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Semi-parametric Inference for Regression Models
Based on Marked Point Processes

by A. Luhm* and H. Pruscha*
University of Munich

SUMMARY. We study marked point processes (MPP’s) with an arbitrary mark
space. First we develop some statistically relevant topics in the theory of MPP’s ad-
mitting an intensity kernel A\;(dz), namely martingale results, central limit theorems for
both the number n of objects under observation and the time ¢ tending to infinity, the
decomposition into a local characteristic (A;, ®;(dz)) and a likelihood approach. Then we
present semi-parametric statistical inference in a class of Aalen (1975)-type multiplicative
regression models for MPP’s as n — oo, using partial likelihood methods. Furthermore,
considering the case t — oo, we study purely parametric M-estimators.

KEYWORDS: Marked point process, intensity kernel, (locally square integrable)
martingale, local characteristic, partial likelihood, M-estimator.

1 Introduction and Basic Definitions

The monography by Andersen et al. (1993) presents a kind of canonical approach to the
statistical analysis of point process models. It deals with multivariate point processes
where each random event carries information on the occurrence time and the type of
event, the latter being from a finite set £ of alternatives. The theoretical fundament to
multivariate point processes was laid - among others - by Jacod (1975), Bremaud (1981)
and Dellacherie & Meyer (1982). There are applications, however, where an uncountable
set £ (e.g., E the set of real numbers) of alternatives - now called marks - is more
appropriate, see Scheike (1994a,b), Murphy (1995) and Pruscha (1997). A mathematical
foundation of marked point processes (MPP’s) is given by Last and Brandt (1995), but
this work does not contain all tools necessary for statistical analysis.

The first goal of the present paper is to fill this gap. We present (i) results on MPP-
integrals, (ii) likelihood functions of an MPP observation, (iii) central limit laws for two
different situations denoted as I and II below.

These tools are then used for the asymptotic statistical inference in the case of two different
kinds of data schemes. Scheme I contains n realisations over a fixed time interval [0,T],
with n tending to infinity. Here the semi-parametric analysis of a wide class of Aalen
(1975)-type models can be presented. Scheme II has one single realisation over a longer
time interval [0,T], with T tending to infinity. Here we present a purely parametric
analysis only, the work on the nonparametric part of the problem is still in progress.
The proots are sketched only, for complete versions we refer to a forthcoming paper by

Luhm.

*Mathemat. Inst. der Ludwig-Maximilians-Universitat Munchen, Theresienstr.39, D-80333 Munchen




Unless mentioned otherwise, we suppose all random elements and thus all processes
to be defined on some probability space (2, F, IP) being equipped with a complete, right
continuous filtration F'. Following Brémaud (1981), we fix an arbitrary measurable space

(K, ) and define an MPP to be a double sequence (7x, (¢ )kenv such that

(1) (Tk)ken, 1is a point process (with 7o = 0),

(1¢)  (Ck)ken 1s a sequence of random elements in  FE.

The double sequence (7x, (¢ )kenv shall be identified with its associated counting measure

N(dt x dz) which is defined by
N0l x A) := Ny(A) =D L(me <t)1(¢ € A), t>0, A€k
k=1

The filtration F¥ = (F});>0 that consists of the sigma algebras
Ffv::U(NS(A):Ogsgt,AEE), t>0,

is called internal history of the MPP. Now let P(F) denote the F-predictable o-algebra
on £ x ]0,00[ and P(F) := P(F) ® & the F-predictable o-algebra. Each mapping
H: Q x [0,00] x E — IR such that

(2) Hla x {0y x £ 18 Fo @ &, B-measurable,
(22) Hlq x jo,00f x B 18 75(]7),B—1r1rleasurable7

we call I'-predictable F-indexed process or shortly F'E-P.

Finally, we define an intensity kernel A;(dz) to be a transition measure from (€ x
[0,00[, F®By) into (£, &) such that V A € £ the point process (N¢(A));>o admits the
F-predictable intensity (A;(A))i>0. Weput VA€ €

¢ ¢
A(A) == / A(A) ds = / / \(dz) ds, 1> 0,
0 0 Ja
setting especially A; := A\(F) and A; := A¢(F), t > 0. Furthermore, we suppose that
Ai<oo IP—as. ViE>0.

