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Dynamic and semiparametric models

Ludwig Fahrmeir and Leonhard Knorr—Held
Universitat Minchen
Institut fur Statistik
Ludwigstr. 33, 80539 Minchen

1 Introduction

This chapter surveys dynamic or state space models and their relationship to non— and
semiparametric models that are based on the roughness penalty approach. We focus on
recent advances in dynamic modelling of non—Gaussian, in particular discrete—valued, time
series and longitudinal data, make the close correspondence to semiparametric smoothing
methods evident, and show how ideas from dynamic models can be adopted for Bayesian
semiparametric inference in generalized additive and varying coefficient models. Basic tools
for corresponding inference techniques are penalized likelihood estimation, Kalman filtering
and smoothing and Markov chain Monte Carlo (MCMC) simulation. Similarities, relative
merits, advantages and disadvantages of these methods are illustrated through several ap-

plications.

Section 2 gives a short introductory review of results for the classical situation of Gaussian
time series observations. We start with Whittaker’s (1923) “method of graduation” for es-
timating trends and show that it is equivalent to the posterior mean estimate from a linear
Kalman filter model with known smoothing or variance parameters. We sketch extensions
to general Gaussian linear dynamic or state space models and to continuous time analogues
like the Bayesian version of cubic spline smoothing (Wahba, 1978). For more detailed expo-
sitions of the equivalence between Bayesian smoothness priors and penalized least squares
we refer the reader to Kohn and Ansley (1988) and previous work cited there and to van der
Linde (1995, 1996) for a thorough discussion of splines from a Bayesian point of view. This

equivalence also suggests alternative ways of estimating unknown smoothing or variance pa-



rameters: Within a semiparametric approach, estimation by optimizing some cross—validated
criterion is a common choice. Empirical Bayes models, also treating hyperparameters as fixed
or unknown, lead to marginal likelihood estimation. Maximization can be done by EM—type
algorithms. Fully Bayesian models put a weakly informative prior on the hyperparameters

and make a complete posterior analysis with MCMC techniques feasible.

We then turn briefly to so—called conditionally Gaussian dynamic models that are still lin-
ear but with errors distributed as scale mixtures of normals. Already with this seemingly
moderate generalization, penalized least squares and posterior mean estimates are no longer
equivalent. Beyond various approximate Kalman filters and smoothers, fully Bayesian ap-
proaches based on MCMC are available that make efficient use of the conditionally Gaussian

structure.

Fundamentally non—Gaussian time series and longitudinal data, in particular for categor-
ical and count data, are considered in Section 3. Dynamic binomial and Poisson models
are important members of the family of dynamic generalized linear models. Semiparamet-
ric counterparts based on penalized likelihood estimation can be derived as posterior mode
estimators, with extended or iterative Kalman—type smoothing algorithms as efficient com-
putational tools (Fahrmeir 1992; Fahrmeir and Tutz, 1994, ch. 8, Fahrmeir and Wagenpfeil,
1996). However, the equivalence between posterior mean and penalized likelihood estimation
is lost. Fully Bayesian inference is possible with recently developed MCMC techniques for
non—Gaussian dynamic models, an area of intensive current research. In Section 3.2, we out-
line the ideas for Metropolis—Hastings algorithms suggested by Knorr—Held (1996). These
algorithms are used for the applications and are generalized in Section 3.3 to non-normal

longitudinal data with additional unobserved population heterogeneity across units.

Ideas from non—Gaussian dynamic modelling, in particular for non—equally spaced or con-
tinuous—time parameter models, can be transferred to semiparametric regression models for
cross—sectional data (Section 4). This leads to Bayesian spline-type smoothing for general-
ized additive and varying coefficient models using MCMC techniques as a supplement and

alternative to penalized likelihood or, equivalently, posterior mode estimation (Hastie and

Tibshirani, 1990, 1993).



Finally Section 5 summarizes conclusions and indicates extensions to other data situations

and statistical models.

2 Linear dynamic models and optimal smoothing for

time series data

This section gives a brief survey on the correspondence between linear dynamic or state space
models and semiparametric optimal smoothing methods based on the roughness penalty
approach. We illustrate this correspondence by some simple and commonly—used examples

and review more general and recent work.

2.1 Gaussian models

In the classical smoothing problem treated by Whittaker (1923), time series observations

y = (y1,...,yr) are assumed to be the sum
yt:Tt+6t7 tzl,,T (1)

of a smooth trend function 7 and an irregular noise component e. Whittaker suggested to

estimate 7 by minimizing the penalized least squares criterion

T T
PLS(7) = (e —7)? + XD (7 — 2121 + 712)? (2)
t=1 t=3
with respect to 7 = (7q,...,7r). Minimization of PLS(7) tries to hold the balance between

fit of the data, expressed by the sum of squares on the left side and smoothness of the trend,
expressed by the roughness penalty term in form of the sum of squared differences. The
smoothness parameter A, assumed to be given or fixed, weights the two competing goals

data fit and smoothness.

The trend model (1) and the PLS criterion (2) can be generalized in a flexible way. Inclusion

of a seasonal component v = (7,...,vr) with period m leads to the additive trend-seasonal
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model

yt:Tt+7t+6t7 tzl,,T (3)
and the PLS criterion
T T T
PLS(7,7) = Z(yt_Tt_’Yt)2‘|‘)\1 Z(Tt—QTt—1 +7im2)2 A Z(%-l-%—rl-. o Veemi1)? — n;uﬁn
t=1 =3 t=m !

(4)
for estimating the trend function 7 and the seasonal component ~. More generally, the
influence of covariates can be taken into account by extending the additive predictor 7 + +;

to

Nt = Te + e+ 2B 4w, (5)
with time—varying effects f; for z; and constant effects ¢ for w;.

This penalized least squares approach is reasonable if time series observations are — at least
approximately — Gaussian. This is made explicit by assuming that the errors ¢ in (1) and
(3) are i.i.d. N(0,0?) random variables. Then the fit term in (4) corresponds to the log—
likelihood of the additive Gaussian observation model (3), and the PLS approach appears

as a semiparametric method for estimating the fixed, unknown sequences 7 = (71,...,77),

¥ = (Y1s---577)-

A dynamic model corresponding to (3) and (4) considers 7 and v as sequences of random
variables. It is hierarchical and consists of two stages: The first stage is the Gaussian obser-
vation model (3) for y given 7 and ~. In the second stage, a transition model corresponding

to the roughness penalty term in (4) is given by the difference equations
Tt —2Tt_1 —|—Tt_2 = Uy, t= 3,...,T (6)
7t+7t—1+---+7t—m+1 = Wy, t:m,...,T (7)

The errors u; and w, arei.i.d. N(0,c2)- and N(0, 2 )- distributed. Initial values are specified

for example by
(71772)/NN(07kT])7 (717"'77m—1)/NN(07kW])' (8)

All errors and initial values are assumed as mutually independent. The difference equation

(6), also called a random walk of second order, penalizes deviations from the linear trend 7, =
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27,1 —Ti—2. The seasonal model (7) prefers “small” values of the sum ~v;+y:—1+. .. +Yt—mt1,
so that the seasonal pattern does not change too much over periods. From a Bayesian point
of view (6) and (7), together with (8), define a multivariate normal prior p(7,~v) = p(7)p(7)
for (1,9) = (11,..., 71, ¥1,...,77), the so—called smoothness prior. Also, the observation

model (3) defines a multivariate normal distribution p(y|7,~) for the data y given 7 and ~.

