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� Introduction

This chapter surveys dynamic or state space models and their relationship to non� and

semiparametric models that are based on the roughness penalty approach� We focus on

recent advances in dynamic modelling of non�Gaussian� in particular discrete�valued� time

series and longitudinal data� make the close correspondence to semiparametric smoothing

methods evident� and show how ideas from dynamic models can be adopted for Bayesian

semiparametric inference in generalized additive and varying coe�cient models� Basic tools

for corresponding inference techniques are penalized likelihood estimation� Kalman �ltering

and smoothing and Markov chain Monte Carlo 
MCMC� simulation� Similarities� relative

merits� advantages and disadvantages of these methods are illustrated through several ap�

plications�

Section � gives a short introductory review of results for the classical situation of Gaussian

time series observations� We start with Whittaker�s 
�
��� �method of graduation� for es�

timating trends and show that it is equivalent to the posterior mean estimate from a linear

Kalman �lter model with known smoothing or variance parameters� We sketch extensions

to general Gaussian linear dynamic or state space models and to continuous time analogues

like the Bayesian version of cubic spline smoothing 
Wahba� �
���� For more detailed expo�

sitions of the equivalence between Bayesian smoothness priors and penalized least squares

we refer the reader to Kohn and Ansley 
�
��� and previous work cited there and to van der

Linde 
�

	� �

�� for a thorough discussion of splines from a Bayesian point of view� This

equivalence also suggests alternative ways of estimating unknown smoothing or variance pa�

�



rameters� Within a semiparametric approach� estimation by optimizing some cross�validated

criterion is a common choice� Empirical Bayes models� also treating hyperparameters as �xed

or unknown� lead to marginal likelihood estimation� Maximization can be done by EM�type

algorithms� Fully Bayesian models put a weakly informative prior on the hyperparameters

and make a complete posterior analysis with MCMC techniques feasible�

We then turn brie�y to so�called conditionally Gaussian dynamic models that are still lin�

ear but with errors distributed as scale mixtures of normals� Already with this seemingly

moderate generalization� penalized least squares and posterior mean estimates are no longer

equivalent� Beyond various approximate Kalman �lters and smoothers� fully Bayesian ap�

proaches based on MCMC are available that make e�cient use of the conditionally Gaussian

structure�

Fundamentally non�Gaussian time series and longitudinal data� in particular for categor�

ical and count data� are considered in Section �� Dynamic binomial and Poisson models

are important members of the family of dynamic generalized linear models� Semiparamet�

ric counterparts based on penalized likelihood estimation can be derived as posterior mode

estimators� with extended or iterative Kalman�type smoothing algorithms as e�cient com�

putational tools 
Fahrmeir �

�� Fahrmeir and Tutz� �

�� ch� �� Fahrmeir and Wagenpfeil�

�

��� However� the equivalence between posterior mean and penalized likelihood estimation

is lost� Fully Bayesian inference is possible with recently developed MCMC techniques for

non�Gaussian dynamic models� an area of intensive current research� In Section ���� we out�

line the ideas for Metropolis�Hastings algorithms suggested by Knorr�Held 
�

��� These

algorithms are used for the applications and are generalized in Section ��� to non�normal

longitudinal data with additional unobserved population heterogeneity across units�

Ideas from non�Gaussian dynamic modelling� in particular for non�equally spaced or con�

tinuous�time parameter models� can be transferred to semiparametric regression models for

cross�sectional data 
Section ��� This leads to Bayesian spline�type smoothing for general�

ized additive and varying coe�cient models using MCMC techniques as a supplement and

alternative to penalized likelihood or� equivalently� posterior mode estimation 
Hastie and