Defining

y(dz) = SV t>0,
¢

we obtain a probability measure on the mark space F given the history until the occur-
rence time ¢ (cf. Jacod (1975), Brémaud (1981) and Last & Brandt (1995)). The pair
(Ai, @4(dz)) is then called local characteristic.

Throughout the paper, we denote by |a| and |A| the Euklidian norm of a vector ¢ and
a matrix A, respectively; ¢® is the matrix with (7, 7)-entry a;a;. For a countable set I,
we write |[| for the number of elements of I, while /; stands for the d-dimensional unit
matrix, d € IV.



2 Results on Marked Point Processes

2.1 Martingale Theory

As a continuation of Brémaud (1981), we consider d-dimensional stochastic processes
(d € IN) which are generated by the integration of a d-dimensional F'E-P H(t,z) w.r.t.
the measure M (dt x dz) := N(dt x dz) — M\(dz)dt; i.e., we deal with terms of the form

= /Ot/Eﬂ(S,Z)M(dsxdz), t>0.

Obviously, all these processes satisfy M, = 0.
Theorem 1. The following implications hold:
(a) (1) = M is alocal martingale,

(b) (2) = M is a martingale,

(c) (3) = M is a uniformly integrable martingale,

[

where
(8,2) As(dz) ds <o IP—a.s. V1<i<d ¥Vi>0, (1)

/|HSZ|A(dZ)dS)<oo Vi<i<d ¥i>0, (2)

J
U,
(/ /|H$Z)|)\(dz)d3)<oo vV1<i<d. (3)

Proof: As to (a),(b), see Brémaud (1981, VIII Corollary 4). Part (c) can be shown by
applying (b), Brémaud (1981, VIII Theorem 3) and Kopp (1984, Theorem 3.3.8). O

Observe that all processes we deal with are of bounded variation on finite intervals.
For square integrable martingales we obtain a result similar to Theorem 1, continuing

Brémaud (1972) and Boel et al. (1975).

Theorem 2. (a) M is a square integrable martingale <~
E (/OOO/EHE(S,Z) M(d2) ds) coo V1<i<d (4)
(b) M is a martingale which is locally square integrable <=
E(/Ot/EHE(S,Z))\S(dZ)dS)<OO V1<i<d Vi>0, (5)
(c¢) M is a locally square integrable martingale <~—

¢
//Hf(s,z))\s(dz)ds<oo P—as V1<:<d Vt>D0. (6)
0o JE

Proof: Part (a) can be obtained using the optional covariation process [M]; = [y /5
H®(s,2z) N(ds x dz), t > 0, which is derived according to Dellacherie & Meyer (1982,
VII Theorem 36), while (¢) follows from (a) generalizing the lines of Liptser & Shiryayev
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(1978, Theorem 18.8). Part (b) is a direct consequence of (¢) and Theorem 1(b) and was
first formulated by Scheike (1994a). O

Notice that a locally square integrable martingale need not be a martingale as such. To
close this section, we give an explicit formula for the characteristic (M) of M.

Theorem 3. Let (6) hold. Then the characteristic of M is given by
¢
(M), :/ /ﬂ@)(s,z))\s(dz) ds, t>0. (7)
0o JE

Proof: Apply Theorem 1 (a) to the optional variation process [M] and use the uniqueness
of the compensator. a

2.2 Central Limit Theorems

First we formulate a Rebolledo (1980)-type central limit theorem for the number n of
objects under observation tending to infinity.

Theorem 4. For each n € IN, let (E™, ™) be a measurable space and N (dt x dz)
be an MPP on (Q,F, F", IP) with the intensity kernel Ai”)(dz).
Let further H™ be a d-dimensional F™WE®™-P for each n € IN, fulfilling

¢
/ /( )(Hi(n)(S,Z))z )\gn)(dz) ds<oo IP—as V1<:<d Vt>0. (8)
o JEn

Finally, let the following two conditions hold ¥ ¢ >0, t >0, (n — o)

13
L[ O s ) L H s, 2)] > 2) A (dz) ds s o, (9)
0 JE[

t
L[ )P A ) ds 2 (10)

where Gy = (gzj)1§¢7j§d is ¥Vt >0 apositive definite d x d-matriz, continuous int > 0,
andgéi:() V1<i<d.