Here the hyperparameters, i.e. the variances o2, o2, o2, are regarded as known or given
constants. Thus, the posterior
p(y|m,7)p(7)p(7)
p(7,7ly) = : o p(ylm.7)p(7)p(7) (9)

p(y)
is also normal and characterized by the posterior expectation F(7,~v|y) and covariance
Var(r,v|y). Due to normality, the posterior expectation and the posterior mode, i.e. the
maximizer of (9), coincide. Taking logarithms, using the (conditional) independence assump-

tions and ignoring constant factors leads to the criterion

L & 2, Lo L ¢ 2
52 (ye — e —ve)° + k_(Tl —|-7'2 —22 (1 — 2741 + Te—2)
t=1 T u =3
Lo 2 L & 2 -
+ k—(’yl + o ) —2 Dt F ) min (10)
gl Tw t=m '
for estimating 7, 7. Setting A\; = ¢?/c2; Ay = 0?/02 and choosing diffuse priors (8) with

k; — oo, k, — oo, the criteria (4) and (10) are identical so that the semiparametric PLS
estimate 7, 7 is identical to the posterior mode estimate and, due to posterior normality, the

posterior mean:
(7,7) = E(7,71y)- (11)
This equivalence remains valid for more general linear Gaussian observation and transition
models, see Kohn and Ansley (1988) for a thorough treatment. Collecting trend, season and
other parameters as in (5) in a so—called state vector a, e.g.
Q¢ — (Ttv Tt—1, Yty + o Vt—m+1, ﬂtv 5)7
most linear dynamic models can be put in the form of Gaussian linear state space models
Y =z + €, € ~ N(0,0%) (12)
a1 = oy + vy, ve ~ N(0,Q) (13)



by appropriate definition of design vectors z; and transition matrices F}, see for example
Harvey (1989), West and Harrison (1989) or Fahrmeir and Tutz (1994, ch. 8.1). The well-
known classical Kalman filter and smoother or recent variants like the diffuse filter (de
Jong, 1991) can be used for efficiently computing posterior expectations a; = F(a:|y) and
variances Var(a:|y). Because of the equivalence with a corresponding PLS criterion, the
Kalman filter and smoother can also be regarded as an algorithmic tool for computing
semiparametric PLS estimates, without any need for a Bayesian interpretation, see Fahrmeir
and Tutz (1994, ch. 8.1). Using Kalman smoothers for semiparametric additive models like
(3) avoids backfitting and provides diagonal bands of smoother matrices as a by—product.
However, forcing dynamic models into state space form can result in high—dimensional state

vectors with singular multivariate priors, causing unnecessary algorithmic complications.

Up to now it was tacitly assumed that the time series is equally spaced in time. Extensions
to non—equally spaced data are possible either by modified difference priors or by continuous
time models. For example, a first order random walk 7, — 7,1 = w;, u; ~ N(0,02) is
generalized to

Ty — Ti—1 = Uy, Uy N(O, 5150'2) (14)
where 6; is the time between observation y;_; and ;. A second order random walk for
non—equally spaced data can be defined by

) )
Ty — 1 + —t Te—1 + —tTt—2 = Uy, Ug ~ N(Ov ktai)? (15)
011 011

where k; 1s a weight function depending on ¢; and é;_4.

A simple and straightforward choice is k; = ¢; as for first order random walk priors. There
are other reasonable, but more complex forms of k; that are consistent with the equally—
spaced case, see Knorr—Held (1996). Corresponding PLS criteria are easily derived from

these priors.

For continuous—time models, trend, season and other time—varying parameters are considered
as smooth functions of time. With a slight change in notation, the simple trend model (1)
becomes

ys = 7(ts) + €, s=1,...,T,
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with observation times 1 < ... < t; < ... <1, asmooth trend function 7(¢) and i.i.d. errors
€s ~ N(0,0%). A continuous time version of the PLS criterion (2) is: Find 7 as a twice—

differentiable function that minimizes

D (s = Tl A [ (70l (16)

The minimizing function 7 is a cubic smoothing spline, see Green and Silverman (1994) for

a recent treatment and Eubank (1996, this volume).

Wahba (1978) showed that (16) has a Bayesian justification by placing the solution of the

stochastic differential equation

2
d ZZ—(;S) — )\—1/20_6”/1;(8)7 s>t (17)
S S

as a smoothness prior over 7. Such a differential equation of order two is the continuous
time version of a second order random walk (6). Here W (s) is a standard Wiener process

with W(t1) = 0, independent of the errors ¢;. For diffuse initial conditions
(7(t1),7'(t1)) ~ N(0,kI), k — oo

the cubic smoothing spline 7(s) at s coincides with the posterior expectation of 7(s) given
the data, i.e.
7(s) = E(r(s)ly)-

This equivalence can also be established for more general types of splines where second
derivatives are replaced by linear differential operators, see e.g. Kohn and Ansley (1987,
1988). They also derive a discrete-time stochastic difference equation from (17) and use
state space techniques for computation of the smoothing spline. Again, pointwise Bayesian
confidence bands can be computed as a by—product. For a recent discussion of splines from

a Bayesian point of view we refer to van der Linde (1995).

In practice, smoothing parameters A or hyperparameters like o2, 02, 02 are usually unknown.
Within the semiparametric roughness penalty approach, data—driven choice of smoothing
parameters is often done by cross-validated optimization of some selection criterion. Already

for a small number of smoothing parameters problems may occur because the selection



criterion can be a rather flat function of A = (Aq, Xg,...). Whithin an empirical Bayes
approach, hyperparameters in dynamic models are treated as unknown constants. Then
the method of maximum likelihood is a natural choice. Maximization can be carried out
directly by numerical optimization routines or indirectly via the EM algorithm, see Harvey
(1989, ch. 4). If the likelihood is rather flat, then ML estimation also performs poorly.
Fully Bayesian approaches can avoid these problems by providing additional information
about hyperparameters in form of “hyperpriors”. A traditional approach are discrete priors
leading to multiprocess Kalman filters (Harrison and Stevens, 1976). More recently Markov
chain Monte Carlo (MCMC) techniques have been developed to estimate hyperparameters
by simulation from their posteriors (Carlin, Polson and Stoffer, 1992, Carter and Kohn,
1994, Frithwirth—Schnatter, 1994). An advantage of these simulation methods is that their
basic concepts are also useful in conditionally non—Gaussian situations as below and in the

following sections.