Tibshirani� �

�� �

���

�



Finally Section 	 summarizes conclusions and indicates extensions to other data situations

and statistical models�

� Linear dynamic models and optimal smoothing for

time series data

This section gives a brief survey on the correspondence between linear dynamic or state space

models and semiparametric optimal smoothing methods based on the roughness penalty

approach� We illustrate this correspondence by some simple and commonly�used examples

and review more general and recent work�

��� Gaussian models

In the classical smoothing problem treated by Whittaker 
�
���� time series observations

y � 
y�� � � � � yT � are assumed to be the sum

yt � �t � �t� t � �� � � � � T 
��

of a smooth trend function � and an irregular noise component �� Whittaker suggested to

estimate � by minimizing the penalized least squares criterion

PLS
� � �
TX
t��


yt � �t�
� � �

TX
t��


�t � ��t�� � �t���
� 
��

with respect to � � 
��� � � � � �T �� Minimization of PLS
� � tries to hold the balance between

�t of the data� expressed by the sum of squares on the left side and smoothness of the trend�

expressed by the roughness penalty term in form of the sum of squared di�erences� The

smoothness parameter �� assumed to be given or �xed� weights the two competing goals

data �t and smoothness�

The trend model 
�� and the PLS criterion 
�� can be generalized in a �exible way� Inclusion

of a seasonal component � � 
��� � � � � �T � with period m leads to the additive trend�seasonal

�



model

yt � �t � �t � �t� t � �� � � � � T 
��

and the PLS criterion

PLS
�� �� �
TX
t��


yt��t��t�
����

TX
t��


�t���t����t���
����

TX
t�m


�t��t���� � ���t�m���
� � min

���


��

for estimating the trend function � and the seasonal component �� More generally� the

in�uence of covariates can be taken into account by extending the additive predictor �t � �t

to

�t � �t � �t � x�t	t � w�
t
� 
	�

with time�varying e�ects 	t for xt and constant e�ects 
 for wt�

This penalized least squares approach is reasonable if time series observations are � at least

approximately � Gaussian� This is made explicit by assuming that the errors �t in 
�� and


�� are i�i�d� N
�� ��� random variables� Then the �t term in 
�� corresponds to the log�

likelihood of the additive Gaussian observation model 
��� and the PLS approach appears

as a semiparametric method for estimating the �xed� unknown sequences � � 
��� � � � � �T ��

� � 
��� � � � � �T ��

A dynamic model corresponding to 
�� and 
�� considers � and � as sequences of random

variables� It is hierarchical and consists of two stages� The �rst stage is the Gaussian obser�

vation model 
�� for y given � and �� In the second stage� a transition model corresponding

to the roughness penalty term in 
�� is given by the di�erence equations

�t � ��t�� � �t�� � ut� t � �� � � � � T 
��

�t � �t�� � � � �� �t�m�� � wt� t � m� � � � � T 
��

The errors ut and wt are i�i�d�N
�� ��u�� and N
�� �
�
w�� distributed� Initial values are speci�ed

for example by


��� ���
� � N
�� k�I�� 
��� � � � � �m���

� � N
�� k�I�� 
��

All errors and initial values are assumed as mutually independent� The di�erence equation


��� also called a random walk of second order� penalizes deviations from the linear trend �t �

�



��t����t��� The seasonal model 
�� prefers �small� values of the sum �t��t���� � ���t�m���

so that the seasonal pattern does not change too much over periods� From a Bayesian point

of view 
�� and 
��� together with 
��� de�ne a multivariate normal prior p
�� �� � p
� �p
��

for 
�� �� � 
��� � � � � �T � ��� � � � � �T �� the so�called smoothness prior� Also� the observation

model 
�� de�nes a multivariate normal distribution p
yj�� �� for the data y given � and ��

Here the hyperparameters� i�e� the variances ��� ��u� �
�
w� are regarded as known or given

constants� Thus� the posterior

p
�� �jy� �
p
yj�� ��p
� �p
��

p
y�
� p
yj�� ��p
� �p
�� 

�

is also normal and characterized by the posterior expectation E
�� �jy� and covariance