Then we have the following convergence in distribution in the space D[0, oo|:

D

Mgn) LM (n— o),

where M(n) = [t ﬂ(”) s,2) MW (ds xdz), t >0, and M are locally square integrable
4 0JE ” s s Y sq g

martingales. Furthermore, M is Gaussian with characteristic (M), = Gy, t > 0.

Proof: Apply Meister (1991, Theorem 2.60) in combination with Lindvall (1973, Theorem
3’), using Theorems 1,2,3. O

In the next theorem, we consider limits of the form ¢ — oo instead of n — oco. We will
use a family of non-singular d x d-matrices (I';)¢>0, fulfilling

(T) (¢) TI't—0 (element-wise)as ¢t — oo,
(22) 3 a family of d x d-matrices (Cy);>o being non-singular for each ¢ > 0 and

continuous in ¢ > 0, such that for each fixed s > 0 we have th;l — O

as t — oo.



Theorem 5. Let N(dt x dz) be an MPP with intensity kernel M\(dz). Let H be a
d-dimensional F'E-P satisfying (6) and (I't)i>o0 be a family of non-singular d x d-matrices
fulfilling (T).

Let further ¥ & > 0 and for t — oo the following two conditions hold

/Ot/E|Ftﬂ(s,z)|2-1(|Ftﬂ(3,z)| > &) A(dz) ds 25 0, (11)

t
| reti(s, )2 Afdz) ds 2, (12)
0o JE
where G is a positive definite d X d-matriz. Then
TM, — Ny(0,G) (1 — o0).

Proof: Generalize the lines of Pruscha (1984, Theorem 2.4.9), where Rebolledo (1980)

was used. O

2.3 Likelihood

Following Jacod (1975), Liptser & Shiryayev (1978), Brémaud (1981), Pruscha (1984) and
Last & Brandt (1995), we present a process L, which can be interpreted as the Radon-
Nikodym derivative of an MPP w.r.t. another MPP, especially a marked Poisson process,
and which opens the door to the likelihood approach.

Let two probability measures IP, [P’ on (Q,F) be given satisfying IP < IP'. If N(dt x
dz) admits an (F, IP')-intensity kernel p;(dz), then there exists a unique (up to IP-
indistinguishability) F'E-P h = h(t,z), called Jacod-process, such that N(dt x dz)
admits the (F, IP)-intensity kernel

A(dz) = h(t, z)pe(dz), t>0, z€F, (13)

(see Jacod (1975, Theorem 4.1) and Last & Brandt (1995, Theorem 10.2.1)). Considering
the decompositions (A, ®,(dz)) and (ps, V4(dz)) as local characteristics, i.e.,

)\t(dZ) = )\tq)t(dZ), /Lt(dZ) == /Ltq}t(dZ), t Z 0,

we get an FIE-P g = ¢g(t, z) satisfying ®,(dz) = g(t, z)¥:(dz) by defining

glt,z) == %h(t,z), t>0, 2z € L. (14)

t
Now let II be the probability on F admitting a local characteristic (1, ¥(dz)) independent
of t > 0, satisfying A\(dz) < U(dz) V¢t > 0. Then N(dt x dz) is a marked standard
Poisson process (see Brémaud (1981), VIII Exercise 3), and defining P, := IP|#, for any
probability measure IP and any stopping time o, we formulate

Theorem 6. Let h denote the Jacod process introduced in (13) and L) be the densily
of IPy w.r.t. 1l,.
If T is an F-stopping time with 7 < oo IP- and Il-a.s., then

P, < 1, with =1L,

dll,



where the process (Ly)eso is defined by

( II th,Ck)eXp{// (1 —h(s,2)) \I/(dz)ds}, t>0.