2.2 Conditionally Gaussian models

Gaussian models are not robust against outliers in the observation errors and change points
in the trend function or other unobserved components. One way to robustify linear dynamic
models is to assume that error distributions are scale mixtures of normals. For given values
of the mixture variables the linear dynamic model is then conditionally Gaussian. Mixture
variables may be discrete or continuous. A popular choice are y*-mixture variables, leading
to t—distributions for the errors. A conditionally Gaussian version of the simple trend model

(1) with a second order random walk model for the trend is

Y = T+ €, €t|wrs ~ N(O, UQ/wH)

Tt — 2741 + Temg = Uy, Ut|w2t ~ N(Ovai/wzt)-

Assuming wy;y and wysvy to be independently y?-distributed with v, and v degrees of free-
dom, then €; and wu; are independently #(v1) and #(12) distributed. Although Kalman filters
and smoothers are still best linear estimators, they perform poorly for small degrees of free-

dom vy and v,. Various approximate filtering and smoothing algorithms have therefore been



given already in early work on robustified state space modelling (Masreliez, 1975, Masreliez
and Martin, 1977, Martin and Raftery, 1987). More recently, fully Bayesian MCMC meth-
ods have been developed to tackle this problem. Carlin, Polson and Stoffer (1992) suggest
a Gibbs sampling algorithm adding the mixture variables wy; and wy; to the set of unknown
parameters. Their approach applies to rather general nonnormal dynamic models, but can
be inefficient with respect to mixing and convergence properties. Carter and Kohn (1994,

1996) and Shephard (1994) propose a modified Gibbs sampling algorithm, that updates the

whole “state vector” 7 = (7y,...,7r) all at once. This modification makes the algorithm
much more efficient. The parameters 7q,..., 7 are often highly correlated, so updating 7,
t=1,...,T one at a time, which is done in Carlin, Polson and Stoffer, often results in poor

mixing, i.e. the corresponding Markov chain is not moving rapidly throughout the support
of the posterior distribution. Consequently, Monte—Carlo standard errors of sample averages

will be large.

As an alternative to these fully Bayesian methods one may also consider posterior mode
estimation. Let pi(e) and pa(u;) denote the negative log—densities of the ii.d. errors ¢
and u;. Taking logarithms and using (conditional) independence assumptions, a robustified

version of the PLS criterion (2)

T T
Yoy — 1)+ pa(m = 2721 + 7i—p)? — min, (18)

can be derived. Computation of the minimizer 7 can be carried out by iterative Kalman—
type algorithms, see Kiinstler (1996). An advantage of posterior mode estimation is that
it can also be extended to other p—functions, for example Huber functions or p(u) = |ul.
Also, one may start directly from criterion (18), without Bayesian interpretation, to obtain
robust semiparametric estimators, and transfer this approach to robust continuous-time
spline-type estimation. It should be noted, however, that already for conditionally Gaussian
dynamic linear models posterior mean estimates, obtained from a fully Bayesian approach,
and posterior mode or spline-type estimators are no longer equivalent. This property holds

only for linear Gaussian models with known hyperparameters as in Section (2.1).
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3 Non—Gaussian observation models

This section deals with fundamentally non—Gaussian time series and longitudinal data. We
progress from simple examples for discrete—valued time series to general non—Gaussian situ-

ations.

3.1 Non—Gaussian time series

Figure 1 displays the number y; of occurrences of rainfall over 1 mm in the Tokyo area for
each calendar day during the years 1983-1984. The data, presented in Kitagawa (1987)
and reanalyzed later on by several authors, is an example of a discrete-valued time series.

Responses y;, t = 1,...,366, are assumed as binomial:

ny = 2 for t # 60

yi ~ B(ny, m) with
ny =1 for t =60 ( February 29),

and 7; the probability of rainfall on calendar day ¢. To compare it to similar data from other
areas or other years, and to see some seasonal pattern, the probabilities 7 = (7q,...,77),
T = 366, will be estimated as a smooth curve. For the following we reparametrize 7; by a

logit link to 7:
m exp(7)

1 +exp(m)

7, = log , o om(T) =

1—7Tt

A semiparametric discrete-time roughness penalty approach will start from a penalized log—

likelihood criterion like

PL(T) = Z_: {yelog mi(7e) + (ne — ye) log(1 — o))} — A Z(Tt — 211+ Tt_z)z — max (19)

t=3
to obtain smooth estimates 7 and 7 of the fixed, unknown sequences 7 and #. Compari-
son with the penalized least squares criterion (2) shows that essentially the Gaussian log—
likelihood of the observation model (1) is replaced by the sum of binomial log-likelihood
contributions. Instead of second order differences, one might also use a sum (7, — 74—y )? of

squared first order differences.

10
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Figure 1: Tokyo rainfall data.

Using the same notation as in Section 2 the continuous—time version of (19) is: Find 7 =

{7(1)} as a twice—differentiable function that solves

T

PL(T) = Z_: {yslog m(7(ts)) + (ns — ys) log(l — me(7(t5)))} — )\/(T"(t))th — max. (20)

For a given smoothing parameter A, the solution is again a cubic smoothing spline, see Hastie
and Tibshirani (1990) and Green and Silverman (1994). For equally-spaced data as in the
example, the discrete— and continuous—time spline solutions to (19) and (20) are usually
in quite close agreement. Algorithmic efficient solutions of the high—dimensional nonlinear
optimization problems (19) and (20) are usually carried out by iteratively applying smoothers

for penalized least squares estimation to working observations.

For a Bayesian version of the semiparametric approach (19) in form of a non—Gaussian

dynamic model, we take

il ~ Blny,m(n)),  m(r) = % (21)

as the observation model. We supplement it as in (6) by a random walk model of first or

11



second order

Tt = Teo1 + Uy OF T = 2741 + To + U (22)

as a smoothness prior for 7. The errors u; are i.i.d. N(0,02) distributed, and initial values
Ty resp. Ty, T2 are specified as in (8). Variances are assumed to be known. In addition,

conditional independence is assumed among all y;|7.

In contrast to Gaussian models, the posterior

p(rly) = PR o) (23)
p(y)

is now non—normal. Thus, posterior expectations and posterior modes are no longer equiva-
lent. With a diffuse prior for initial values, the posterior mode 7 is the maximizer of (19) with
smoothing parameter A equal to 1/202. Algorithmic solutions can be efficiently obtained by
extended or iterative Kalman filtering and smoothing, see Fahrmeir (1992), Fahrmeir and
Tutz (1994) and Fahrmeir and Wagenpfeil (1996). As in the Gaussian case, these techniques
may also be viewed as convenient computational tools for computing penalized likelihood
estimators, without Bayesian interpretation. For a fully Bayesian analysis, including compu-
tation of posterior moments and quantiles, simulation based estimation, in particular MCMC

methods, are generally most appropriate. Details are given in Section 3.2.

