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Abstract

We consider asymptotic theory for the maximum likelihood esti�

mator in the generalized linear model with an unknown breakpoint�

A proof for the asymptotic normality is given� The methods are

based on the work of Huber �����	� The main problem is the non


di�erentiability of the likelihood and the score function� which requires

non
standard methods� An example from epidemiology is presented�

where condence intervals for the parameters are calculated with the

asymptotic results�

Keywords� Asymptotic Normality� Breakpoint� Maximum Likelihood�

Non�di�erentiable Score Function� Segmented Regression�

� Introduction

In segmented regression models the domain of the regressor X is divided in
two or more intervals� where the regression function has a di�erent form or
di�erent parameters� The endpoints of these intervals are called changepoints
or breakpoints �Seber and Wild� ����	� In this paper� we consider generalized
linear models with two segments� i�e� one breakpoint� We further assume that
the regression function is continuous and that only the slope parameter di�ers
in the two segments� The regression equation can be written as

E�Y jX 
 x	 
 G�� � ���x� �	� � ���x� �	�	� ��	

�



where t� �
 max�� t	� t� �
 min�� t	�

Here� G denotes the link function� e�g� logistic� identity etc� A major task
with respect to such models concerns parameter estimation if the breakpoint
� is treated as an unknown parameter� Then standard asymptotic theory is
not applicable� because the regression function is not di�erentiable in X 
 � �
Feder �����	 has shown asymptotic normality for the least square estimator
in this model with continuous response Y � We address the more general case
of maximum likelihood in generalized linear models� An important special
case is the logistic regression� which has many applications in toxicology and
epidemiology� see Ulm �����	� K�uchenho� and Carroll �����	�
We give a proof for the asymptotic normality of the maximum likelihood

estimator �MLE	 for the i�i�d� case� We use methods which di�er from those
used by Feder and which can be applied in the much more general con�
text of estimating equations� The outline of the paper is as follows� In the
second section� the model is introduced and the consistency of the MLE is
pointed out� In the third section� the asymptotic normality of this estimator
is shown� In the fourth section� the derived results are applied to a study
from occupational epidemiology�

� Model and assumptions

Let �Yi� Xi	� i 
 �� � � � � n� be an independent sample from the generalized
linear segmented regression model� which is given by the conditional expec�
tation of Y jX and the corresponding conditional density from an exponential
family� see e�g� Fahrmeir and Tutz �����	�

E�Y jX 
 x	 
 G��������x� ��	������x� ��	�	� ��	

f�yj�� �	 
 exp

�
y�� b��	

�
� c�y� �	

�
� ��	

Here� � is the nuisance�parameter and b���	 
 E�Y jX 
 x	� Further we
assume that G is the natural link function yielding

� 
 ��� ����x� ��	�� ����x� ��	��

We want to estimate the parameter vector 	� 
 ���� ���� ���� ��	� where the

�



MLE is de�ned by

�	n � �	 
 arg max
nX
i��

G�yi� �����xi� �	�����xi� �	�� �	� ��	

G denotes the log�likelihood function� We further de�ne the score function
by

S�Y�X� 		 
 �Y �G������X� �	�����X� �	�		 � ��	

�

�BB�
�

�X� �	�
�X� �	�

� ��IfX��g���IfX��g

�CCA �

Note that the log�likelihood is not di�erentiable in � 
 X� so the score
function is the gradient with respect to 	 only for X �
 � � Also the MLE is
not necessarily a solution of

nX
i��

S�Yi� Xi� �		 
 �

In the following we need some regularity assumptions� which are similar to
those in Fahrmeir and Kaufmann ������ p� ���	�

�R�	 Let �Xi� Yi	i������ �n be an independent sample from model ��	 and ��	
with natural link function� Identi�ability of model ��	 holds� i�e� ��� �

����

�R�	 X has a twice di�erentiable density on R� The �rst two moments of X
exist�

�R�	 The expectations

E�G�Y� ��� ����X� ��	�� ����X� ��	�� �		��i	

E�S�Y�X� 	�	
�	�ii	

exist�

Note that �R�	�ii	 is ful�lled if the moments E�Y �	� E�X�	� E�G�	 exist�

�



Theorem ��� �Consistency and asymptotic solution	 Under regularity
conditions �R�	 to �R�	�

�a	 �	 is consistent� i�e�
plim �	 
 	� for n���

�b	 �	 is an asymptotic solution of the score equations� i�e��
n�

�

�

nX
i��

S�Yi� Xi� �		

�
P���  for n��� ��	

Proof�

a	 The �rst proof of the consistency of the MLE without using di�erentia�
bility conditions is due to Wald �����	� Using arguments from Huber
�����	 we do not need compactness of the parameterspace yielding the
result�

b	 Since the score function is continuously di�erentiable in the �rst three
components� we have

nX
i��

Sj�Yi� Xi� �		 
  for j 
 �� �� ��

The forth component is the right directional derivative having jumps
in all points Xi� Using that this derivative changes sign in the MLE
and that X has a density we get ��	 for the forth component� Details
can be found in K�uchenho� �����	�

� Asymptotic normality of the MLE

In this section� we are concerned with the asymptotic normality of the esti�
mator b	� i�e� the convergence in distribution

p
n�b	 � 	�	

D��� N��� V 	 ��	

for n��� where V 
 �� �
��
E�S�Y�X� 			j���������� In the following� we are

using the notation





	
E�S�Y�X� 			j���� � E ��S�Y�X� 	�		�

�



Lemma ��� There exist strictly positive numbers a� d� such that

jE�S�Y�X� 			j � a � j	 � 	�j for j	 � 	�j 	 d�� ��	

Proof� Since E�S�Y�X� 			 is di�erentiable in some neighbourhood of 	�
the mean value theorem yields the equation

jE�S�Y�X� 			j 
 jE ��S�Y�X� 	�		 � �	 � 	�	j� ��	

where 	� � 	�� t � �	� 	�	� t 
 �� �	 and 	� is possibly di�erent for each row
of E ��S�Y�X� �		�
Since the mapping E ��S�Y�X� 			 is continuous in 	 the convergence

lim
�����

E ��S�Y�X� 	�		 � �	 � 	�	 
 E ��S�Y�X� 	�		 � �	 � 	�	

is valid� According to this convergence and ��	 we can choose d� �  such
that

jE ��S�Y�X� 	�		 � �	 � 	�	j � �

�
� jE ��S�Y�X� 	�		 � �	 � 	�	j�

for all 	� with j	� � 	�j 	 d�� Using the fact that the matrix E ��S�Y�X� 	�		
is symmetric and regular we get the inequality

jE�S�Y�X� 			j � �

�
�min � j	 � 	�j

for all 	 with j	 � 	�j 	 d�� where �min is de�ned as follows

�min �
 minfj�j � � is eigenvalue of E ��S�Y�X� 	�		g�

Note that �min �
  holds� Setting a 
 �
�
�min we obtain ��	� �

Note that the result ��	 is valid for any d�� � � such that d�� 	 d��

�



Theorem ��� �Asymptotic normality	 We assume that there are strictly
positive numbers K�� K�� d� such that

E� sup
j���j�d

jS�Y�X� 	� S�Y�X� 		j	 	 K� � d�N�	

for j	 � 	�j� d 	 d��

E�� sup
j���j�d

jS�Y�X� 	� S�Y�X� 		j	�� 	 K� � d�N�	

for j	 � 	�j� d 	 d��

Then under the regularity conditions �R�	 to �R�	 the MLE b	 is asymptoti�
cally normal� i�e� ��	 is valid�

Proof� The basic idea in the proof is the application of a theorem by
Huber �����	 and the fact that the mapping

E�S�Y�X� 			 � �� R
�

is continuously di�erentiable in a suitable neighbourhood of 	��
Using the mean value theorem we get the vector equation

E�S�Y�X� b			 
 E�S�Y�X� 	�		 � E ��S�Y�X� 	�		 � �b	 � 	�	� ��	

where 	� � 	� � t � �b	 � 	�	� t 
 �� �	 and 	� is possibly di�erent for each
component of ��	�
Equation ��	 can be written in the form

p
nE�S�Y�X� b			 � �p

n

nX
i��

S�Yi� Xi� 	�	� �p
n

nX
i��

S�Yi� Xi� 	�	 


E ��S�Y�X� 	�		 � pn�b	 � 	�	� ���	

According to our regularity conditions �R�	 to �R�	� Theorem ���� the con�
ditions �N�	� �N�	 and Lemma ��� the assumptions of the theorem of Huber
�����	 �cf� appendix	 are ful�lled and therefore

p
nE�S�Y�X� b			 � �p

n

nX
i��

S�Yi� Xi� 	�	
P��� � ���	

�



The central limit theorem for i�i�d� random vectors yields

�p
n

nX
i��

S�Yi� Xi� 	�	
D��� N����E ��S�Y�X� 	�		 � ��	� ���	

Note that the assumption of a natural link function yields

Var�S�Y�X� 	�		 
 �E ��S�Y�X� 	�		 � ���

Further� the convergence

E ��S�Y�X� 	�		
P��� E ��S�Y�X� 	�		� ���	

is valid� The convergences ���	� ���	� ���	 together with an argument of the
Cr�amer type �cf� Pruscha� ����� Prop� B ����� p� ���	 complete the proof� �

In the following two theorems we present su�cient conditions for the con�
ditions �N�	 and �N�	� Let Si�		 � Si�Y�X� 		� i 
 �� ���� �� denote the four
components of the vector S�Y�X� 		�

Theorem ��� �Su�cient conditions	 The set of conditions�

�S�	 The regressor variable X has a bounded density�

�S�	 There are strictly positive numbers d�� a�� a�� a�� a�� such that

E sup
	�B��� �d�	

jS �
i��	j 	 ai� i 
 �� ���� ��

where the supremum is taken over all � 
 B�	�� d�	 where Si is di�er�
entiable�

is su�cient for �N�	�

Proof� Let 	� denote the fourth component of the parameter vector 	�
In the following various positive constants are denoted by C� Note that the
four components of the score vector S�Y�X� 		 are not generally di�erentiable
and the fourth component S��		 can have jumps with respect to the variable
� � 	�� These circumstances are the main technical aspects in the proof�

�



For j	 � 	�j� d 	 d� the inequality

E sup
j���j�d

jS�Y�X� 	� S�Y�X� 		j 	 E sup
j���j�d

jS��	� S��		j�

E sup
j���j�d

jS��	� S��		j� E sup
j���j�d

jS��	� S��		j�

E�IfX ��B����d	g sup
j���j�d

jS��	� S��		j� �

E�IfX�B����d	g sup
j���j�d

jS��	� S��		j� ���	

holds� For the �rst four terms of the right hand side of ���	 an application
of the mean value theorem yields for i 
 �� ���� �

E sup
j���j�d

jSi�	� Si�		j 	 C � d � E sup
	�B��� �d�	

jS �
i��	j� ���	

and

E�IfX ��B����d	g sup
j���j�d

jS��	� S��		j� 	 d �E sup
	�B����d�	

jS �
���	j� ���	

For the �fth term the inequalities

E�IfX�B��� �d	g sup
j���j�d

jS��	� S��		j� 	

E�IfX�B��� �d	g � Cjump � C � d � sup
	�B����d�	

jS �
���	j� 	

C � d� C � d � E sup
	�B����d�	

jS �
���	j ���	

hold� where Cjump is a positive constant� which is due to the possible jump in
the fourth component of S�Y�X� 		� Note that we have used the boundedness
of the density of X in the second inequality� The inequalities ���	� ���	� ���	�
���	 and the condition �S�	 �nish the proof� �

�



Theorem ��� �Su�cient conditions	 The pair of conditions�

�S �
�	 The regressor variable X has a bounded density�

�S �
�	 There are strictly positive numbers d�� b�� b�� b�� b�� such that

E� sup
	�B����d�	

jS �
i��	j�� 	 bi� i 
 �� ���� ��

where the supremum is taken over all � 
 B�	�� d�	 where Si is di�er�
entiable�

is su�cient for �N�	�

Proof� Arguing analogously as in the proof of Theorem ��� we obtain the
inequality

E� sup
j���j�d

jS�Y�X� 	� S�Y�X� 		j�� 	

C � d� �
�

�X
i��

E� sup
	�B����d�	

jS �
i��	j��

�
� C � d��

Choosing d� 	 � it yields d 	 �� Therefore d� 	 d holds and the theorem is
proven� �

The conditions �S�	� �S�	 and �S �
�	� �S �

�	 respectively are connected with
the special form of the link function as well as with the distribution of the
regressor X� For the identity link� i�e� the case of the least square estimation�
the conditions �S�	 and �S �

�	 are obviously ful�lled� if E�X�	 exists� In the
following theorem we formulate su�cient conditions for the conditions �S�	
and �S �

�	� These assumptions are ful�lled for the logistic regression model
which is often used in practice �cf� Sec� �	�

Theorem ��� �Logistic regression	 Under the conditions

� The mappings jGj and jG�j are bounded�

� E�X�	 ��� E�Y �	 ���

the assumptions on boundedness �S�	 and �S �
�	 hold�

Proof� The result follows immediately by computation of the derivatives
S �
i� i 
 �� ���� ��� �

�



� The determination of a threshold limiting

value� cement dust and chronic bronchitis

In occupational epidemiology it is often of interest to assess a so�called
threshold limiting value �TLV	 which is de�ned as the maximum concen�
tration of a chemical substance at the workplace under which no negative
impact on the employee�s health is expected even if the employee is repeat�
edly exposed over long periods� Here� we are especially concerned with the
concentration of cement dust in the workplace air which is regarded as a pos�
sible risk factor of chronic bronchitis� The investigation of this relationship
caused several epidemiological studies with that topic which were conducted
by the German research foundation �DFG	 between ���� and ���� �DFG�
����	� The one we consider here involved ��� workers from a cement plant
in Heidelberg� For each of these workers� four variables can be used for the
analysis� chronic bronchitis� average exposure to cement dust concentration�
smoking and duration� The dust concentration �mg�m�� was calculated as a
weighted average for each worker where at most �ve  measurements! taken
at the workplace were included� The covariate smoking �SM	 can only be
taken into account as binary variable� The last covariate duration �DUR	
means the age of a person at the �rst examination with respect to chronic
bronchitis �CBR	 minus the age when �rst exposed to cement dust� where
CBR was also measured as binary� For a more detailed discussion of the
considered variables and further details of the data set and its analysis we
refer to K�uchenho� and Pigeot �����	�
The assessment of a TLV can be coped with modelling the TLV as a

breakpoint in a segmented regression model� typically with G of model ��	
chosen as the logistic function� where the slope of the �rst segment is �xed
as zero� Since the response variable Y � i�e� CBR� is binary its expectation
reads as P�CBR 
 �	 such that we obtain the following model equation

P�CBR 
 �	 
 G�� � �X�X � �	� � �sSM � �dDUR	� ���	

where X denotes the logarithmically transformed dust concentration after
having added �� to its original value� i�e� log�����dust concentration	� The
MLE of the unknown parameters can be calculated using an algorithm pro�
posed by K�uchenho� �����	� Since the results obtained in Section � and
� can be directly transfered to models with further covariates and a �xed
slope parameter in the �rst segment� the estimated standard deviations are

�



derived using the above asymptotic theory� The results are summarized in
Table �� The corresponding con�dence intervals can be calculated from these
results in the usual way� The resulting regression curve is depicted in Figure
�� where the additional covariates smoking and duration enter the model by
their means�

Table �� Parameter estimates of the threshold model for the Heidelberg data�
The estimated standard deviations are given in column ���

parameter estimate ��

� ���� ��
� ������ ���
�X ����� ������
�s ��� ����
�d ��� ��

Figure �� Segmented logistic regression model� Circle marks the estimated
threshold limiting value�

The estimated TLV results in ���� mg�m� ��� 
 ����	 where the estimated
slope parameter for the second segment shows an extremely increasing re�
lationship between dust concentration and CBR � ��X 
 �����	� Since the
estimated threshold limiting value for cement dust takes a rather large value�
i�e� it is located at the upper border of the observed dust concentrations� our
results have to be interpreted very carefully�

��



� Appendix

We present the following result from Huber ������ ����	 in our notation and
give some useful explanations�
Let � be an open subset of d�dimensional Euclidian space Rd � �X �A�P	 is
a probability space� and S � X � � � R

d some mapping� Assume that
X�� X�� ��� are independent random variables with values in X and common
distribution P� Further b	 � b	n�X�� ���� Xn	 denotes an estimator for 	 
 ��

Theorem Under the assumptions

�H�	 For each �xed 	 
 �� S�X� 		 is measurable and S�X� 		 is separable�

�H�	 There is a 	� 
 � with ES�X� 	�	 
 �

�H�	 There are strictly positive numbers a� b� c� d� such that

�i	 jE�S�X� 			j � a � j	 � 	�j for j	 � 	�j 	 d��

�ii	 E�supj���j�d jS�X�	� S�X� 		j	 	 b � d for j	 � 	�j� d 	 d��

�iii	 E��supj���j�d jS�X�	� S�X� 		j	�� 	 c � d
for j	 � 	�j� d 	 d��

�H�	 E�jS�X� 	�	j�	 ���

for an estimator b	� which has the properties

P�jb	 � 	�j 	 d�	� �� �E�	

�p
n

nX
i��

S�Xi� b		 P��� � �E�	

the convergence

�p
n

nX
i��

S�Xi� 	�	 �
p
nE�S�X� b			 P��� 

holds�

��



Remarks�

�i	 Note that in the conditions �H�	 �ii	 and �H�	 �iii	 the supremum is
taken for �xed 	�

�ii	 Condition �H�	 �iii	 is somewhat stronger than needed" it can be weak�
ened to

E� sup
j���j�d

jS�X�	� S�X� 		j	� 	 o�j logdj��	�

�iii	 The expression E�S�X� b			 is a random vector� Here the notation
means that we �rst compute the expectation of S�X� 		 with a �xed 	

and then plug in the estimator b	 in this function of 	�

�iv	 A consistent estimation equation estimator �consistent asymptotic so�
lution	 of the estimation equation �cf� Pfanzagl� ����� Sec� ���	

�p
n

nX
i��

S�Xi� 		 
 

ful�lls the assumptions �E�	� �E�	�
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