V ar
�� �jy�� Due to normality� the posterior expectation and the posterior mode� i�e� the

maximizer of 

�� coincide� Taking logarithms� using the 
conditional� independence assump�

tions and ignoring constant factors leads to the criterion

�

��

TX
t��


yt � �t � �t�
� �

�

k�

� �� � � �� � �

�

��u

TX
t��


�t � ��t�� � �t���
�

�
�

k�

��� � � � �� ��m��� �

�

��w

TX
t�m


�t � � � �� �t�m���
� � min

���

���

for estimating � � �� Setting �� � �����u� �� � �����w and choosing di�use priors 
�� with

k� � �� k� � �� the criteria 
�� and 
��� are identical so that the semiparametric PLS

estimate b� � b� is identical to the posterior mode estimate and� due to posterior normality� the
posterior mean�


b� � b�� � E
�� �jy�� 
���

This equivalence remains valid for more general linear Gaussian observation and transition

models� see Kohn and Ansley 
�
��� for a thorough treatment� Collecting trend� season and

other parameters as in 
	� in a so�called state vector 
t� e�g�


t � 
�t� �t��� �t� � � � � �t�m��� 	t� 
��

most linear dynamic models can be put in the form of Gaussian linear state space models

yt � z�t
t � �t� �t � N
�� ��� 
���


t�� � Ft
t � vt� vt � N
�� Qt� 
���

	



by appropriate de�nition of design vectors zt and transition matrices Ft� see for example

Harvey 
�
�
�� West and Harrison 
�
�
� or Fahrmeir and Tutz 
�

�� ch� ����� The well�

known classical Kalman �lter and smoother or recent variants like the di�use �lter 
de

Jong� �

�� can be used for e�ciently computing posterior expectations b
t � E

tjy� and

variances V ar

tjy�� Because of the equivalence with a corresponding PLS criterion� the

Kalman �lter and smoother can also be regarded as an algorithmic tool for computing

semiparametric PLS estimates� without any need for a Bayesian interpretation� see Fahrmeir

and Tutz 
�

�� ch� ����� Using Kalman smoothers for semiparametric additive models like


�� avoids back�tting and provides diagonal bands of smoother matrices as a by�product�

However� forcing dynamic models into state space form can result in high�dimensional state

vectors with singular multivariate priors� causing unnecessary algorithmic complications�

Up to now it was tacitly assumed that the time series is equally spaced in time� Extensions

to non�equally spaced data are possible either by modi�ed di�erence priors or by continuous

time models� For example� a �rst order random walk �t � �t�� � ut� ut � N
�� ��u� is

generalized to

�t � �t�� � ut� ut � N
�� 
t�
�
u� 
���

where 
t is the time between observation yt�� and yt� A second order random walk for

non�equally spaced data can be de�ned by

�t �

�
� �


t

t��

�
�t�� �


t

t��

�t�� � ut� ut � N
�� kt�
�
u�� 
�	�

where kt is a weight function depending on 
t and 
t���

A simple and straightforward choice is kt � 
t as for �rst order random walk priors� There

are other reasonable� but more complex forms of kt that are consistent with the equally�

spaced case� see Knorr�Held 
�

��� Corresponding PLS criteria are easily derived from

these priors�

For continuous�timemodels� trend� season and other time�varying parameters are considered

as smooth functions of time� With a slight change in notation� the simple trend model 
��

becomes

ys � � 
ts� � �s� s � �� � � � � T�

�



with observation times t� � � � � � ts � � � � � t� � a smooth trend function � 
t� and i�i�d� errors

�s � N
�� ���� A continuous time version of the PLS criterion 
�� is� Find � as a twice�

di�erentiable function that minimizes

TX
s��


ys � � 
ts��
� � �

Z

� ��
t���dt� 
���

The minimizing function b� is a cubic smoothing spline� see Green and Silverman 
�

�� for
a recent treatment and Eubank 
�

�� this volume��

Wahba 
�
��� showed that 
��� has a Bayesian justi�cation by placing the solution of the

stochastic di�erential equation

d�� 
ts�

ds�
� ������

dW 
s�

ds
� s � t� 
���

as a smoothness prior over � � Such a di�erential equation of order two is the continuous

time version of a second order random walk 
��� Here W 
s� is a standard Wiener process

with W 
t�� � �� independent of the errors �s� For di�use initial conditions


� 
t��� �
�
t��� � N
�� kI�� k��

the cubic smoothing spline b� 
s� at s coincides with the posterior expectation of � 
s� given
the data� i�e�

b�
s� � E
� 
s�jy��

This equivalence can also be established for more general types of splines where second

derivatives are replaced by linear di�erential operators� see e�g� Kohn and Ansley 
�
���

�
���� They also derive a discrete�time stochastic di�erence equation from 
��� and use

state space techniques for computation of the smoothing spline� Again� pointwise Bayesian

con�dence bands can be computed as a by�product� For a recent discussion of splines from

a Bayesian point of view we refer to van der Linde 
�

	��

In practice� smoothing parameters � or hyperparameters like ��� ��u� �
�
w are usually unknown�

Within the semiparametric roughness penalty approach� data�driven choice of smoothing

parameters is often done by cross�validated optimization of some selection criterion� Already

for a small number of smoothing parameters problems may occur because the selection

�



criterion can be a rather �at function of � � 
��� ��� � � ��� Whithin an empirical Bayes

approach� hyperparameters in dynamic models are treated as unknown constants� Then

the method of maximum likelihood is a natural choice� Maximization can be carried out

directly by numerical optimization routines or indirectly via the EM algorithm� see Harvey


�
�
� ch� ��� If the likelihood is rather �at� then ML estimation also performs poorly�

Fully Bayesian approaches can avoid these problems by providing additional information

about hyperparameters in form of �hyperpriors�� A traditional approach are discrete priors

leading to multiprocess Kalman �lters 
Harrison and Stevens� �
���� More recently Markov

chain Monte Carlo 
MCMC� techniques have been developed to estimate hyperparameters

by simulation from their posteriors 
Carlin� Polson and Sto�er� �

�� Carter and Kohn�

�

�� Fr�uhwirth�Schnatter� �

��� An advantage of these simulation methods is that their

basic concepts are also useful in conditionally non�Gaussian situations as below and in the

following sections�

��� Conditionally Gaussian models

Gaussian models are not robust against outliers in the observation errors and change points

in the trend function or other unobserved components� One way to robustify linear dynamic

models is to assume that error distributions are scale mixtures of normals� For given values

of the mixture variables the linear dynamic model is then conditionally Gaussian� Mixture

variables may be discrete or continuous� A popular choice are ���mixture variables� leading

to t�distributions for the errors� A conditionally Gaussian version of the simple trend model


�� with a second order random walk model for the trend is

yt � �t � �t� �tj��t � N
�� �����t�

�t � ��t�� � �t�� � ut� utj��t � N
�� ��u���t��

Assuming ��t�� and ��t�� to be independently ���distributed with �� and �� degrees of free�

dom� then �t and ut are independently t
��� and t
��� distributed� Although Kalman �lters

and smoothers are still best linear estimators� they perform poorly for small degrees of free�

dom �� and ��� Various approximate �ltering and smoothing algorithms have therefore been

�



given already in early work on robusti�ed state space modelling 
Masreliez� �
�	� Masreliez

and Martin� �
��� Martin and Raftery� �
���� More recently� fully Bayesian MCMC meth�

ods have been developed to tackle this problem� Carlin� Polson and Sto�er 
�

�� suggest

a Gibbs sampling algorithm adding the mixture variables ��t and ��t to the set of unknown

parameters� Their approach applies to rather general nonnormal dynamic models� but can

be ine�cient with respect to mixing and convergence properties� Carter and Kohn 
�

��

�

�� and Shephard 
�

�� propose a modi�ed Gibbs sampling algorithm� that updates the

whole �state vector� � � 
��� � � � � �T � all at once� This modi�cation makes the algorithm

much more e�cient� The parameters ��� � � � � �T are often highly correlated� so updating �t�

t � �� � � � � T one at a time� which is done in Carlin� Polson and Sto�er� often results in poor

mixing� i�e� the corresponding Markov chain is not moving rapidly throughout the support

of the posterior distribution� Consequently� Monte�Carlo standard errors of sample averages

will be large�

As an alternative to these fully Bayesian methods one may also consider posterior mode

estimation� Let ��
�t� and ��
ut� denote the negative log�densities of the i�i�d� errors �t

and ut� Taking logarithms and using 
conditional� independence assumptions� a robusti�ed

version of the PLS criterion 
��

TX
t��

��
yt � �t�
� �

TX
t��

��
�t � ��t�� � �t���
� � min

�
� 
���

can be derived� Computation of the minimizer b� can be carried out by iterative Kalman�
type algorithms� see K�unstler 
�

��� An advantage of posterior mode estimation is that

it can also be extended to other ��functions� for example Huber functions or �
u� � juj�

Also� one may start directly from criterion 
���� without Bayesian interpretation� to obtain

robust semiparametric estimators� and transfer this approach to robust continuous�time

spline�type estimation� It should be noted� however� that already for conditionally Gaussian

dynamic linear models posterior mean estimates� obtained from a fully Bayesian approach�

and posterior mode or spline�type estimators are no longer equivalent� This property holds

only for linear Gaussian models with known hyperparameters as in Section 
�����






� Non�Gaussian observation models

This section deals with fundamentally non�Gaussian time series and longitudinal data� We

progress from simple examples for discrete�valued time series to general non�Gaussian situ�

ations�

��� Non�Gaussian time series

Figure � displays the number yt of occurrences of rainfall over � mm in the Tokyo area for

each calendar day during the years �
����
��� The data� presented in Kitagawa 
�
���

and reanalyzed later on by several authors� is an example of a discrete�valued time series�

Responses yt� t � �� � � � � ���� are assumed as binomial�

yt � B
nt� �t� with

����� nt � � for t �� ��

nt � � for t � �� 
 February �
��

and �t the probability of rainfall on calendar day t� To compare it to similar data from other

areas or other years� and to see some seasonal pattern� the probabilities � � 
��� � � � � �T ��

T � ���� will be estimated as a smooth curve� For the following we reparametrize �t by a

logit link to �t�

�t � log
�t

�� �t
� �t
�t� �

exp
�t�

� � exp
�t�
�

A semiparametric discrete�time roughness penalty approach will start from a penalized log�

likelihood criterion like

PL
� � �
TX
t��

fyt log �t
�t� � 
nt � yt� log
� � �t
�t��g��
TX
t��


�t� ��t��� �t���
� � max

�

�
�

to obtain smooth estimates b� and b� of the �xed� unknown sequences � and �� Compari�

son with the penalized least squares criterion 
�� shows that essentially the Gaussian log�

likelihood of the observation model 
�� is replaced by the sum of binomial log�likelihood

contributions� Instead of second order di�erences� one might also use a sum
P

�t� �t���� of

squared �rst order di�erences�

��



days
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Figure �� Tokyo rainfall data�

Using the same notation as in Section � the continuous�time version of 
�
� is� Find � �

f� 
t�g as a twice�di�erentiable function that solves

PL
� � �
TX

s��

fys log �
� 
ts�� � 
ns � ys� log
� � �t
� 
ts���g � �
Z

� ��
t���dt� max

�
� 
���

For a given smoothing parameter �� the solution is again a cubic smoothing spline� see Hastie

and Tibshirani 
�

�� and Green and Silverman 
�

��� For equally�spaced data as in the

example� the discrete� and continuous�time spline solutions to 
�
� and 
��� are usually

in quite close agreement� Algorithmic e�cient solutions of the high�dimensional nonlinear

optimization problems 
�
� and 
��� are usually carried out by iteratively applying smoothers

for penalized least squares estimation to working observations�

For a Bayesian version of the semiparametric approach 
�
� in form of a non�Gaussian

dynamic model� we take

ytj�t � B
nt� �t
�t��� �t
�t� �
exp
�t�

� � exp
�t�

���

as the observation model� We supplement it as in 
�� by a random walk model of �rst or

��



second order

�t � �t�� � ut or �t � ��t�� � �t�� � ut 
���

as a smoothness prior for � � The errors ut are i�i�d� N
�� ��u� distributed� and initial values