A continuous—time dynamic model corresponding to (20) is obtained by placing the stochas-
tic differential equation (17) as a smoothness prior over 7. Again, posterior modes are
still equivalent to cubic smoothing splines, but different from posterior expectations. Fully
Bayesian spline-type smoothing will also be based on MCMC for dynamic models. For
this purpose, it is useful to rewrite the continuous—time prior (17) as a stochastic difference

equation for the state vector
ap = (7(t),dr(t)/dt)

of the trend 7 and its derivative. Following Kohn and Ansley (1987), the sequence o := a(t)

of evaluations at t,, s = 1,...,7T obeys the stochastic difference equation

agyr = Feag +u,, s=1 T, (24)

PRI
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with transition matrices

1 &
Fs = ! 5 5s—|—1 = ts—l—l — 1
0 1

and independent errors

83p1/3 854 /?

us ~ N(0,0°U,), U, =
5?4—1/2 5s+1

Together with the observation model

y5|7'(t5) ~ B(”S? F(tS))

we obtain a binomial dynamic, or state space, model. Higher order splines can also be

written in state space form, see Kohn & Ansley (1987).

As a second example, we consider a time series of counts y; of the weekly incidence of acute
hemorragic conjunctivitis (AHC) in Chiba—prefecture in Japan during 1987. Kashiwagi and

Yanagimoto (1992) analyze this data, assuming a loglinear Poisson model
Yi|Ar ~ Po(A), A = exp(m)

and a first order random walk prior for 7. They obtain a posterior mean estimate based on
numerical integrations similar as in Kitagawa (1987). Of course, other smoothness priors as
second order random walks or the continuous—time analogue (17) might be used as well. A

penalized likelihood approach would start directly from

T T
PL(T) = Z (?Jt log Ay — )\t) — A Z(Tt - Tt—1)2 — max,
t=2

=1
or with other forms of the roughness penalty term. Again, penalized likelihood estimators are

equivalent to posterior mode estimators, but different from corresponding posterior means.

Both examples belong to the class of dynamic generalized linear models. The general obser-

vation model is as following:

The conditional density of y;, given the unknown state vector a; is of the linear exponential

family type with conditional expectation
Eylo) = pe = him)

13



related to the linear predictor n, = zjoy by a suitable link h. As in the Gaussian case the
components of a; may consist of trend 7;, season 7; and possibly time—varying effects /3; of

covariates xy and z; is a suitable design vector. For example an additive predictor

=T+ v+ 25

can be written in this form. Although time—constant effects 6 can be incorporated formally

by setting 6; = 6;_1, it is often advantageous to split up the predictor in

e = Te T+ l’;ﬂt + w;&

For the second stage, smoothness priors p(«) are put on the sequence o = (aq,...,ar) in
form of a transition model. Linear Gaussian transition models like difference equation (6),
(7) or the state space form ;41 = Foay + uy are often retained as a common choice, but we

will also use priors for non—equally spaced observations or continuous times priors.

As for the examples, we can always write down a corresponding semiparametric model and

an associated penalized likelihood criterion

T P
PL(a) = Y hlwlad) — 32 \T(a)) — max. (25)
t=1 7=1
Here a; = (aj1,...,a;7) is the j—th component of «, I(«a;) a penalty function and A; a

smoothing parameter. For given smoothing parameters \;, estimates «; are obtained by
iterative smoothing, with backfitting in an inner loop, see Hastie and Tibshirani (1990,
1993), Green and Silverman (1994), Fahrmeir and Tutz (1994, ch. 5). As in the examples,
(25) can always be derived from the corresponding dynamic model relying on the principle

of posterior mode estimation.

Estimation of unknown smoothing parameters A; or corresponding hyperparameters 0]2 can

be based on the same principles as for Gaussian models. Relying on the roughness penalty

approach, smoothing parameters are selected as minimizer of a generalized cross—validation

criterion, see O’Sullivan, Yandell and Raynor (1986), Wahba, Wang, Gu, Klein and Klein

2

(1995). Empirical Bayes approaches consider hyperparameters o as unknown but fixed and

use (approximate) maximum likelihood estimation, for example an EM—type algorithm as

14



suggested in Fahrmeir (1992). Wagenpfeil (1996) compares some of these approaches. In

2

a fully Bayesian setting, hyperparameters o7 are considered as random and independent

inverse gamma priors
U?N]G(a]‘,b]‘), jg=1,...,p (26)
are a common choice for hyperpriors. By appropriate choice of «a;, b;, these priors can be

made more or less informative.

3.2 MCMC in non—Gaussian dynamic models

The design of efficient MCMC algorithms in dynamic models with non—Gaussian observation
model is currently an intense research area. For easier presentation, we first discuss several
MCMC algorithms for simple non—Gaussian dynamic trend models, like the dynamic bino-
mial or Poisson models in the examples above. Extensions to the general case are outlined at
the end of this subsection. Supplementing model (21), (22) with a hyperprior p(a2) for o2,
for example an inverse gamma prior as in (26), the posterior distribution of the parameters
7 and o2 is given by:

p(7,0tly) o< plylm)p(r|ol)p(o?). (27)
MCMC methods construct Markov chains that converge to a given distribution, here the
posterior. Once the chain has reached equilibrium, it provides (dependent) samples from
that posterior distribution. Quantities of interest, such as the posterior mean or median,

can now be estimated by the appropriate empirical versions.

The well-known Gibbs sampling algorithm (e.g. Gelfand and Smith, 1990) is based on sam-
ples from the full conditional distributions of all parameters. In general, a full conditional
distribution is proportional to the posterior (27) but often considerable simplifications can
be done. To implement the Gibbs sampler in dynamic trend models, we have to sample from
p(riloty) o< p(yilm)p(nilmapr, 03) (28)

and p(o7|m,y) o p(rley)p(oy). (29)

If inverse gamma priors are assigned to a2, (29) is still inverse gamma and samples can be

generated easily using standard algorithms.
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Suppose we could also easily generate samples from (28), ¢ = 1,...,7. The Gibbs sam-
pling algorithm iteratively updates 7i,..., 77 and o2 by samples from their full conditionals.
Markov chain theory shows, that the so generated sequence of random numbers converges to
the posterior (27) for any starting value of the Markov chain. Such an algorithm is proposed
in Fahrmeir, Hennevogl and Klemme (1992), following suggestions of Carlin, Polson and
Stoffer (1992). However, there are some drawbacks of pure Gibbs sampling in non—Gaussian
dynamic models. Firstly, samples from (28), which is non—standard for non—Gaussian obser-
vation models, can only be obtained by carefully designed rejection algorithms which may
require already a considerable amount of computation time in itself. Fortunately, instead
of sampling from the full conditional distribution, a member of the more general class of
Hastings algorithms (Hastings, 1970) can be used to update 7, ¢ = 1,...,T. Here so—called
proposals are generated from an arbitrary distribution and a specific accept-reject step is
added. Such a Hastings step is typically easier to implement and more efficient in terms of
CPU time. A thorough discussion of the Hastings algorithm is given in Tierney (1994) and
Besag, Green, Higdon and Mengersen (1995).

