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Abstract

In many quality improvement experiments, there are one or more “control” factors
that can be modified to determine a final product design or manufacturing process,
and one or more “environmental” (or “ noise”) factors that vary under field or man-
ufacturing conditions. In many applications, the product design or process design is
considered seriously flawed if its performance is poor for any level of the environmental
factor. For example, if a particular prosthetic heart valve design has poor fluid flow
characteristics for certain flow rates, then a manufacturer will not want to put this de-
sign into production. Thus this paper considers cases when it is appropriate to measure
a product’s quality to be its worst performance over the levels of the environmental
factor. We consider the frequently occurring case of combined-array experiments and
extend the subset selection methodology of Gupta (1956, 1965) to provide statistical
screening procedures to identify product designs that maximize the worst case perfor-
mance of the design over the environmental conditions for such experiments. A case
study is provided to illustrate the proposed procedures.

Keywords and phrases: Combined-array, Inner array, Minimax approach, Outer array, Product-
array, Quality improvement, Response model, Screening, Simulation, Subset selection, Vari-
ance reduction.
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1 Introduction

Taguchi (1986) emphasizes two types of factors that effect product quality in his pioneering
work on product and process improvement. The first are “control factors” which are those
factors that can be (easily) manipulated by the manufacturer; sometimes these are called
“manufacturing” or “engineering” factors. The second are “noise factors” which are those
variables that represent either different environmental conditions that affect the performance
of a product in the field or (uncontrollable) variability in component parts or raw materials
that affect the performance of an end-product. By identifying conditions of the control factors
under which the mean product quality is (relatively) independent of the noise factors, the
product or process can be made “robust.”

For experiments to determine such conditions, Taguchi advocates using statistical de-
signs that are products of highly fractionated orthogonal arrays in the control and noise
factors. A number of other authors (Shoemaker, Tsui, and Wu 1991; Nair et al. 1992;
Myers, Khuri, and Vining 1992, for example) have proposed alternatives to the Taguchi
methodology, particularly the use of combined-arrays in the control and noise factors. At
the expense of confounding higher-order interactions, carefully chosen combined-arrays allow
the experimenter to determine interactions among the control factors and interactions among
the noise factors, as well as the critical control factor x noise factor interactions that allow
one to minimize the effect of noise factors in product quality. Thus the basic viewpoint that
Taguchi advocates has been applied widely and with many successes (Taguchi and Phadke
1984).

This paper considers applications where it is appropriate to use the worst possible per-
formance of a product under the different environments as a performance or quality index.
This criterion is natural in situations where a low response at any level of the noise factor
can have potentially serious consequence. Seat belts or heart valves that fail catastrophically
under rare, though non-negligible, sets of operating conditions must be identified early in
the product design cycle. We extend the subset selection methodology introduced in Gupta
(1956, 1965) for balanced one-way layouts, to selection of a subset containing the control
factor combination that maximizes the worst performance over the levels of the noise vari-
ables. Such procedures are proposed for data collected using (fractional) combined-array
experiments. Pan and Santner (1996) consider this criterion for the case of complete ex-
periments conducted under a variety of randomization restrictions; Santner and Pan (1997)
present a case study involving a 2°~! combined-array experiment with three control factors
and two noise factors. This paper develops procedures for arbitrary combined-array experi-
ments, including Taguchi’s cross-arrays as special cases. Bechhofer, Santner, and Goldsman
(1995) give an overview of selection and screening methodology and present procedures to
accomplish other important experimental goals.

Section 2 presents the basic model, goal, and assumptions regarding the associated
combined-array experiment. Section 3 introduces the proposed subset selection procedure
for a class of general models; it presents a theorem that gives the least favorable configuration
and associated value of the probability of correct selection. In particular, the critical value
required to implement the procedure is identified. Section 4 analyzes an integrated circuit
example using the proposed method. Some generalizations and caveats are presented in the
final section.



2 The Model and Confidence Requirement

We suppose that an experiment has been conducted in which there are p + ¢ control factors
and r+s noise factors. We assume a known model holds for the matrix of true mean responses
in which p of the control factors interact with r of the noise factors, ¢ of the control factors
have no interactions with noise factors, and s noise factors have no interactions with control
factors. Of special importance is the case when all the factors are at two levels, but nothing
in the development below requires this assumption. We introduce the following notation to
distinguish these types of control and noise factors.

‘ Notation ‘Interpretation ‘

Ci,...,C} | Control Factors that interact with Noise Factors
i ,Cg Control Factors that do not interact with Noise Factors
Ni,...,N!' | Noise Factors that interact with Control Factors
Ni,...,N? | Noise Factors that do not interact with Control Factors

Let ¢' = (s1,..., z;) denote the 1 x p vector of indices for the levels of the C''-type control
factors, 2* = (i, .. ,zg) denote the 1 x ¢ vector of indices for the levels of the C?~type control
factors, ' = (ji,...,71) be the 1 x r vector of indices for the levels of the N'-type noise
factors, and 32 = (j2,...,2) denote the 1 x s vector of indices for the levels of the N2-type
noise factors. Suppose that ' € I', ¢* € 72, j' € J', and 3> € J? for a (hypothetical)
complete factorial experiment in these factors; thus Z' is a cross product of the p index
sets corresponding to the p C''-type control factors and similarly for 72, 7', and [J2%. For
example, in the case of an experiment with each factor at two levels, we have Z' = {0,1}?,
72 ={0,1}¢, J* = {0,1}", and J* = {0,1}"°.