1<k<N¢

Proof: The Theorem can be derived from Jacod (1975, Proposition 4.3), Brémaud (1981,
VIII Theorem 10) and Last & Brandt (1995, Theorems 10.2.2 and 10.2.6), following the
lines of Liptser & Shiryayev (1978, Theorem 19.9) and Pruscha (1984, Theorem 2.3.1). O

Let the intensity kernel depend on some - not necessarily finite dimensional - unknown

parameter 6 of the form A\:(6,dz) = h(t,z,0)¥(dz). Then L = L(0) can be written as

L.(0 —exp{//loghsze (dsxdz)—At(G)—l—Rt}, t>0, €0, (15)

where R, :=log L® +t, t >0, does not depend on § € ©.

3 Semi-parametric Multiplicative Models

3.1 A Class of Multiplicative Models

As a generalization of Andersen et al. (1993, sec.VIL.2), we consider a wide class of
multiplicative regression models.

Let I be a countable set and N;(dt x dz) for each 7 € [ be an MPP with intensity kernel
Ai+(dz) of the type

)\Lt(OJ,ﬂ,dZ) = ( 61) it(ﬂ%dz)?
)\i,t(aaﬁl) - () (ﬂlv ) 7,69 tZ()a iEI,ZEE,

open

where (with ¢,dy,dy € IN, d:=dy +do, B= By x By, B; C IRY, 5 =1,2)

Yi,, 0, t>0, is an observable, bounded, (often {0,1}-valued)
nonnegative F'F-P,

a: IRy — ]0,00] is an unknown baseline hazard function satisfying
fya(s)ds <oo Vit>0,

r: RM < IR — )0, 00] is a known regression function,

B= (5,5 eB is an unknown d-dimensional parameter,

Xit,vel, t>0, is an observable, ¢-dimensional F-predictable

process of covariates.

By N, we denote the superposition Y ;c; N;¢, t > 0.
Assume that there exists a probability measure ¥(dz) on FE such that

O, (By,dz) < W(dz) Yiel, t>0.

Then U(dz) induces a probability measure Il on (€, F) such that the MPP N(dt x dz) on
(Q,F, F,1I) with the (F,II)-local characteristic (1, ¥(dz)) is a marked standard Poisson
process. Consequently, there exists V¢ € [ an F'E-P g; as in (14) satisfying
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(I)iﬂf(ﬂ?vdz) = gi(tv'Zvﬂ?) \I/(dz), t 2 07 1€ ]7 EAS E7

leading to an intensity kernel of the form

)‘i,t(avﬂvdz) = ( ) (ﬂlv ) [ gz( 72762) \Il(dz), tZ 07 i S ]7 zc L.

Thus, the Jacod process is given by

hi(t,z, B) = a(t) - (B, Xis) - Yie - gi(t,2,32), t>0,i€l, z€ E.

Similarly to Andersen et al. (1993, p.482), we define

St(ﬂl) = Zr(ﬂlaXi,t) : Yz’,m t> 07

el

and by virtue of formula (15), with 8 = («, 3), we get

log L ) = [ / log a(s) +log r(%h, Xi.) +loggils, 2, A2)] Nifds x dz) = (16)

/ yds+ R, 1>0,

where R} neither depends on o nor on 5. In case of a multivariate point process (N;)¢>o,

i € I (i.e. when |E| =1), with ¢ = d; = d and

r(8,Xi0) =exp(B Xiy), t20,i€l,

we obtain the classic Cox’ regression model.

3.2 Partial Log-Likelihood

Guided by the Nelson-Aalen estimator (cf Andersen et al. (1993, p.482)), we substitute
log a(t) by log m and «(t) dt by S( N dNy in formula (16), obtaining the partial log-
likelihood

Z//logr (81, Xis) +1oggi(s,z, 42)] Ni(ds x dz) —

i€l

—/ log S,(41) dN, + R", >0,
0

which only depends on the unknown parameter 3 € B. We will suppose that all processes
are continuously differentiable as often as needed, and that the order of summation,
integration and differentiation may always be changed.

For sake of simpler notation, we define for t > 0, ¢ € I, z € E the following processes
which we assume to be F'E-P’s.