For example, to update (28), it is sufficient to generate a proposal 7, from the conditional

prior distribution p(7¢|7sz, 02) and to accept the proposal as the new state of the Markov

<o 1],

p(ye| )

chain with probability

here 7; denotes the current state of the chain. The resulting algorithm requires less compu-
tation time than pure Gibbs sampling since the conditional prior distribution is Gaussian

with known moments so proposals are easy to generate.

However, the generated Markov chain might show signs of slow convergence and does not
mix rapidly. That is, the Markov chain is not moving rapidly throughout the support of
the posterior distribution so that subsequent samples are highly dependent and Monte Carlo
estimates become imprecise. This is a consequence of the underlying single move strategy,
i.e. parameters 7¢,t = 1,...,T are updated one by one. Various attempts have been made to
design algorithms that converge fast and mix rapidly. A fruitful idea is the use of blocking;

here blocks of parameters, say 7(up) = (7asTag1,- ., To—1,7), are updated simultaneously
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rather than step by step. Such a blocking strategy is a compromise between updating 7
all at once, which is infeasible for fundamentally non—Gaussian time series, and updating
7 one at a time. The algorithms of Shephard and Pitt (1995) and Knorr—Held (1996)
are based on blocking; Knorr—Held generalizes of the conditional prior proposal above to

block move algorithms: Generate a proposal () form the conditional prior distribution

a,

p(T(a7b)|T(17a_1),T(b_|_17T),O'Z) and accept the proposal as the new state of the Markov chain

with probability
b
I p(v:l)

. i=
6=minq 1, ="

IT p(yelm)

t=a

One of the advantages of MCMC is the possibility to calculate exact posterior distributions
of functionals of parameters. For the Tokyo rainfall data, the posterior estimates of the

probabilities
_expln)
1+ exp(r)

are of main interest. Instead of plugging an estimate for {7} in (30), we calculate posterior

(30)

Tt

samples from {7}, using the original samples from p(7|y). The posterior distributions p(x|y)
can now be explored in detail without any approximation. In contrast, posterior mode or
splines estimation do not have this feature. Here plug—in estimates, especially confidence
bands, are typically biased due to the non-linearity in (30). Similar considerations apply to

the AHC example, where A\; = exp(7;) is to be estimated.

Figure 2 shows the posterior estimates of the probabilities {m;} for the Tokyo rainfall data,
calculated by a conditional prior block-MCMC algorithm. A highly dispersed but proper
inverse gamma hyperprior (26) with « = 1, b = 0.00005 was assigned to o2. This prior has
a mode at 0.000025. The estimated posterior median was 0.0001. The pattern in Figure
2, with peaks for wet seasons, nicely reflects the climate in Tokyo. It would be difficult to
see this by looking only at the raw data (Figure 1). In Fahrmeir and Tutz (1994, ch. 5.3),
the probabilities {7} are fitted by a cubic smoothing spline, with the smoothing parameter
estimated by generalized cross—validation criterion. This criterion had two local minima at
A = 32 and A = 4064. The smoothing spline for A = 4064 is quite close to the posterior

median fit in 2, while the smoothing spline for A = 32 is much rougher. Such rougher
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posterior median estimates are also obtained if the parameter b for the inverse gamma prior is

set to higher values. For example, with @ = 1, b = 0.005, the prior mode equals 0.0025. This

2

2 so that posterior median estimates for {m;} become

prior is in favor of larger values for o
rougher. As a third approach, posterior mode estimation, with an EM—type algorithm for
estimating o2 by maximization of the marginal likelihood, also gives estimates that are
in good agreement. These results correspond to empirical evidence experienced in other
applications: If smoothing and variance parameters are properly adjusted, posterior mean
and medians are often rather close to posterior modes or penalized likelihood estimates. Also,
estimation of hyperparameters by cross-validation or marginal likelihood can be helpful for

the choice of parameters of the hyperprior in a fully Bayesian model. Similar evidence is

provided by the next example.
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Figure 2: Tokyo rainfall data. Data and fitted probabilities (posterior median within 50, 80 and

95 % credible regions). The data is reproduced as relative frequencies with values 0, 0.5 and 1.

Estimates for the AHC data are shown in Figure 3a) and b) for both first and second order
random walk priors. The posterior distribution of the intensities {A;} shows a peak around
weak 33 similar to the results of Kashiwagi and Yanagimoto (1992). Compared to the model

with second order random walk priors, estimates in Figure 3a) are somewhat rougher and the
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peak around week 33 is lower and more flat. This reflects the fact that first order random
walk priors are in favor of horizontal, locally straight lines. Figure 3c) shows Bayesian
cubic spline-type estimates with thec continuous—time prior (17). As was to be expected
with equally spaced observations, these estimates are in very close agreement with those in
Figure 3b). Figure 3d) shows displays the cubic smoothing spline, which is the posterior
mode estimator from the Bayesian point of view. As with the rainfall data example, it is

again quite close to the posterior median in 3c).

In more general dynamic models, response y; is related to some unknown parameter vector
ay, see for example the state space representation (24) of the spline-type prior (17). MCMC
simulation in dynamic models can be performed similarly as for the simple dynamic trend
model, where a; = 7; is a scalar, by single- or block—move algorithms. Shephard and Pitt
(1995) make specific Fisher scoring type steps to construct a proposal that approximates the
full conditional distribution taking the observation into account. In contrast, conditional
prior proposals are built independently of the observation and are therefore easier to con-
struct. Their performance is good for situations, where the posterior is not very different
from the conditional prior. This is typically the case for discrete valued observations such
as bi— or multinomial logistic models as in our examples. Sometimes components «; of
a = (oq,...,ar) (compare the notation in (25)) are a priori independent and a componen-
twise updating strategy with conditional prior proposals can have advantages. Componen-
twise updating becomes inevitable in problems with multiple time scales or, more general,

generalized additive models, see Section 4.