Let ¢ = (¢',4%) and § = (3',3°) denote the index vectors for the entire set of control and
noise factors, respectively. Then 1 g denotes the mean response when the control factors

are at level ¢ and the noise factors are at level ; here (2,7) € Z x J where T is the cross
product of 7' and 7? and 7 is the cross product of 7' and J?%. We adopt the convention
that g = (quj) is arranged as an |Z| x | 7| matrix where |- | denotes the number of elements
in a set and 2z and j are arranged lexicographically. Thus each row of g corresponds to a
single setting of the p 4+ ¢ control factors and each column corresponds to a single setting of
the noise factors. The lexicographic ordering will be used in the Kronecker product formulas
for the mean response in terms the model components (2.4). This notation is illustrated in
the following example.

Example 1: Box and Jones (1992) discuss a taste-testing experiment that is typical of those
used in the food industry to evaluate cake recipes. The experiment involves five factors,
each at two levels. Three of the factors (S=shortening, F=egg powder and F=flour) are
control factors because they can be varied by the manufacturer. The remaining two factors
(T'=baking temperature and Z=baking time) are noise factors because they are determined
by the consumer; temperature controls in ovens can be considerably biased and consumers
both under and overbake pre-packaged mixes. Throughout this and other examples involving
2"~P experiments, the subscript denoting the level of a factor is taken to be zero (unity) when
the factor is at its low (high) level.



Santner and Pan (1996) study subset selection procedure for this set-up under the em-
pirically derived assumption that the model

fijhem = Mo + Si + Fy + Ex + T + Zp + (ST ) - (2.1)

holds for all (ijk{m). Here the terms S;, F;, Ex, Ty, and Z,, are the shortening, flour, egg,
temperature, and time main effects, respectively. For model (2.1) we have (p =) 1 control
factor, S, that interacts with (r =) 1 noise factor, T'; there are (¢ =) 2 control factors, F
and F, that do not interact with any noise factors, and (s =) 1 noise variable, Z, that does
not interact with any control variable.

The matrix g of means for this case is 8 x 4 = 2172 % 21+ with entries ordered as follows

(S, F, F)
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(1, 7)

Notice that lexicographic order produces a row order in which the first four rows are at the
low level of (the interacting factor) S, and whose second four rows are at the high level of
S. Similarly, the columns are ordered so that the first two columns are at the low level of
(the interacting factor) T', and the last two columns at the high level of 7. O

For each combination of control factors we are interested in the worst mean performance
of the response over the levels of the noise factors. Formally,

{ = minp; g
)

gives the worst performance for the product/process design defined by control factor combi-
nation ¢. We denote the ordered §; corresponding to the |Z| product designs by

£y < - < - (2.2)

Our goal is to find a screening procedure that selects a subset of the control factor combi-
nations so as to contain the product or process design associated with & ;. We desire our
procedure to achieve this goal subject to the following performance requirement.

Confidence Requirement: Given o with 0 < o < 1, we desire that

Pu{CS}>1-a (2.3)



for all p satisfying Model (2.4) where C'S denotes the event that the selected subset contains
the control factor combination associated with &z.
Throughout, we assume the model

nig =men(i',3) +me(i®) + my(5?) (2.4)
holds for each (2,5) € T x J where

mCN('i17j1) — mO‘I’ ZC;V(C}TCZ%C};*NJII{N;;NI* )'il,

.17

J ok J
me(i*) = Y (CECEL---CF )z, (2.5)
Qf ’
my(3*) = Z(N]?N]%”‘N]%*)j2‘
Q7

Notice, that we group the overall mean, mg, with the control x noise interaction terms. Here
QY, QY, and QYN are nonempty sets that identify the main effects and interactions among
the C?-type control factors, the main effects and interactions among the N2-type noise
factors, and the main effects and interactions among the C''-type control factors and N'-
type noise factors, respectively. For notational simplicity we use, for example, the subscript
% in the term (C%Cf; e C%*)iz with the understanding the this function depends only on

the ¢* components 1 <} <145 < < g of 1*. Bach of mon(2',3"), mc(2%), and my(3?) is
a linear combination of the elements of p; we do not assume that these linear combinations
are orthonormal.

We assume that the observations come from a combined-array experiment with observa-
tions

Yij=tijtey (1,3)eD (2.6)

for each (2,7) € D C I x J where the |D| measurement errors ¢4 are independent N (0, c?)
variables and all main effects and interactions in the mean model (2.4) are confounded only

with model terms that are zero, i.e., terms not in the model (2.4).