(1)(51,)(2',15) = %T(&,Xm), (dq-dimensional vector),

(2)(517Xi,t) = dgfljglfr(ﬂlaXi,t), (dy x dy-matrix),
g_]ﬁl)(t, z,[3y) = %gi(t, z, 2), (dy-dimensional vector),
252)(@ 2 62) = %gi(tv 2 62)7 (d2 X dQ_matriX)v
ﬁ,ﬁ”(ﬁl) = diSt(ﬂl) (dq-dimensional vector),
—1(52)(51) = G dﬁT Se(Br) (dq x dy-matrix).
Furthermore,
ﬁi”(ﬂ) = ((ﬁ,ﬁ”(ﬁl))T, 0,...,0)F (d-dimensional vector),

(2)

ﬁz(?)(ﬂ) = ( St O(ﬂl) 8 ) (d x d-matrix).

Finally, we introduce for 5 = 1,2 the vectors and matrices, respectively,

. r(3) 1,X4i ¢ (])(t'zﬁ2)
B(])(ﬂlei,t) = %7 ( 762) = gi(t,2,82)

Using methods of purely parametric inference (cf. Pruscha (1984), Andersen et al. (1993,
sec. VI.2.2)), we get the following three Lemmas.

Lemma 1. Defining U,(3) := %lt(ﬂ), t >0, we obtain

£Mm=:2//( MMJ)N%X@)_/%SQMW:

el 0
= Z/ /[& $,2,0) Mi(a, B,ds x dz), t>0,
el

where M;(a, B,dt x dz) = N;(dt x dz) — X\ +(ev, 3,dz) dt and

(1) , (1)
Kﬁﬂﬁ%:(ﬁ(mxm)-—&(m iel, t>0, z€ E.

1Ot 2, 8) Si(B)
Proof: Observe that Y ,c; fo [z Ki(s,2,3) Mis(a, B,dz) ds =0 ¥ 1> 0. O
Lemma 2. Assume that condition
t
(A) Z/ /EKZ]‘(Svaﬁ) Nis(a, B,dz) ds < oo IP-as. Y120, 1<j5<d
holds. Then

Z/ / [& Nis(a, B,dz) ds, t>0.

i€l

Proof: Apply Theorems 2 (c¢) and 3. O



For the next Lemma, we put for t >0, 1 € [, z€e FE, 3 € B

(2) 17X’it - (1) 17X’it ° 0
Contp) = | 27X~ (20050 Xio) ) el
0 12 (t72762) - (12 (t 2762))
_ (e X0 B, X (V2. Ba))
Qi,t,z(ﬂ) T (1) (1) T (1) @ .
(2, B2) (p (Brs Xin)) (12. (1,2, 62))

Lemma 3. For the d x d-matrices W, (/) := %(Qt(ﬂ))T, t >0, we get under (A)

t

W8) = T Conld) Nids x ) —
= wilad) = wlaB), 120,

where for ¢t > 0

(@) (1)
wie) = X[ [ {— _[%s((ﬁﬂ))_(ﬁss

}MZ ,B,ds x dz),
S

_ N )
Mt(aaﬂ) = ;/ /_HZ ﬂ,dz) ds — /Ooz(s)W ds =
= <Q(O‘7ﬂ)>tv

Notice that, in contrast to (U(«, 3)), neither U(3) nor W () depend on the function «a.
Introducing the further abbrevation

Z/ _ztz ﬂlv ) it gz( 72762) \I}(d'z)v t> 07

i€l

we obtain

t (1)
wyo, B) = (U(, B))r = /0 (Es(ﬁ) - %) a(s) ds, t>0.

Observe that in the purely multivariate case (where |E| =1 and 3 = ;)

(1) @
Et(ﬂ) = %; (_ r((gj))(i’;)))

=

t>0.

In the even more special Cox’ case we have R(f3) = §(2)(ﬂ) and C;,, =0

3.3 Asymptotical Inference as n — oc

Now we substitute the countable set I of the last sections by a sequence (]( N e of count-
able sets, where I might label the objects under observation (i.e., I = {1,...,n}).