Finally we note, that it is possible to combine robust transition models with non—Gaussian
observation models similarly as in Section 2.2. For example, on may use random walk priors
with t—distributed errors for trend components, allowing for abrupt large jumps. MCMC
simulation in such models is often straightforward, since error terms are still Gaussian, given
unknown mixture values. An example is given in Knorr—Held (1996) with ¢(v)-distributed

errors and an additional hyperprior on the degrees of freedom v.
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Figure 3: AHC data. Data and fitted probabilities (posterior median within 50, 80 and 95%

credible regions).
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3.3 Non—Gaussian longitudinal data
In this section, we consider longitudinal data where observations
(Y, 2e), t=1,...,T, i=1,...,n,

on a response variable y and a vector x of covariates are made for a cross—section of n units
at the same time points ¢ = 1,...,7T. Models for Gaussian outcomes y;; have been treated
already extensively, but much less has been done in the non—Gaussian case. As an example,
we will consider monthly business test data collected by the IFO institute in Munich for a
large cross—section of firms. Answers given in a monthly questionnaire are categorical, most
of them trichotomous with categories like “increase” (4), “no change” (=) or “decrease”
(=), compare Fahrmeir and Tutz (1994, Examples 6.3, 8.5). Selecting a specific response

variable y, say answers on production plans, we obtain categorical longitudinal data.

Observation models for longitudinal data can be defined by appropriate extensions of models
for time series data. A straightforward generalization within the exponential family frame-
work is as follows: For given covariates x; and a possibly time—varying parameter vector
oy, the g—dimensional response y;; comes from a linear exponential density with conditional

mean
E(?Jti|$ti704t) = h(ﬁm’) (31)

and linear predictor

N = Lt Q. (32)

Here h: IR? — IR? is a ¢—dimensional link and the matrix Z;; is a function of the covariates xy;
and possibly past responses. Individual responses are assumed to be conditionally indepen-
dent. A dynamic model for longitudinal data is obtained by supplementing the observation
model (31) and (32) with transition models as smoothness priors for « as in Section 3.1.
Just as for time series, some subvector a; of a; may indeed be time—constant. Such partially
dynamic models are formally covered by (32) with the additional restriction &; = &;—1 or by

making this explicit and rewriting the predictor in additive form ny;; = Zyap + Vi 3.

21



The posterior mode or penalized likelihood approach leads to

T n

PL(a) = Z Z Li(ay) — ﬁ: Ajl(aj) — max. (33)

4 «
t=1:=1

Here, lii(at) = log f(yu|®s, ) is the conditional likelihood contribution of observation ys;.
Computationally efficient solutions can be obtained, for example, by extended or iterative

Kalman—type smoothers, see Fahrmeir and Tutz (1994, ch. 8.4) and Wagenpfeil (1996).

Observation models of the form (31), (32) may be appropriate if heterogeneity among units
is sufficiently described by observed covariates. This will not always be the case, in particular
for larger cross—sections. A natural way to deal with this problem is an additive extension
of the linear predictor to

N = Loy + Wb,

where b; are unit—specific parameters and Wy an appropriate design matrix. A dynamic
mixed model is obtained with usual transition models for o and a “random effects” model for

the unit-specific parameter. A common assumption is to assume the b;'s are i.i.d. Gaussian,

with covariance matrix . For posterior mode or penalized likelihood estimation of a =

(o1,...,ar) and b= (by,...,b,), a further penalty term
I(b) =Y _b:Db;,
=1

corresponding to the Gaussian prior (34) is added to (33). An algorithmic solution for the
resulting joint posterior mode or penalized likelihood estimates (&,Z) is worked out in Biller
(1993), also in combination with an EM—type algorithm for estimation of smoothing param-
eters. However, computation times become large for multicategorical responses. Moreover,

serious bias may occur, see Breslow and Clayton (1993), Breslow and Lin (1995).

MCMUC techniques are more attractive for dynamic mixed models through their model flexi-
bility. The additional parameters b, ..., b, are added to the set of unknown parameters and

are updated with some well designed proposals, for example with Metropolis random walk
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proposals, in every MCMC cycle. Besides, a hyperprior for D has to be introduced. The

usual choice is the inverted Wishart distribution
p(D) ox [ D2 exp(—n(BD1))

with parameters ( > (m — 1)/2 and |B| > 0; here m is the dimension of ;. A Gibbs step
can then be used to update D.

Turning to the IFO business test example, we investigate the dependency of current pro-
duction plans on demand and orders in hand in the specific branch “Vorprodukte Steine
und Erden”. We have complete longitudinal observations of 51 firms for the period from
1980 to 1994. Our model allows for time—changing effects of covariates and for trend and
seasonal variation of threshold parameters, which represent corresponding probabilities of
the response categories. Additional unit—specific parameters b; are introduced to allow for

firm-specific differences of these probabilities.

The response variable ”production plans” is given in three ordered categories: "increase” (+),
"no change” (=) and "decrease” (—). Its conditional distribution is assumed to depend on
the covariates "orders in hand”, "expected business conditions” as well as on the production
plans of the previous month. All these covariates are trichotomous. We used a dummy
coding approach for comparison with previous analyses with the category (—) as reference
category. The corresponding dummies are denoted by AT, A= (orders in hand), G*, G=
(expected business conditions) and P*, P= (production plans of the previous month) and

define the covariate vector xy. The inclusion of P as a covariate reduces the panel length by

1 to T'= 179 (February 1980 to December 1994).

A cumulative logistic model (e.g. Fahrmeir & Tutz, 1994a, ch. 3) was used due to the ordinal
nature of the response variable: Let 7, = 1 and y; = 2 denote the response categories

“increase” and “no change” respectively. Then
P < j) = F(0u; + a81), ,j =12,
is assumed with zy; = (GT,G=, PT, P=, AT, A) and F(z) = 1/(1 4 exp(—=x)).
We decompose both threshold parameters 6;;; and 6, into trend parameters 7, seasonal
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parameters ~; and unit specific parameters b;, one for each threshold:
Oij =i + v +bij, 7=12

Note that the threshold parameters have to follow the restriction 0, < 845 for all combi-
nations of ¢ and ¢. A seasonal model (7) with period m = 12 was chosen for the seasonal
parameters of both thresholds. First order random walk priors are assigned to all covariate
effect parameters 3; and to both trend parameters 6;;,6;5. All time—changing parameters
are assumed to be mutually independent with proper but highly dispersed inverse gamma
hyperpriors (a=1, b=0.005). The firm—specific parameters b; = (b;1, b;2)" are assumed to
follow a Gaussian distribution with mean zero and dispersion ). We used the parameter
values ( = 1 and B = diag(0.005,0.005) for the inverted Wishart hyperprior specification
for D.