Example 1 (Continued): The quality of the recipe (S5, F, E') = (i, 7, k) is specified by the
row minimum
fz’jk = miﬂ{ﬂzjkoo, Hijko1,s Hijk10, ,Uijkll}

where ft;jkem satisfies (2.1). For this model we have m¢ (g, k) = F; + Ey, my(m) = Z,,, and
men(t,0) = mo + S; + Ty + (ST)i. Our goal is to identify a subset of recipes that contains
the best (5, F, I) combination, i.e., the recipe associated with {5 = max; ;i -

The data used by Santner and Pan (1997) in conjunction with model (2.1) came from a
2571 experiment with defining contrast I = SFETZ; thus the main effects are confounded
with 4-way interactions and the 2-way interactions are confounded with 3-way interactions



all of which are assumed to be zero. The observed data have the following structure:

1/00001 1/00010
1/00100 1/00111
1/01000 1/01011
1/01101 1/01110
1/10000 1/10011
1/10101 1/10110
1/11001 1/11010

L Yit1100 Yitn i
I Hoooo1  Hooo10 1 I €00001  €00010 1
Hoo100 Hoo111 €00100 €00111
Ho1000 Ho1o11 €01000 €01011
. Ho1101 Hoi110 + €o11101  €o1110
10000 H1o011 €10000 €10011
H1o101  H1o110 €101101  €101110
H11001  H11010 €11001  €11010
L M11100 H11111 | L €11100 €11111 |

We will denote the three matrices above by Y p, pp, and €p, respectively. The matrix
equation above is then Yp = g, + €p. This notation emphasizes that observations are only
made at the design points in D. The 16 observations collected in the experiment provide a
9 (=16 — 7) degree of freedom chi-square estimator of g2, O

In general, we will use up to denote the |Z'| x |7!| matrix obtained by deleting all the
entries in g with indices not belonging to D. We use Y p and €p to denote the conformably

ordered matrix of observations, ng? and errors, € 4> respectively. Lastly, we assume that

there is an estimator S? of o2, for which vS* ~ x? and that S? is independent of Yp.
Ordinarily, such a chi-square estimator would be available when the number of observations,
|D|, is larger than the number of parameters estimated in the model (2.4).

For simplicity, we assume above that there is one replicate of the design D. This is
the most common case in quality improvement experimentation. However, the theory and
methods developed in this paper extend straightforwardly to situations where replicates of
the design D are observed. The case study in Section 4 illustrates such a situation.

3 A Screening Procedure

The procedure we use is based on the ordinary least square (OLS) estimator of g from Model
(2.4)—(2.6). For each (2,7) € T x 7, let ﬁzg denote the OLS estimator of Hi g based on the

data from the fractional factorial design in (2.6). We estimate {; by
gi = rr;m{ﬁzg} (z € I).

Let



denote the ordered éz We propose the following procedure to select a subset of the levels of
the control factor.

Procedure G: Select control factor combination 2 if and only if
& = —hs

where h is chosen as in Theorems 3.1, 3.2 and 3.3. Let mgoy = [ch(i7j)]iEI1jE.71 be the
|7 x || matrix of meon (4, 7)’s, where the indices ¢ and §' are ordered lexicographically.
Let Von = {mcn} be the linear space consisting of all men satisfying the model (2.5). The

next theorem describes the Least Favorable Configuration for ¢ for a large class of models.

Theorem 3.1 Assume that Model (2.4)—(2.6) is symmetric with respect to the C*, N*, C?
and N? type factors, respectively, in that

(1) If the term (C%CE; e CZ'I;*N};N}; . "Nflr**)il,jl is in mon(2',3"), then all other terms
involving p* of the C' control factors and r* of the N noise factors are also in moy(s',3");
(2) If the term (C%Cf; O )i2 is in mo(2°), then all other terms involving ¢* of the C?

q*

control factors are also in mq(3%);

(3) if the term (N%Nf; e N]i** ),72 is in my(3?), then all other terms involving s* of the N?
noise factors are also in the model.

In addition, suppose that there exists a sequence of points {vy.}y in Von for which

0 40 -+ 4
Iim v, = v = : : : : 3.7
0O 0 --- 0
where, of course, Voo is [I'] x |T'|. Define p, = vy, @ Jiz2)¢)72- Then,
g0 PlCS) = Jim P (05} = i e fép 2 mess—hsh )

where I is the control factor combination corresponding to the last row of py, t.e., each
control factor is at its highest level.

Theorem 3.1 is proved in the Appendix. Heuristically, it states that the least favorable
configuration of means is

0 40 -+ 4
B
Hrirc 0 doo -+ doo |72 x| 72|
o 0 --- 0

where the control combination associated with the last row, say I, is designated as the best.
To compute h, it suffices to solve the implicit equation

Pu, .. {EI* > mzaxgi — hS} =1-a.