Accordingly, we consider sequences ((N( )(dt x dz), v X( )), s ]( ),z € Bt Z O)HGW

2,t 0



of the corresponding processes such that for each ¢ € 1™ the MPP Ni(n)(dt x dz) admits
the local characteristic ( ( 1), @ Z ¢ (ﬂg, dz)) with

NP (o) = alt) (B X3 Y,
o) (B, dz) = gt 2, 8,) W(dz), t>0, z€ B, nelN.
Within this setting we denote condition (A) by (A,). Observe that the functions a, r and
the unknown parameter 3 do not depend on n € IV.
For the rest of this section, we fix an arbitrary 7" > 0 to describe the end of the observation

intervall [0, T']. All limits in this section are taken as n tends to infinity. Now we introduce
a sequence of non-singular d x d-norming matrices (I',),en satisfying

(N) (1) T, — 0 (element-wise),
(1) 3 Cr €]0,00[ such that |[[,|*- |I™|<Cr VnelN.

Adopting the terms of the previous sections and equipping them with an additional index
n € IN if necessary, we present a further set of conditions:

There exist mappings s,aM, ¢ R . [0,T] x B — R, R?, R™*, IR™, respectively,
such that as n — oo

(Ba)  (7) sup |0 2S00(8) — s 9)]
te[o,T], BeB
S(lvn)
(22) sup 1= ) —a(p)| 0,
tef0,1], peB | Sy ()
S(zvn)
(i) sup |E—= B) _ o8| 2o,
tef0,7], peB | S; ()

' (1) 41\@
% sup Fnirg—s BY- (o, (B 25,0,
) tef0,T], feB S () 1(8) - (e "(8))
() s LRPEIT - B3] o,

te[0,7], BEB

(Ch) (1) 5,0, 0® and R are bounded in [0,7] x B,
(41) 5,00, 0@ and R are continuous functions in 3 € B

uniformly in ¢ € [0,7].

(Do) The d x d-matrix S.(3) := / — () - (2(8)P) as) ds
is positive definite V1 € ] 0,7].

(En) There exists a 6 > 0 such that

(1) (n)
sup / 1 (T(ﬂl,Xf,?))gf”)(tvZ,ﬁz) > eXp{—5‘( L (61’)(” ) )‘}) :
i€l teo,7]/F _» ( 12, Ba)

‘3

0, ( 3(1)(51’)(2(?)) )‘ v wdz) 25 0.
15 " ( ) 7ﬂ2)

10



Incaseof I',, = %]d with 0 < a,, — oo, the following condition is sufficient for (B, )(i)-(v)

an

) | m P

(B,) 0 |s) M) e m=012)
.. 1 (n) (o0) Pg
(”) tE[OSj}}pﬁEB G_Et (ﬂ) B Et (6) — 07

where s(™(3) = 5(3)-a™(3), m = 1,2, demanding additionally that s.(3): [0,7] — IR
is bounded away from 0. In the purely multivariate Cox’ case, (B/)(i) contains (B )(ii)

with R(3) = s¥(3), see Andersen et al. (1993 p.497, condition VIL.2.1).

A sequence (Bt(n))new of d-dimensional random vectors is called consistent partial like-
lihood estimator or shortly consistent PMLE, iff we have for n — oo

Ps(13 = Bl <8, UM (BY)=0) — 1 V6>0,

where an) is given by Lemma 1.

Proposition 1. Under (A,),(B,)(1),(ii),(iv),(v),(C,),(D,),(E,) we have

(U3) LU (3) 22 N (0,2(8)  Ytelo,T).

Proof: One can show that (B,)(i),(ii), (C,) and (E,) imply (9), while (B,)(iv),(v) and
(D,,) yield (10). Condition (A,) allows the application of Theorem 4 which completes the
proof. a

Now we consider sequences of d-dimensional random vectors (3;),en fulfilling

(BX) 7587 —B), n€ N, is IPsstochastically bounded.

n

Proposition 2. Under (A,),(B,).(C,) we have

(W2)  —D W@ 25 5(8) ¥ te0,T]

and ¥ sequences of d-dimensional random vectors (57 ),en satisfying (BY).