This model can be written as a dynamic mixed model with
7 = h(ny) = M(Zyay + Weby),

7 !

and

The responses variable y;; is multinomially distributed
yii ~ Ms(1, my)

where y,; = (1,0), (0,1)" or (0,0)', if the first (4), second (=) or third (—) category is
observed. The link function h is given by

F(nm)

"= ) = Pl

Figure 4 displays the temporal pattern of the trend parameters 7;, 7 = 1,2, and of both
threshold parameters 0;; = 7, 4+ 45, J = 1,2. The first trend parameter is slightly decreasing
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Figure 4: Estimates of trends and thresholds. Dashed vertical lines represent the month January

of each year.
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while the second remains constant over the whole period. A distinct seasonal pattern can
be seen with higher probabilities of positive response in spring and negative response in
fall. However, firm-specific deviations from this pattern are substantial as can be seen from
Figure 5. Here, posterior median estimates of the first and second firm—specific parameter

b;1 and b;y are plotted against each other for all 51 firms. Interestingly, these two parameters
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Figure 5: Plot of the estimates of b;; against b;; for each unit.

are often highly negatively correlated. The estimated dispersion matrix of the random effect

distribution is

— 0.78 —0.28
D
—-0.28  0.23

and the estimated correlation, based on posterior samples of the corresponding functional of
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D, is —0.67. Both estimates are posterior median estimates. It seems that some firms are
more conservative in their answers and often choose "no change” for the response variable,
relative to the overall frequencies. Such firms have negative values for b;; and positive values
for b;z. Other firms avoid the category “no change” and answer often more extremely with

"decrease” or "increase”. For these firms b;; is positive and b;; negative.

The estimated patterns of time-dependent covariate effects (Figure 6) show an interesting
temporal pattern, in particular the effect of the dummy G+ (Figure 7), which stands for
expected improved business conditions, relative to G—: A distinct low can be seen end at the
of 1991, when the German economy was shaken by a recession. In 1982 a new government
under the leadership of chancellor Helmut Kohl was established. From that time onwards
the effect increases until 1989/1990 with some additional variation and can be interpreted

as a growing trust in the government.

The peak in 1989/1990 coincidences with the German reunification, which was expected to
have a catalytic effect on the economy due to the sudden opening of the market in former
east Germany. In the years 1986, 90 and 94, parliament elections were held in fall. In these
years the effect is always decreasing towards the end of the year, which may be due to the

uncertainty regarding the election results.

4 Generalized additive and varying coefficient models

Let us now turn to a cross—sectional regression situation where observations (v;, i1, . .., ),
i =1,...,n on a response y and a vector (xy,...,x,) of covariates are given. Generalized
additive models (Hastie and Tibshirani, 1990) assume that, given x; = (21,...,2;), the
distribution of y; belongs to an exponential family with mean p; = E(y;|x;) linked to an

additive predictor n; by

pi = h(n:), = filwa) + ...+ folwy) (35)

Here fi,..., f, are unknown, smooth functions of continuous covariates zy,...,x,. If some

covariates are assumed to have a linear effect on the predictor, then semiparametric or
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Figure 6: Estimated time—changing covariate effects. Dashed vertical lines represent the month

January of each year.

generalized partial linear models like

= fl(l'ﬂ) —|— PN —|— ﬂpl'ip (36)

are appropriate modifications of (35). In (36), x;, could also be a binary or categorical

covariate. In the following, we will focus on model (35).

Nonparametric estimation of the functions fi,..., f, can be based on the penalized likelihood

criterion
n

P
PL(fioeeify) = 30 Gludn) = o0 [(f7 () du — max (37)

=1 7=1 sp
with individual likelihood contributions /; from y;|a;. The maximizing functions are cubic
smoothing splines fl, . ,fp. Other types of penalty terms may also be used, replacing for
example second derivatives by m-th order derivatives f](m)(u) or using discretized penalty
terms. Computation is usually carried out by backfitting algorithms, see Hastie and Tibshi-

rani (1990) or Fahrmeir and Tutz (1994, ch. 5). As a drawback, construction of confidence

bands relies on conjectures of approximate normality of penalized likelihood estimators,
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with a rigorous proof still missing. Also, data—driven choice of smoothing parameters can
be problematic.

Bayesian inference in generalized additive models, as outlined in the sequel, uses ideas from
dynamic models for time series data. Basically, time is replaced by metrical covariates, with

different covariates z;, j = 1,...,p, corresponding to different time scales ¢;.
For each covariate, let

t]‘1<...<t]‘5<...<tﬂ“], TJSTL

denote the strictly ordered, different values of observations x;,¢ = 1,...,n. DBayesian

smoothness priors for the unknown values

flt) < ... < fltys) < ... < f(tr,)

can now be defined by adapting random walk models (5), (12) for non—equally spaced time—

points or continuous—time priors like (17) to the present situation. Setting a;, = f;(%;5), and
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0;s = 1js — 1; -1, first and second order random walk priors are given by
2
Oéjs — Oé]‘75_1 = ujs, u]‘S ~ N(O, 5]50j)

and
, bjs : Ois : o2
Qs 1+ Q51+ 5 ez = Ujs,  Ujs ™ N(0, kjs075), (38)

5j,5—1 7,5—1

with mutually independent errors u;,. Priors for Bayesian cubic spline-type smoothing,
corresponding to the penalized log—likelihood (37) are given by the stochastic differential

equations
d*fi(s dW;(s
CJZZE L %‘%a s > 151 (39)

with mutually independent standard Wiener processes, W;(¢;1) = 0, and diffuse initial con-

ditions for
Qj s = (f](S),f]/(S))

In complete analogy to Section 3.1, the priors (39) can be written in state space form (24)

and some hyperpriors are assigned to o;.

The likelihood p(y|a, o), the priors p(«), p(o) and as a consequence, the posterior p(aly)
have the same structure as in Section (3.2). Therefore single- or block-move schemes as
outlined there can be used to simulate from the posterior. Details and some generalizations
are given in Lang (1996) for random walk priors and Biller and Fahrmeir (1997) for stochastic

differential equation priors.

As an application, we consider the credit-scoring problem described in Fahrmeir & Tutz
(1996, ch. 2.1). In credit business banks are interested in estimating the risk that consumers
will pay back their credits as agreed upon by contract or not. The aim of credit—scoring is
to model or predict the probability that a client with certain covariates (“risk factors”) is
to be considered as a potential risk. The data set consists of 1000 consumers’s credits from
a South German bank. The response variable of interest is “creditability”, which is given
in dichotomous form (y = 0 for creditworthy, y = 1 for not creditworthy). In addition, 20
covariates that are assumed to influence creditability were collected. As in Fahrmeir and

Tutz, we will use a subset of these data, containing only the following covariates, which are
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partly metrical and partly categorical:

x1 running account, trichotomous with categories “no running account” (= 1),
“good running account” (= 2),
“medium running account” (“less than 200 DM” = 3 = reference category)
x3 duration of credit in months, metrical
x4 amount of credit in DM, metrical
x5 payment of previous credits, dichotomous with categories “good”,
“bad” (=reference category)
re¢ 1intended use, dichotomous with categories “private” or
“professional” (=reference category)

rg marital status, with reference category “living alone”.