7



In practice, simulation is the simplest method to obtain h. In Model (2.4)-(2.6) take
model parameters 02 = 1 and p = v} @ Jirz|x| 72| where v} can be any v} whose nonzero
entries are large relative to zero, for example, nonzero entries are no smaller than 100.
Then & is obtained by simulating the 100 x (1 — «) percentile of the random variable T' =
(max; éz — EI*)/S. A SAS macro to calculate h using simulation is under development by
one of the authors (G. Pan).

Example 1 (Continued): Recall that
Pijkem = mo+ Si + Fj+ Ex + To + Zpy + (ST )i,
for the taste test experiment with
men (i) = mo+ S + Ty + (ST ).

The symmetry conditions (1)-(3) are automatic; also Ve = IR**? so that condition (3.7)

also holds (take vy = l 0 &

00 ]) To compute h, one can choose k£ = 100, to effectively be

oo, and take

0 100
0 100
0 100
0 100
Hp = 0 0
0 0
0 0
L 0 0 -
Now, repeatedly generate data of the form:
[ Zy 100+ Z, 1
s 100 + Z4
Zs 100 + Zs
« Z7 100 + Zs
Y: =
D Zg Z1o ’
Z1 Z12
Z13 Z14
| Z1s 2t
where 7y, -+, Z16 are iid standard normal random variables and also generate a chi-square

random variable V' with degrees of freedom v = 9 and set S = /V/v. Compute T" =
(max; Ez — 5111)/5 based on the generated data. The sample quantile based on the draws

from this distribution is an estimate of A. O

Condition (3.7) is always satisfied whenever Vony = IRIlle, but it can also be satisfied
in many other cases. Example 2 illustrates such a situation and describes a general method
to check condition (3.7).



Example 2: Consider a six factor example with each factor at two levels. Suppose that
there are 3 control factors and 3 noise factors classified so that there are (p,r) = (1,2)
interacting control and noise factors, ¢ = 2 non-interacting control factors, and s = 1 noise
non-interacting factor. The notation identifying these factors is listed in the following table:

‘Index‘ Name ‘ Type ‘

1 oh Interacting
7, k | C}, C? | Non-interacting
{,m | N, Nj Interacting

n N} Non-interacting

Suppose
Pijkemn = mon(Hm) + me(jk) + mua(n) (3.9)
where
meon(ilm) = mo + (C1)i + (N7 )e + (N3 ) + (CIND)ie + (C1Ng i,
me(jk) = (C}); + (C3Hr + (CC3) 1, and my(n) = (N{),. Notice that the symmetry
conditions (1)—(2) are immediate for this model. However, Vo is six dimensional and does

not span the eight dimensional space IR***. However, condition (3.7) still holds for this

model.
Condition (3.7) can be checked using the ANOVA model (3.9) but it is more convenient
to use an equivalent regression model defined by indicator variables in which

. ] 1, if Clis at its low level R 1, if Ntis at its high level
s = 0, if C!is at its high level e s = 0, if V! is at its low level

The indicator variables z! and z! are defined slightly differently than usual to simplify some
of the terms in v. The model (3.9) is equivalent to the following

11 1.1 1.1 1.1 1.1 2 2 2 2 22 .2 2 2 2
Hijktmn = Bo+ Bray + 7171 + Ya2g + 0wz + 0121129 + Bt + Byay + Birrias + 4

and Vo is generated by
Vitem = o + Bre1(i) + 7121 (0) + 1223(m) + 11wy i)z (i) + 12271 (1) 23(0)
where each regression coefficient ranges over IR. Thus each element in V oy has form

v — Bo+ 511 Bo+ 511—|- ’V%—l- 012 Bo+ 511—|- ’Vll—l- o1 Bot+ 511—|- ’Vll—l- ’V%—l- 011+ 012
Bo Bo + ’V% Bo + ’711 Bo + ’Vll—l- ’y%

With this representation it is easy to find a sequence satisfying (3.7). Make the last row of
v zero by taking By = 0, vf = 0, and ~5 = 0. The remaining element in the first column
of v, vogo, becomes zero if 31 = 0. Then the remaining two parameters, &;; and 612, can be
used to increase the other entries in the first row of the v matrix to infinity, for example, by
letting 611 = 612 = K. Then the resulting v is

y_()KKZK_}O—I—oo—I—oo—I—oo
K=o 0 0 0 O 0 0 0

9



Hence, the result in Theorem 3.1 can be used to compute h. Simulation can be used
to estimate h by repeatedly computing 7' = (max; Ez — 5111)/5 from data drawn from the
particular design, D, used in the experiment and having means taken from the appropriate
positions in

100 100 100 100 100 100 ]
100 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 100
0 0 0 0 0 0

Wi00 = V100 @ 249 =

jenilan N an B an B en BN e BN e i e
jenilan N an B an B en BN e BN e i e

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Notice that the random numbers are generated only at factor combinations in the set of
design points D involved in an experiment. a

