matrix X F which can be computed as follows.

First note that with = (1, —3')" and § = (1, —(')" the estimating equation (5) for
([ can be written as

(M — AW)é =0, (6)
where ) is the smallest positive eigenvalue and 6 the corresponding eigenvector.
Let AM = M — EM, where (see appendix)

EM = (B,1)'¢¢'(B.1) + W, (7)

AN =\ — 1, AW = W — W, and AO =6 — 0. For large n all these differences will
be small in probability and the estimating equation (6) can be expanded as

(AM — AMW — AW)0 + (EM — W)A6 =~ 0.

This can be simplified with the help of (7) and using the fact that (EM — W)@ =0
to —
(M —W — AAW)0 =~ —(3,1)'CC(B, I) Ab.

Deleting the first equation of this system we get the following system for Ag:
{(mey, My) = (3, V) = (A = 1)(8,V)}0 = {TAB. (8)

Now by (6) o

0'Mb=\'WE
and again using (EM — W) = 0 we similarly have

9'EMO = 0'W,
and taking differences

OAMO = (A —1)0'Wo+0Wo—0'Wé.

Thus

A CAM - AW  G(AM — AW)G _ ¢/(M — W)o
B 0o - OWo T ewe
Substituting this expression for A — 1 in (8) we get

AB = (CC) (9)



with ¢ = %E’(/)Z and

i = {(ti tith) — (6, Vi) — 0o (0,V)}0
= (0D ) - TEAZID G gy (10)

Obviously Ev; = 0 (see appendix), and by the central limit theorem \/n1) converges
in distribution to a normal distribution with covariance matrix

lim E (4.

Thus by (9) v/n(3 — B) also converges to a normal distribution with covariance
matrix

25 = (lim ()~ im E(9y) (lim ()~

An estimate of the asymptotic covariance matrix of 3 is given by

1. 1 - = _

—Y5= —H M H,

n n

with ) o
o o — TA- =
Pi = tiyi — 0 — (tity — Vi) B — w(ﬁ - Vp).
O'we
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Appendix

We sketch a proof of (7) and Et; = 0.



First note that, by (2) and (4),

Ey; = BB+ o0?
E(tiy)) = Eti(;8+ E(eies) = G + v
E(tit;) = (G +V;

It follows that with z; = (y;, 1)’

n [ PGB B a?
E%m‘<<mﬁ gg>+<m

E(ziz;) = (B, 1)'GG(B, I) + W,
Averaging (A1) over i = 1,...,n results in (7).

Now (A1) also impies

E(ziz; — Wi)0 = (B,1)'G:¢i(B, D (1, —4) = 0.

It follows from (10) that Ey; = 0.

S
N——

(A1)



