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� Introduction

Online Monitoring is a rapidly expanding �eld in di�erent areas such as quality
control� �nance and navigation� The automated detection of so�called change�
points is playing a prominent role in all these �elds� be it the detection of sudden
shifts of the mean of a continuously monitored quantity� the variance of stock
quotes or the change of some characteristic features indicating the malfunction�
ing of one of the detectors used for navigation �the �faulty sensor problem	
�
A prominent example for the application of advanced statistical methods for the
detection of changepoints in biomedical time series is the multi�process Kalman
�lter used by Smith and West �Smith ���� to monitor renal transplants� How�
ever� despite the fact that the algorithm could be tuned in such a way that the
computer could predict dangerous situations on the average one day before the
human experts it has nevertheless become super�uous as soon as new diagnsoic
tools became available�
Many of the automated monitoring systems which are widely used in practice
are based on simple threshold alarms� Some upper and lower limits are chosen
at the beginning of the monitoring session and an alarm is triggered whenever
the measured values exceed the upper limit or fall below the lower limit� This is
e�g� common practice for the monitoring of patients during surgery� where such
thresholds are chosen for heart rate� blood pressure etc� by the anaesthesist�
The fate of the multi�process Kalman �lter for monitoring renal transplants
teaches two lessons� �rst� there is considerable power in statistical methods to
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improve conventional biomedical monitoring techniques� Second� if the statistical
model and the methods are too re�ned they may never be used in practice�
We shall suggest a stochastic model for changepoints which we have found to
have the capacity to be very useful in practice� i�e� which is su�ciently complex
to cover the important features of a changepoint system but simple enough to
be understandable and adaptible� We focus our attention on the properties of
the threshold alarm for di�erent values of the parameters of the threshold alarm
and the model� This will give us practically relevant estimates for this important
class of alarm systems and moreover a benchmark for the evaluation of competing
alternative algorithms� Note that virtually every algorithm designed to detect
changepoints is based on a threshold alarm� the only di�erence being that the
threshold alarm is not fed with the original data but by a transformation thereof�
usually called �residuum	 �Basseville ����
As a general measure for quality� we look on the one hand at the mean delay time
� between a changepoint and its detection and on the other hand at the mean
waiting time for a false alarm� the so�called average run length ARL�

� AModel for Changepoints in Biomedical Time

Series

There is a huge amount of di�erent models for changepoints and an even greater
amount of variants of algorithms to detect these changepoints in noisy time series
�Basseville ���� In most cases� one assumes a parametric setting� i�e� the time
series is generated by some parametrizable probability distribution� The time at
which at least one of these parameters changes is called the changepoint of the
corresponding model� In such a way one models additive changes� e�g� changes
in the mean� and spectral changes� e�g� changes in the variance�
Many biomedical time series can qualitatively be explained as arising from com�
plicated and usually nonlinear internal feedback circuits �Mor�ll ���� e�g� heart
rate or blood pressure� The time dependence of such driven nonlinear systems
can ranges from stationary� periodic� quasiperiodic to chaotic and will depend
dramatically on the parameters of the special problem� However� all these time
series have in common that they �uctuate about some constant mean with a cor�
responding variance which is constant in time when the system is in equilibrium�
Any deviation from this �equlibrium	 or �usual	 behaviour is either due to inter�
nal or external disturbances of the feedback system or due to a malfunctioning
of the feedback system itself� Whatever it may be� it will be re�ected in the
behaviour of the time series and should be detectable�
One model for a changepoint in this setting� i�e� one way to leave equilibrium�
is that of adding a constant slope to the constant mean starting at the time of
change� See �gure � for an illustration and section � for the precise notation�
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Figure �� Simulated time series with a changepoint at time tcp��� and slope
� � ���� The series has been generated by corrupting the piecewise linear function
with gaussian noise �see ��

 with zero mean �� � � and standard deviation � � ��
The time of �rst exit from the threshold band between �� and �� is here ����
Half the width of the threshold band is � � ��� We give robust estimates for the
mean of the exit time for all ��
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Even in cases where the variable of interest and its corresponding changepoints are
not of this type it is frequently possible to �nd a transformation which casts the
original problem in the setting of threshold alarms� e�g� the Fourier transformation
for detection of a shift in the main frequency�

� Heuristic Arguments for the Behaviour of ARL

and Mean Delay

Before beginning with the more technical part we shall give some heuristic argu�
ments for the mean delay and the average run length of a threshold alarm�
Looking at �gure ��
 we get the following impression� The average run length
should increase rapidly as the threshold increases and should decrease rapidly as
the variance of the noise increases� If we denote the probability for a false alarm
at a single time step by �� p� we expect that on the average we should have to
wait the inverse time for the next false alarm� i�e� the average run length should
be ARL � �

��p�
� which in fact turns out to be the correct value �see equation �
�

The mean delay�for given �� which determines the average slope after the
changepoint�should also increase with increasing threshold� but not as fast�
We expect that the mean delay � should roughly be given by � � �

j�j
which is

certainly the zero noise limit of the delay� implying the obvious fact that small
angles should have large mean delays� In the following� we shall �nd the quanti�
tative justi�cation of these statements� We will always establish robust versions
of the estimates�otherwise the practical importance would be very limited�

� Main Results

We assume that ��n
n�N is a sequence of real i�i�d� random variables de�ned on
a probability space ���A�P
 with zero mean and �nite variance� that is�

E��n
 � � and V ��n
 � E���n
 � �� � ��

We now consider a second sequence �Yn
n�N of random variables de�ned on
���A�P
� This is the sequence consisting of the variables

Yn �� �� � ��n � tcp
	�n � tcp
 � �n� ��


where ��� � � R� Here� 	 denotes the Thetafunction de�ned on the set of real
numbers� that is

	�t
 �

�
� for t � �

� for t 
 ��

�There is�in general�a di	erence between the mean time until the next alarm ocurrs and
the mean time between two alarms
 See �waiting time paradoxa� in Feller �����
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The positive number tcp is called the time of the changepoint or simply the
changepoint of the model�
We are interested in the time of the �rst exit of jYn��
j from the interval ��� �
�� �� � ��� For the rest of the paper we set

p� �� P�j��j � �
 ��


and shall usually assume p� 
 � in order to exclude trivial cases�

De�nition� Let � � R�
The random variable Te��
 � � � N de�ned by

Te��
 �� inffn � N j jYnj � �g�

is called Exit�Time�

Remark� RL �� Te��
 is also called the Runlength of the system and for tcp �
R

�� � � Rnf�g� we call � �� max�Te�tcp� �
 the delay �of detection
� The Average
Runlength ARL��
 �� E�Te��

 and the Mean Delay of detection � ��
 � E�� ��


�or slight modi�cations thereof
 are the standard variables for estimating the
goodness of a changepoint detection algorithm�
In the following� we may without loss of generality assume that �� � � �otherwise
replace Yn by Yn���
� For � �� � we are mainly interested in the delay of detection
� and not in possible false alarms before detection and shall therefore set tcp � ��

We �rst state our main results�

Theorem �� Let � � R and p� as in ���� We assume that p� 
 �� Let the
sequence �Yn
n�N be de�ned as in ���� Then	

� � E�Te��

 �
�

�� p�
�

��

��
� ��


V �Te��

 �
p�

�� � p�
�
�

�
�

�

��
��

�

�

��

� �

�
� ��


For � �� �

E�Te��

 �

��
�

�

j�j

�
� �

�
e� ��


The proof of the theorem is split into several parts�
First we determine the distribution function of Te��
�
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Lemma �� Let Te��
 and Yn be de�ned as above� Let t � R� n � N� Then

P�Te��
 � t
 �

�
� for t 
 �

� �
Q�t�

i��P�jYij � �
 for t � �
��


and

P�Te��
 � n
 � P�jYnj � �

n��Y
i��

P�jYij � �
�

Proof� For t 
 � there is nothing to prove� From

fTe��
 � ng � fmax�jY�j� � � � � jYnj
 � �g

we see that for n � ��

P�Te��
 � n
 � � �P�Te��
 � n


� � �P�fjYij � � for all i � �� � � � � ng


� � �
nY

i��

P�f��i�� � �i � ��i� �g


� � �
nY

i��

P�jYij � �
�

Hence�

P�Te��
 � n
 � P�Te��
 � n
 �P�Te��
 � n� �


�

n��Y
i��

P�jYij � �
�

nY
i��

P�jYij � �


� �� �P�jYnj � �



n��Y
i��

P�jYij � �


� P�jYnj � �


n��Y
i��

P�jYij � �
�

This proves the second part of the lemma�

Corollary �� For � �� �

E�Te��

 � � �
�X
k��

kY
i��

P�jYij � �
 
��
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Proof� By ��
� we have

E�Te��

 �
�X
k��

P�Te��
 � k


� � �
�X
k��

���P�Te��
 � k



� � �
�X
k��

kY
i��

P�jYij � �
�

We use the ratio test to prove the convergence of the ini�nite series�Qk��
i�� P�jYij � �
Qk

i��P�jYij � �

� P�jYk��j � �


� P����k � �
�� � �k � ���k � �
 � �


� P����k � �
�� � �� � ���k � �
 � �


� P��� � ���k � �
 � �


�P��� 
 ���k � �
��
�

For � �� � the expression in the last line tends to � as k tends to ��

Lemma �� Let � � � and p� as in ���� Then

E�Te��

 �

�
� for p� � �

�
��p�

for p� 
 ��

Proof�

E�Te��

 � � �
�X
k��

pk�

�
�X
k��

pk� �

�
� for p� � �

�
��p�

for p� 
 ��

as asserted�

Using Chebyshev�s inequality we immediately obtain�

Corollary ��

E�Te��

 �
��

��
�
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Proof� For p� � �� there is nothing to prove� So let p� 
 �� Then� because of
p� � � � ����
�� we have