Proof: Decompose |—an§”)(ﬂ7§)rf —34(4)| similar to Andersen et al. (1993, p.500-01).
O

Theorem 7. Let (A,),(B,),(C,),(D,) hold. Then there exists for each t € [0,7] a
consistent PMLE (Bt(n))new for  fulfilling (B?).

Proof: See Pruscha (1996 sec.VI, Satz 1.2). The basic ideas are due to Aitchison & Silvey
(1958), Billingsley (1971) and Feigin (1975). O

Theorem 8. (A,),(B,),(C,.),(Dy) and (E,) imply (UZ), (W), and under (UZ), (W)
we have for any consistent PMLE (ﬂt(n))new satisfying (BY)

DB = B) = NA0,XT(8) Ve 0Tl
Proof: Apply Propositions 1,2 and Pruscha (1996 sec.VI, Satz 1.6). O
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Now we can estimate « as in the classical point process theory (see, e.g., Andersen et al.
(1993, sec.VIL.2)). First we approximate A(t) := [; a(s) ds by the Breslow estimator

. t (Y ()
APy = [N =N, e ) e,
0 S(n)(ﬁt(n)) s

where Y = icrm Y "), Finally, we obtain the kernel estimator

R (n)
- 1
ZI’( T’“)— 1e0,T], ne N,

s

where K is a kernel function and b the bandwidth.

4 Parametric Inference as t — o

In this chapter, we deal with purely parametric problems as time ¢ tends to infinity when
there is just one object under observation, devellopping topics from Pruscha (1984), Hjort

(1985) and Andersen et al. (1993).

4.1 M-estimators
We consider an MPP N(dt x dz) with intensity kernel A\;(6,dz) admitting the decompo-

sition
Ae(0,dz) = h(t,z,0)¥(dz), t>0, z€FE,

where 0 € © € IR?, d € IN, V(dz) is a probability measure on E satisfying \:(0, dz) <
U(dz) Vt>0, 6 €0, and h is the accompanying Jacod process which we assume to be
continuously differentiable w.r.t 6.

An M-estimator d; of 6 € O is a solution of the equations U,(0) =0, where

//[&52(9 (0,ds x dz), t>0,

and M(0,dt x dz) = N(dt x dz) — \(0,dz) dt. For the d-dimensional process K, we

assume
/ / |K(s,2,0)| As(0,dz) ds < oo Py —a.s. Vt>0.

If K(t,z,0) = d_zz(i’ze’f), we refer to the likelihood case, and 6, is called maximum

likelihood estimator (MLE).

Now we state a first set of basic conditions

(A¢) (1) K has continuous first order derivatives w.r.t. 6;
d d
the processes K, KO .= @LT and @(1) = @h are FE-P’s.

(¢¢) K and h have continuous second order derivatives w.r.t. 0;
2

d
the processes K(Q) = (ai@ji(l))qu and @(2) : d@d@Th are FE-P’s.

12



Note that the Jacod-process h is by definition an F'E-P. The following Lemma can easily
be proven using differentiation rules.

Lemma 4. (a) Assuming (A;)(i), we have fort >0

W) = SO = wi0) - w)

where

wi(f) = / /[& $,2,0) M(0,ds x dz),

. (3,2,0))T
w,(0) = / / K(s,z,0) WAS(MZ) ds.

(b) In the likelihood case, (A;)(i) implies fort >0

Wi(0) = vi(0) — v, (9),
with
y % (s,z,0)
vi(0) = / / h G5o.0) M(0,ds x dz),

v, (0) = // h(};ESVZ’e N(ds x dz).

s,z 0
VR

Even in the likelihood case, we have w*(8) # v*(8) and w(8) # v(0); however, w(f) is the
compensator of v(8). Both w*(#) and v*(8) have martingale structure.
We further define the d x d-matrix

//A@(s \(0,dz) ds, 1> 0,
and the d* x d*-matrix
// EW(s,2,0)@ A, (0,dz) ds, > 0.
For these matrices we state a further condition:

(Be) (¢) Let the diagonal elements of I,(#) be finite Ps-a.s. V> 0.
(1) Let the diagonal elements of I7(#) be finite Pp-a.s. V> 0.