A parametric logit model for the probability P(y = 1|a) of being not creditworthy leads to
the somewhat surprising conclusion that the covariate “amount of credit” has no significant
influence on the risk. Here, we reanalyze the data with a partial linear logit model

P(y = 1|z)

1
1Py = L|x)

= Bo + 5151?% + 521’% + fa(as) + falza) + Bsxs + Pevs + Psts.

Here z1 and z? are dummies for the categories “good” and “medium” running account, re-
spectively. The predictor has semiparametric or partial linear form: The smooth functions
fa(xs), fa(xs) of the metrical covariates “duration of credit” and “amount of credit”, are
estimated by usual cubic splines and by Bayesian spline-type smoothing using second order
random walk models (38) for non—equally spaced observations. The constant 3, and the
effects f1,..., Bs of the remaining categorical covariates are considered as fixed for penal-
ized likelihood estimation and estimated jointly with the curves f3 and f;. For Bayesian
estimation, diffuse priors are chosen for 3y, 81, 32, 35, B¢, P, and additional M—H-steps with

random walk proposals are included for MCMC simulation.

Figure 8 shows the estimates for the curves f; and f;. Again, the posterior mean of the
spline-type smoother and the posterior mode or penalized likelihood estimator (full line) are

not far away from each other. While the effect of the variable “duration of credit” is not
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too far away from linearity, the effect of “amount of credit” is clearly nonlinear. The curve
has bathtub shape and indicates that not only high credits but also low credits increase the
risk, compared to “medium” credits between 30006000 DM. Apparently, if the influence
is misspecified by assuming a linear function fjx4 instead of fi(x4), the estimated effect
34 will be near zero, corresponding to an almost horizontal line 34:1;4 near zero, and falsely
considered as nonsignificant. Table 1 gives the posterior means together with 80% credible
intervals. and maximum likelihood estimates of the remaining effects. Both estimates are in

good agreement.

posterior mean 80% CI ML estimator
o 0.662 | —0.004  1.335 0.633
27 -1.468 | —2.243 —0.733 -1.324
Ts -1.085 | =2.051 —-0.135 —-0.998
T -0.442 | -1.035  0.209 —0.440
Ty -0.578 | -1.180  0.016 —-0.516

Table 1: Estimates of constant parameters in the credit-scoring data.

Finally we note, that the whole approach can be extended to varying coefficient models

(Hastie and Tibshirani, 1993), where the predictor has the form

= fl(l’ﬂ)Zﬂ +... 4+ fp(xip)zip, (40)
with z,..., 2, as further “factors”. For the special case z;; = ... = z;, = 1, (40) reduces
to a generalized additive model (35). If zq,..., z, are further covariates, possibly including

some components of x, then a term f;(z;;)z;; can be interpreted as an interaction term
between = and z, or f;(x;;) can be considered as an effect of z, varying over the “effect—
modifier” f;(x;). For x; =1, i.e. if covariate x; is time ¢, f;(¢) is a time-varying effect, and
for 2y = ... = 2, =1 the linear predictor has the same form as in dynamic models for time

series or longitudinal data.
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Figure 8: Estimated functions of the covariate “duration of credit” and “amount of credit”.
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5 Conclusions

In this chapter we showed that dynamic models with Bayesian smoothness priors and semi-
parametric models based on the roughness penalty approach provide supplementary ways for
nonparametric function estimation. Semiparametric Bayesian smoothing has some attrac-
tive features: It provides a natural framework for Bayesian analysis beyond posterior mode
or MAP estimation and recent advances in MCMC techniques allow to estimate posterior
means, medians, quantiles and other functionals of regression functions or other parameters.
No approximation, based on conjectures of asymptotic normality, have to be made. Bayesian
data—driven choice of smoothing parameters is automatically incorporated in the model. Due
to the hierarchical model formulation and modular estimation techniques, the Bayesian ap-
proach offers much flexibility in modifying or extending methods to other situations, for
example to dynamic mixed models for longitudinal data (Section 3.3), to generalized addi-
tive and varying coefficient models (Section 4) or to data with missing values, an issue not

treated here.

To some extent, of course, one has to pay for these advantages: MCMC techniques produce a
rich output, but computation times can also be quite high. Metropolis—Hastings algorithms
provide a wide variety of possibilities for updating steps, but convergence and mixing of the so
constructed Markov chain has also to be checked empirically. Careful convergence diagnostics
deserve much attention in particular applications. Above all, the choice of reasonable priors

on the unknown functions remains subjective and may not be easily accepted.

Semiparametric models based on the roughness penalty approach are useful supplementary
tools for data analysis: Roughness penalties corresponding to smoothness priors can be
interpreted without any underlying Bayesian framework. Thus, if the roughness penalty
looks reasonable it supports the choice of the smoothness prior. As we have shown, the
penalized likelihood estimator can always be interpreted as a corresponding posterior mode
estimator from a Bayesian point of view. Computation is done by numerically efficient
solutions of a nonlinear maximization problem, relying on commonly accepted and well—

understood optimization routines. As we demonstrated by examples, the posterior mode is
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often quite near to posterior means or medians and, therefore, can be quite useful to check

convergence of MCMC simulations.

We focused on non—Gaussian models for times series, longitudinal and regression data within
the set up of generalized linear models with a prespecified link functions of known parametric
form, as for example the logistic or the exponential functions. Tis restriction could be relaxed
by defining a generalized parametric family of link functions (as for example in Stukel, 1988,
Czado, 1992) and estimating unknown parameters in the link function jointly with unknowns
in the predictor. A non—parametric Bayesian approach, avoiding any parametric specification
of a link function, has been proposed by Arjas and Gasbarra (1994) and Arjas and Liu (1996)
in the related context of hazard regression. Generally, we believe that in situations with
many covariates flexible non— or semiparametric modelling and exploration of the predictor
is more important compared to nonparametric choice of the link function while retaining
linear parametric predictors. For Gaussian models, Bayesian analysis of regression splines
with adaptive knot selection has been recently proposed by Smith and Kohn (1994), Smith,
Wong and Kohn (1996) and Denison, Mallick and Smith (1996). It would be interesting to

adapt these methods for non—Gaussian regression models.

Extensions to other data structures are possible by choosing other observation models and
smoothness assumptions. In particular, event history analysis and spatial statistics are a
wide and promising field of research, e.g. Fahrmeir & Knorr—Held (1997), Arjas and Liu
(1996), Arjas and Heikkinen (1996) and Besag, York and Mollie (1991). Also, problems of
model diagnostics and model choice have to dealt with convincingly. Here again, Bayesian

and non—Bayesian data analyses could complement one another in a productive way.
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