In principle, the following more general result, Theorem 3.2, can be applied to determine
h for models that either do not satisfy the symmetry conditions or (3.7) in Theorem 3.1. To
state this result, some additional notations must be introduced. Let mcon(2',3"), Mo (2?),
and miy(3%) be the OLS estimators of men(2',5'), mo(2?), and my(3%), respectively. Since
all the estimators are unbiased, it is easy to see that

figg = mon(ijh) + mo(i®) + iy (5?)
= pijteen(i'gh) + (@) +av(i?)

where oy (2", 7') is the linear combination of the eij’s determined by the terms in (2.5) and

whose values depend only on (z',3'). Similarly €-(2%) and ex(j*) are linear combinations of
the eiJ"s whose values depend on 2° and j*, respectively.
For fixed I' € T', I* € T? and for each ¢' € 7' fix 5'(2') € J'. Define
ec(I*) > e (%) — hS Vi* € 1%
P(I' P, {5'()}) = P{ ec(I®) + ming: {eon(I'. 5"} > . (3.10)
ec(i’) +eon(z', 3 (3") — hS Vit £1'4% € I°

where the |D| error terms eij’s are independent standard normal random variables and

vS? ~ X2 is independent of the eij’s. Then, the following Theorem can be used to determine

h in Procedure G for any model (2.4)—(2.6).
Theorem 3.2 For any p satisfying (2.4)—(2.6),

Pp{CS} > min rﬂinP(Il,Iz,{jl(-)}) (3.11)
(I I yertx12 3°()

Then i can be determined by solving equation that results from setting the right hand
side of Equation (3.11) equal to 1 — . However, this method can be very tedious due to the
large number of choices of I € T', I* € T? and functions j'(-). When the model (2.4)-(2.5)
satisfies the symmetry conditions (1)—(3) of Theorem 3.1, all the terms on the right hand
side of equation (3.11) are equal. That is,

10



Theorem 3.3 When the symmetry conditions (1)-(3) in Theorem 3.1 are satisfied,
P(Ilv 127 {Jl()})

is constant for any I' € T*,I* € I? and function 3'(-).

4 A Case Study

In this section we provide a detailed analysis of an example using the proposed methodology.
The example and data are described in Myers and Montgomery (1995, pages 144, 529). Five
factors in a manufacturing process for integrated circuits were investigated using a 257!
design. The notation we use to describe the five factors is

‘ Notation ‘ Factor ‘
1 implant dose
A time
T temperature
O oxide thickness
F furnace position

Each factor was used at two levels. The design and the measured response: resistivity
of the wafer, are shown in the following table. In the process of manufacturing integrated
circuits the temperature, T, is difficult to control and is considered a noise factor; the other
four factors are regarded as control factors. The primary concern is the variability in wafer
resistivity due to transmitted variability in the temperature. It is of interest to choose a
combination of the control factors to maximize wafer resistivity over the different temper-
atures. Thus one appropriate measure of performance is the smallest resistivity of a given
process design over temperature.

‘ Run ‘ I 2 T O F=I1ZTO ‘ Resistivity ‘
1 10 0 0 O 1 15.1
2 (1 0 0 0 0 20.6
3 (0 0 1 0 0 68.7
4 11 0 1 0 1 101.0
5 (0 1 0 0 0 32.9
6 (1 1 0 0 1 46.1
710 1 1 0 1 87.5
g8 |1 1 1 0 0 119.0
9 (0 0 0 1 0 11.3
0 11 0 0 1 1 19.6
11 70 0 1 1 1 62.1
2 11 0 1 1 0 103.2
13 10 1 0 1 1 27.1
4 11 1 0 1 0 40.3
5 10 1 1 1 0 87.7
6 |1 1 1 1 1 128.3

11



Past experience with this process indicated that O and F' have little effect on resistivity,
but these factors were included in the experiment for confirmation. It was further known
that Z has only an additive effect on the resistivity. Thus the following model is postulated:

Yiikem = pijk + €ijkim = mo+ Li + Z; + T + (T )it + €jktm-

The current data confirmed this model. The adjusted R* is above 99%. Residual plots,
a normal probability plot, and other diagnostic measures suggest that it is reasonable to
assume normally distributed measurement errors with a constant variance o?.

Since factors O and F' do not have significant effects, the design can be collapsed into
factors I, Z, and T which results in a replicated 2 design in these three factors. While the
theory is developed assuming a single replicate of a design D, situations with replicates can
be transformed easily to use the theory. Notice that the OLS estimator of g depends only
on the sample means at the design points in D. Therefore, for the collapsed design in this

example, we adopt the following more succinct expression of the same model:

Y = pijr + € = mo + L + Z; + T+ (IT )i + € (4.12)
where Y7, = Y.k and ¢fix = €jk... Here, the standard bar-dot notation means that an

average is taken over the subscripts replaced by dots (but, of course, only at the design
points in D).