Note that (B;) implies via Cauchy-Schwarz inequality that all the elements of the matrices
are finite [Ps-a.s. Now Theorems 2(c) and 3 yield

Lemma 5. Let (A;)(i) hold. Then we have
(a) (B:)(7) = U(0) is a locally square integrable martingale with characteristic

//K@)SZ@ s(0,dz) ds, t>0.
(b) (B:)(it) = w*(0) is a locally square integrable martingale with characteristic

//A (5.2,0)2 \,(0,dz) ds, t> 0.

13



4.2 Asymptotical Inference as t — o

As a generalization of Pruscha (1984) and Andersen et al. (1993, sec.V1.2), we present a
set of conditions under which the asymptotic theory of Pruscha (1996, sec.VI.1) can be
applied for M-estimators.

Considering a family of non-singular d x d-matrices (I'y)¢>o satisfying (T), we formulate
a further condition which has an ergodic [(i),(ii)] and a Lindeberg-like part [(iii)]. All the
limits in this section are taken as t — oco.

(Co) (1) TW(U(0)): FT —% %(0), where X(6) is a positive definite, symmetric
d x d-matrix,
(41) Ftwt(G)FT —% B(#), where B(#) is a positive definite d x d-matrix,
(vie) L4(0,¢) 220 Ve>0, where
Li(0,¢) / / DK (s,2,0)) - 1(|T.K (s, 2, 0)] > ) \(0, dz) ds.

In the likelihood case, conditions (C;)(i) and (C;)(ii) are identical, with B(8) = X(0).
Proposition 3. Let conditions (A4)(i), (B:)(i), (C¢)(i),(ii1) be satisfied. Then we have

the following convergence in distribution

(U7) P (0) % Na (0,2(6).

Proof: (B,;)(i), (C;)(iii) and (C;)(i) yield (6), (11) and (12), respectively, such that the
application of Theorem 5 completes the proof. O
To state asymptotic results for the process W (), we formulate a further set of conditions

(D¢ )(4) ’yfg’yfh< *h9(0)),, t >0, is IPs-stochastically bounded V1 < g,h,j k <d,
where ['; = (yfk)1§j7k§d and w;(9) = (wf]k(e))lsmsd.
(¢¢) There exists a neighborhood 0y C © of 6 and I My < oo such that

lim Py(|T RO | < My V6 € ©g) =1,

where Ry(0) = (RI"(0))i<jnca, RI"(0) := éﬁ){k[(@)a Ri™M(0) = a%lwtjk(@)-
Proposition 4. (A;), (By)(ii), (C)(ii) and (D;)(1) imply
(Wio) ~ TV,(0)TF =% B(O),
Proof: Apply Lemma 5(b) and use Lenglart’s inequality. 0

Now we consider sequences of d-dimensional random vectors (7 )>¢ fulfilling
(BY) I750r —0), t>0, is IP-stochastically bounded.
Proposition 5. Under conditions (A,), (B)(ii), (C)(ii) and (D;) we have as t — oo

(W5) =L, (017 22 B(o)

V sequences of d-dimensional random vectors (07);>0 satisfying (Bj).

14



Proof: Expand W () in a Taylor series around the true parameter § and apply Proposi-
tion 4. O

Theorem 9. (A,), (B:), (Ci) and (Dy) imply (UT), (W7), and under (UY), (WT), the
following holds:
There exists a consistent M-estimator (ét)tzo for 0 fulfilling (B7).
If there exists an estimation function | : IRy X © — IR such that U(8) = j—gl(e), then with

1Py-probability tending to one, l; takes a local maximum at 0,.
Furthermore, we have for consistent M-estimators (0;)¢>0 fulfilling (B)

U770, — 6) 2% Ny (0, B~1(0)S(0)B~T(6)).

Proof: Apply Propositions 3,5 and Pruscha (1996 sec.VI, Satz 1.2 and Satz 1.6, using
ideas due to Aitchison & Silvey (1958), Billingsley (1961) and Feigin (1975)). O
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