E�Te��

 �
�

� � p�

�
��

��
�

Thus� ��
 is proved�
We next determine the variance of Te��
�

Lemma 	� Let p� 
 �� Then

V �Te��

 �
p�

�� � p�
�
� ��


Proof� We have

E�Te��
�
 �
�X
k��

k�pk��� ��� p�


� �� � p�


�X
k��

k�k � � � �
pk���

� p���� p�


�X
k��

k�k � �
pk��� � ��� p�


�X
k��

kpk���

� p���� p�

d�

dp��

�
�

� � p�
� �

�
� ��� p�


d

dp�

�
�

�� p�
� �

�

� p���� p�

�

�� � p�
	
�

�

� � p�

�
� � p�

�� � p�
�
�

where the interchange of di�erentiation and summation is justi�ed by uniform
convergence� Hence�

V �Te��

 � E�Te��
�
� E�Te��

�

�
� � p�

�� � p�
�
�

�

�� � p�
�

�
p�

�� � p�
�
�

which had to be proved�

By Chebyshev�s inequality� this gives us the following estimation of V �Te��

�
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Corollary 
� Let p� 
 �� Then

V �Te��

 �

�
�

�

��
��

�

�

��

� �

�
�

Proof� From ��
 we obtain using p� � �� ����
��

V �Te��

 �
p�

�� � p�
�

�

�
��

��

���
��

��

��

�

�

�
�

�

��
��

�

�

��

� �

�
�

This proves ��
�
We will now derive an upper bound of E�Te��

�

Proposition �� Let � �� �� Then

E�Te��

 � �����j�j� � �
e�

Proof� Put n � ��n� that is� Yn � �n � n and In � ��n��� �n � ��� De�ne

m �� ����j�j� � ��

This choice of m implies that for �xed j � f�� � � � �mg the intervals

I�� Im�j� I�m�j� � � � � I
k���m�j

are pairwise disjoint� Furthermore� for k � � we have

f�� � � � � kmg �

m�
j��

f��m � j� �m � j� � � � � �k � �
m � jg�

This yields�

P�Te��
 � km
 � P�jY�j � �� � � � � jYkmj � �


� P�� � I�� � � � � km � Ikm


� P�� � I�� m�� � Im��� � � � � 
k���m�� � I
k���m��


	 P�� � I�� m�� � Im��� � � � � 
k���m�� � I
k���m��

���

	 P�m � Im� m�m � Im�m� � � � � 
k���m�m � I
k���m�m


�

�
�

k 

�m

�





Here� the last step follows from the following observation� Since for j � f�� � � � �mg
the intervals Ij� Im�j� � � � � I
k���m�j are pairwise disjoint� we have

P�j � Ij� m�j � Im�j � � � � � 
k���m�j � I
k���m�j


� P�j 
 m�j 
 � � � 
 
k���m�j


�
�

k 
�

The general inequality now follows since each ordering of j� m�j � � � � � 
k���m�j

has the same probability because the sequence �n
n�N is identically distributed�
We now obtain

E�Te��

 �

�X
n��

P�Te��
 � n


�
�X
k��

m��X
l��

P�Te��
 � km � l


�

�X
k��

mP�Te��
 � km


� m

�X
k��

�
�

k 

�m

� �����j�j� � �
e�

which is ��
�

� Conclusion

We have studied the perhaps most frequently used alarm system for changepoint
detection�the threshold alarm�for a model which seems to cover many types of
time series appearing in biomedical applications� We suceeded to derive robust
estimates for the average run length �ARL
 and the mean delay for detection
which are the most important criteria for the quality of a changepoint detection
algorithm�
What is astonishing are the mathematical di�culties in justifying obvious conjec�
tures about the behaviour of ARL and especially mean delay even in the simple
case of threshold alarms� From a mathematical point of view it would be desirable
to obtain analytic control of the complete ARL function� i�e� the behaviour of the
run length in dependence of the slope � which at present we only know to do via
simulations� Moreover� we would like to have such a good control also for more
complex adaptive algorithms and also for extensions of our model which includes
sequential changepoints� Simulations will certainly help to design appropriate
algorithms but any analytic result in this context will cut down the necessary
computational power siginifantly and moreover serve as valuable cross�check for
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plausibility of the results� We shall report about such adaptive algorithms and
sequential changepoints elsewhere� From a practical point of view we have now
su�ciently good control of the last �and sometimes only
 stage of any changepoint
detection algorithm� For some medical applications see �Daumer ����
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