In the language of this paper, I is a C''-type factor, Z is a C*-type factor, and 7' is a
N'-type factor. In this example, there are no C*~type or N*~type factors. The model (4.12)
satisfies the symmetry condition in Theorem (3.1). Let

(1, 2)
I 0 k7 (0,0
S Jo k] 0 - o k| (o)
V= [0 0] 1 and METEa= g (g )
01 0 0] (1)

T 01

T

To compute h, we simulated data sets having mean g, i.e., each generated data set had
the form

(1,7)
Z1 1100+ Zy | (0,0)
Zs 1100+ Z, | (0,1)
Zs Zg (1,0)
Rz (1,1)
0 1
T
where 7, ... Zg were mutually independent standard normal random variables. Model (4.12)

was fit to the simulated data, then the estimated cell means fi;;; and &; = min{ o, flij1 }
were computed.

12



Next, a chi-square random variate with v = 11 degrees of freedom, V., was drawn and
S? = V/2v was computed. It is important to note that the factor 2 is used in the definition
of 5% because Var(efjk) = 0?/2 where o2 is the standard deviation of the original Yz, data.

Then T = (max;; éj — 511)/5 is calculated. The estimated 90% confidence point of h = 1.50
was based on 10,000 replications of the above T' calculation.

Based on the original data, o = 60.67, I; = 23.22, Z; = 68.06, (IT),, = 13.16, and
71 = 20.92 so that

fijo it &ij

60.66 94.69 | 60.66
71.12 105.15 | 71.12
7227 112.88 | 72.27
82.73 123.34 | 82.73

Also S = 3.47 and so the yardstick is h x S = 1.50 x 3.47=5.21. Thus at the 90% confidence
level, Procedure G selects the single design combination with factors I and T both at high
levels.

— = O O
—_— O = O,

5 Discussion

5.1 A Systematic Method of Verifying Theorem 3.1

In addition to the method illustrated in Example 2, there is a systematic technique of deter-
mining whether the hypothesis (3.7) of Theorem 3.1 holds in any particular application. We
provide a brief sketch of the technique which involves solving a related linear programming
problem. Recall that the canonical form of an LP in unknown w = (wq,...,w,) is

max CT’UJ

s.t.
Aw <b
w >0

where ¢, A, and b are given n x 1, m x n, and m x 1 arrays.

Let Z (for “Zero”) denote those (2',3") combinations corresponding to elements in the
first column or last row of mey. We wish to determine whether a sequence of mey exists
that satisfies Model (2.4)-(2.5), has mcn(2',5') — +oo for all (2',3') € Z, and for which
men(2',3') =0 for all (3',3") € Z. To solve this problem, we introduce the auxiliary scalar
variable w whose role is to be a lower bound on the elements we wish to simultaneously drive
to +00. Then we solve

max w
s.t.
mon(2',3") =0 forall (2',3") € Z (5.13)

w<men(i',g") forall (s',5') ¢ Z

Erag (C5Ch - O NjNje - Nj ) o o = 0 for all (¢%,57) € QF < QF

13



The variables for the LP are w, mg, and (C%CE; e C};* N}TN}; e Nflr**)il,jl for (¢5,57) €

QY x QV; we regard mon(2',3") as merely a notation for the linear combination

mo + Z (CZITC’LI; te 021;* NJITNJIS ce ler*)'il,jl
Qf xQf

The initial constraint forces the first column and last row to be zero while the second causes
w to be the minimum of the meoyn(2',3") for (2',5') € Z. The third set of equalities are
identifiability constraints for the main effects and interactions.

In the usual way, the LP (5.13) can be reformulated in canonical form by replacing
unconstrained variables z by zt — 27 where z* > 0 and 2z~ > 0 and equality constraints
a'z=0bya’z <0 and —a’z > 0. Condition (3.7) of Theorem 3.1 holds if and only if
the LP has an unconstrained optimum.

5.2 Bounded Means

In some applications, the response is bounded above by a known value. For example, in
the cake mix study in Example 1, the highest taste score is 8. In the integrated circuit
example of Section 4, it may be known that the highest possible resistivity can not ex-
ceed some threshold, say, 130. When there is a known upper bound on the measurements,
the maxmin criterion has an alternative interpretation and the proposed procedure can be
modified slightly to improve efficiency.

The maxmin criterion judges the quality of a product or process design by its lowest
mean across the environmental conditions. If there is an upper bound on the means, say,
U, then the design can be equivalently judged by the largest difference between the means
across the environmental conditions and the upper bound U. The best product based on
maxmin criterion is also the product that minimizes the difference from its mean and U,
across the environmental conditions.

If, in addition, L is a lower bound on the of the means then Theorems 3.1, 3.2, and 3.3
can be improved by replacing each +00 by U — L, i.e, taking the least favorable configuration
to be

0 U—L -+ U—1L
S : : @ Tt
0 U—L - U—1L 2177

However, unless U — L is less than 3o, the resulting 2 will be close to the one determined
directly from Theorems 3.1, 3.2 or 3.3.
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A Appendix: Proofs

We first establish the following lemma.
Lemma A.1
inf P {C'S} = inf P {C'S} = inf Pu {CS} (A.14)
where
Q= {p:(24)—(2.5) hold}, Qo= {pecQ:mn(3*) =0}, Qo= {p € Q:mec(s*) =0}

Proof: First, recall that any possible true g is an |Z| x |J| matrix that can be written
uniquely in the form

H=mcy & J|Iz|x|jz| + J|I1|><1 & me @ J1X|j| + J|I|><|.71| & m]—(f (A15)

where @ denotes Kronecker product, mey = (mCN(il,jl)) is [ZY < |TY, me = (mc(zZ)) is
72| x 1, my = (mn(3?)) is |T?| x 1. All components are ordered lexicographically. Notice
that model component (2.5) specifies that men € Von, where

Ven = {men 1 (2.5) holds}.
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To prove the left-hand equality of (A.14), pick g € Q with corresponding elements
(mCN,mc,mN) in (A15) Define

p=p— Jigjx o © my.

If (mfy, my, my) correspond to p*, then it is straightforward to show that meny = m§y,
mg = my, and my = 0 which shows that p* € Q. We claim that Py {C'S} = Py~ {CS}
which will obviously establish the left-hand side of (A.14).

Consider the relationship between the population row minimums for g and w@*; let &;
correspond to p and £ correspond to p*. Fix i =(2",4°) then

& = H;.iﬂ {mon (@', 3") + mo(8) + ma(5%)}

= mm{mCN( 3+ me(e? }—I—mm{mN }
J J
f; —I_ Tp0p7

say, where T,,, is independent of 2. Using this fact, it is easy to see that the index [|Z|] that
maximizes ¢; is identical for both g and p* and the relationship between the row minimums
is

&z = max {fz} = max {f; + Tpop} = &z + Toop-

Let Yp = pp + €p and Y5, = w5 + €p where the components of ep are indepen-
dent N(0,0?) random variables. We determine the relationship between the estimated row
minimums for Yp and Y7,

This association is established by first computing the relation between the individual
estimated means K under Yp and Y%. Let fi and fi* denote the estimated means using
the data Yp and Y7, respectively. We have ﬁzg = mon(e', ") + me(2?) + mn(3?) where
each of the latter three terms are the sum of estimated main effects and interactions. In
particular, (Mo, Mc, My) minimizes

Z{ —my (it §Y) = mi (i) - mi (%))

where the superscript @ denotes that these are the variables over which the minimization is
to take place. Throughout the appendix, we assume that the subscripts in summations and
minimizations are over the design points in D. To derive *, we observe that

S {7 - w8 ) i 57}
g

- Z {Y” —my (%) = men (i §7) — me(é) — m}lv(f)}

- Z{ —mn (i1, 5 — mb () —mE (D))
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say, where m3¢(3%) = mn(3%) + m%(5*). Thus we see that the OLSEs of the terms that
comprise p* satisly mpy = mey, my, = mg, and my, = my —my; these equations imply
~ ~ .9
that jig = = jig j —mn(3").
The last equation shows two things. First, let {; and f; denote the row minimums for
Y p and Y7, respectively. Then, for any ¢ € 7 we have

G = min{mon(i' g £ W)+ G}
= min {Foy(i'3") + e(i®)} + min i (§?) = ()}
+min {75 } = min {7v (57}
J J
= min (o (i'.4") + el®) + 7 (7))
—|—r3112n {ﬁN(JZ) — mN(Jz)} - rgll,}l {m\N(Jz)}
= &+ rgl.gn{mu% —mn (%)} - rggn{m]vu%}
= gz + Test,

say.
In addition, if S? is the residual sum of squares based on Y used to estimate o? and
(5*)? is the corresponding sum of squares based on Y, then

v(S*)? = Z(Y{j—ﬂi’j)Z

vJ

= 2 (V5 —mnG") = fig 5 +mn(*)
1.

= > (Vi —niz) =vs
1.

where v is the (common) degrees of freedom for 5% and (5*)%. ~
With these relationships we can compute the PCS under g and p*. Let (7)) be associated

with &7 then é(*m) = é[m] +T,., 1s associated with fﬁfl] = &z + Tpop since the same product
design [|Z[] simultaneously maximizes both {; and {; = & 4 T},p. Thus we obtain
Pu{CS} = P{¢m =& —hS forall i}
= P&y + Tyop = & + Tpop — hS for all i}
= P{{m = & —hS for all i}
= Pu{CS}

To prove the right-hand equality in (A.14), pick g € Q¢ with uniquely defined expansion
terms (mcen, me); set
p=p—Jnpx @me @ Jig g
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As above, it is straightforward to calculate that the corresponding terms for p* satisfy (mg,
mg, my) = (mey,0,0) so that p* € Qgo. Thus it suffices to show Py {CS} = Py~ {CS}
to prove the right-hand equality.

The row minimums for g, ¢;, and for p*, f;, satisfy the equation

& = rr;jn{mCN(il,jl) +me(i’) }

= min{men(i',§")} + me(?)
J
= & +me(i);

notice that f; is independent of 2°. From this calculation, the optimal row levels are deter-

mined as follows. Suppose that (iy,4%) is defined by

me(iy) = m.ngmc(iz) and milnmCN(i}V,jl) = max {mo + mmmCN( ,J )}
4 J 4 J

Then (i),45) is the optimum product design under g and (2y,¢°) is the optimum product
design under p* for any ¢ and, in particular, for ¢* = ¢3,. To see this we compute

+] 2
7.2 7.2

Hllaxf 1 = max {miln{ch(i17j1)} T mc(z?)}
J

1

_ m?x{r?iln{mc]v(il,jl)}}—I—max{mc } sz,iN

and
* _
rr11a>2<§i1i2 = max mm{mc]\z i'.3")
v U TR
= max mm{mgN i'.3") z
:l J N7

for any ¢* and in particular for ¢3. Also note that f g
N7 N

f i + Qpop, say, where Qpop
is constant.

As above, let Yp = pp + €p and Y5, = p5 + €p where the components of €p are
independent N(0,c?) random variables. Arguing similarly as the first part of the proof
and letting quantities with(out) the superscript correspond to Y5 (Y'p), the estimated row
minimums for Y p and Y7, can be shown to satisfy f* fz —mg(2?) for all 2 and (57)% = S2.

Let f .1 .2 be the estimator associated with f .1 . and similarly for f . ., Thus we obtain
lN,lN) Tytly (Tntx)

Pu{CS} = {51

szlN)

> € — S forall i

= {f a e —|—mc(zN)>§*—|—mc( >y — hS for all z}

(Tn.Ty)
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> {gﬁv i) 2 &= hS forall z} (A.16)

= Pu{CS}
where (A.16) holds because mc(zN) > me(e ) for all 2 a
Proof of Theorem 3.2 Choose pt = v @ Jiz2 x| 72| with v = (vs Jl) € Ven. Then
,uiJ' == v'il,jl (Al?)
for all (2*,5°%) € I ® J?* and
€i17i2 == l’f;llnvilujl (A18)

is independent of 2°. Suppose that 3'(z') is a function that denotes a set of column indices for

which the minimum in (A.18) is attained, i.e., f TV Gy Finally,let I = (I',I*) € T

denote an optimum control setting for g, i.e.,
£ = max{§;.
T
From the development in the proof of Lemma A.1,

= men(t',3") + mo(e*) + mn(37)
= :uzj +60N( 7.7 )—I—Ec(l )—I_EN(jz) (Alg)

Hi

where Hi§ = V5 by (A.17), €on(2', ') is the linear combination of the € determmed by

the terms in (2. 5) and whose values depends only on (¢',3'), and similarly each of €x(2%) and

ev(3?%) are linear combinations of the ¢; » whose values depend on 2* and 32, respectively.

[2¥)
Thus we have

& = minji; ; = e(i*) + minen(5%) + min {v-1 ot EON(il,jl)} : (A.20)
J J J

Then the probability of correct selection is
Pu{CSy = Puf{éy=6—hs VieT}

2 > 12—hS \V/iQEIQ'
= Py 51 Tz 51 Ve (A.21)
fII2>€1 2—hS \V/l 7£I lEI

co(I?) > eo(i?) — hS Vit e T

= pq el +m nf{vI g el ’Jl)} - (A.22)
€ (12)+mmf{vzl 0+ Eon (i g )}—hs Vil £ 147 € T2
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Y
e

(
() mings {op jup (I} > (A.23)
( —I—minj1 {vzng —I—ECN(il,jl)}—hS Vi £ I 4% € T?
e(I’) > e (i) —hS Vit €T
() +op o p+ming {eon (T4} 2 (A.24)
(
(
(

Y
e

Jd
t )+vi1,j1 +eon(2,3'(3") —hS Vi #1I'3* € I?

.
[}

@)

P

Y

013+m%{Qmﬁfﬂz (A.25)
ec(?) +eon(i', 3 (3Y) —hS Vit £T1'4* € I?
= P I° {5 ()})

where (A.22) holds by substituting (A.20) in the event (A.21), (A.23) holds because op
v o for all 31, (A.24) holds since v1 .1
t.J] ?,

3@
and (A.25) holds because op > Vit i@y

I

+een(it, 3 (i) = miﬂjl{viljl +eon (i, 50},

Proof of Theorems 3.3 and 3.1 Theorem 3.3 follows from Theorem 3.2 by symmetry;
when the symmetry conditions (1)-(3) of Theorem 3.1 are satisfied, the terms ecn(2', 7') +
eo(2%) + ex(3?) in ﬂzg (A.19) are exchangeable. Thus Theorem 3.1 is a direct conclusion
from Theorem 3.3.
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