�� resp� ��� �� are speci�ed as in 
��� Variances are assumed to be known� In addition�

conditional independence is assumed among all ytj� �

In contrast to Gaussian models� the posterior

p
� jy� �
p
yj� �p
� �

p
y�
� p
yj� �p
� � 
���

is now non�normal� Thus� posterior expectations and posterior modes are no longer equiva�

lent� With a di�use prior for initial values� the posterior mode b� is the maximizer of 
�
� with
smoothing parameter � equal to ������ � Algorithmic solutions can be e�ciently obtained by

extended or iterative Kalman �ltering and smoothing� see Fahrmeir 
�

��� Fahrmeir and

Tutz 
�

�� and Fahrmeir and Wagenpfeil 
�

��� As in the Gaussian case� these techniques

may also be viewed as convenient computational tools for computing penalized likelihood

estimators� without Bayesian interpretation� For a fully Bayesian analysis� including compu�

tation of posterior moments and quantiles� simulation based estimation� in particular MCMC

methods� are generally most appropriate� Details are given in Section ����

A continuous�time dynamic model corresponding to 
��� is obtained by placing the stochas�

tic di�erential equation 
��� as a smoothness prior over � � Again� posterior modes are

still equivalent to cubic smoothing splines� but di�erent from posterior expectations� Fully

Bayesian spline�type smoothing will also be based on MCMC for dynamic models� For

this purpose� it is useful to rewrite the continuous�time prior 
��� as a stochastic di�erence

equation for the state vector


t � 
� 
t�� d� 
t��dt�

of the trend � and its derivative� Following Kohn and Ansley 
�
���� the sequence 
s �� 

ts�

of evaluations at ts� s � �� � � � � T obeys the stochastic di�erence equation


s�� � Fs
s � us� s � �� � � � � T� 
���

��



with transition matrices

Fs �

�B	 � 
s��

� �


CA � 
s�� � ts�� � ts

and independent errors

us � N
�� ��Us�� Us �

�B	 
�s���� 
�s����


�s���� 
s��


CA �

Together with the observation model

ysj� 
ts� � B
ns� �
ts��

we obtain a binomial dynamic� or state space� model� Higher order splines can also be

written in state space form� see Kohn � Ansley 
�
����

As a second example� we consider a time series of counts yt of the weekly incidence of acute

hemorragic conjunctivitis 
AHC� in Chiba�prefecture in Japan during �
��� Kashiwagi and

Yanagimoto 
�

�� analyze this data� assuming a loglinear Poisson model

ytj�t � Po
�t�� �t � exp
�t�

and a �rst order random walk prior for � � They obtain a posterior mean estimate based on

numerical integrations similar as in Kitagawa 
�
���� Of course� other smoothness priors as

second order random walks or the continuous�time analogue 
��� might be used as well� A

penalized likelihood approach would start directly from

PL
� � �
TX
t��


yt log �t � �t�� �
TX
t��


�t � �t���
� � max

�
�

or with other forms of the roughness penalty term� Again� penalized likelihood estimators are

equivalent to posterior mode estimators� but di�erent from corresponding posterior means�

Both examples belong to the class of dynamic generalized linear models� The general obser�

vation model is as following�

The conditional density of yt� given the unknown state vector 
t is of the linear exponential

family type with conditional expectation

E
ytj
t� � �t � h
�t�

��



related to the linear predictor �t � z�t
t by a suitable link h� As in the Gaussian case the

components of 
t may consist of trend �t� season �t and possibly time�varying e�ects 	t of

covariates xt and zt is a suitable design vector� For example an additive predictor

�t � �t � �t � x�t	t

can be written in this form� Although time�constant e�ects 
 can be incorporated formally

by setting 
t � 
t��� it is often advantageous to split up the predictor in

�t � �t � �t � x�t	t � w�
t
�

For the second stage� smoothness priors p

� are put on the sequence 
 � 

�� � � � � 
T � in

form of a transition model� Linear Gaussian transition models like di�erence equation 
���


�� or the state space form 
t�� � F
t � ut are often retained as a common choice� but we

will also use priors for non�equally spaced observations or continuous times priors�

As for the examples� we can always write down a corresponding semiparametric model and

an associated penalized likelihood criterion

PL

� �
TX
t��

lt
ytj
t��
pX

j��

�jI

j�� max
�

� 
�	�

Here 
j � 

j�� � � � � 
jT � is the j�th component of 
� I

j� a penalty function and �j a

smoothing parameter� For given smoothing parameters �j� estimates 
j are obtained by

iterative smoothing� with back�tting in an inner loop� see Hastie and Tibshirani 
�

��

�

��� Green and Silverman 
�

��� Fahrmeir and Tutz 
�

�� ch� 	�� As in the examples�


�	� can always be derived from the corresponding dynamic model relying on the principle

of posterior mode estimation�

Estimation of unknown smoothing parameters �j or corresponding hyperparameters ��j can

be based on the same principles as for Gaussian models� Relying on the roughness penalty

approach� smoothing parameters are selected as minimizer of a generalized cross�validation

criterion� see O�Sullivan� Yandell and Raynor 
�
���� Wahba� Wang� Gu� Klein and Klein


�

	�� Empirical Bayes approaches consider hyperparameters ��j as unknown but �xed and

use 
approximate� maximum likelihood estimation� for example an EM�type algorithm as

��



suggested in Fahrmeir 
�

��� Wagenpfeil 
�

�� compares some of these approaches� In

a fully Bayesian setting� hyperparameters ��j are considered as random and independent

inverse gamma priors

��j � IG
aj� bj�� j � �� � � � � p 
���

are a common choice for hyperpriors� By appropriate choice of aj� bj� these priors can be

made more or less informative�

��� MCMC in non�Gaussian dynamic models

The design of e�cient MCMC algorithms in dynamic models with non�Gaussian observation

model is currently an intense research area� For easier presentation� we �rst discuss several

MCMC algorithms for simple non�Gaussian dynamic trend models� like the dynamic bino�

mial or Poisson models in the examples above� Extensions to the general case are outlined at

the end of this subsection� Supplementing model 
���� 
��� with a hyperprior p
��u� for �
�
u�

for example an inverse gamma prior as in 
���� the posterior distribution of the parameters

� and ��u is given by�

p
�� ��ujy� � p
yj� �p
� j�
�
u�p
�

�
u�� 
���

MCMC methods construct Markov chains that converge to a given distribution� here the

posterior� Once the chain has reached equilibrium� it provides 
dependent� samples from

that posterior distribution� Quantities of interest� such as the posterior mean or median�

can now be estimated by the appropriate empirical versions�

The well�known Gibbs sampling algorithm 
e�g� Gelfand and Smith� �

�� is based on sam�

ples from the full conditional distributions of all parameters� In general� a full conditional

distribution is proportional to the posterior 
��� but often considerable simpli�cations can

be done� To implement the Gibbs sampler in dynamic trend models� we have to sample from

p
�tj�
�
� � y� � p
ytj�t�p
�tj�s��t� �

�
u� 
���

and p
��� j�� y� � p
� j��t �p
�
�
u�� 
�
�

If inverse gamma priors are assigned to ��u� 
�
� is still inverse gamma and samples can be

generated easily using standard algorithms�

�	



Suppose we could also easily generate samples from 
���� t � �� � � � � T � The Gibbs sam�

pling algorithm iteratively updates ��� � � � � �T and ��u by samples from their full conditionals�

Markov chain theory shows� that the so generated sequence of random numbers converges to

the posterior 
��� for any starting value of the Markov chain� Such an algorithm is proposed

in Fahrmeir� Hennevogl and Klemme 
�

��� following suggestions of Carlin� Polson and

Sto�er 
�

��� However� there are some drawbacks of pure Gibbs sampling in non�Gaussian

dynamic models� Firstly� samples from 
���� which is non�standard for non�Gaussian obser�

vation models� can only be obtained by carefully designed rejection algorithms which may

require already a considerable amount of computation time in itself� Fortunately� instead

of sampling from the full conditional distribution� a member of the more general class of

Hastings algorithms 
Hastings� �
��� can be used to update �t� t � �� � � � � T � Here so�called

proposals are generated from an arbitrary distribution and a speci�c accept�reject step is

added� Such a Hastings step is typically easier to implement and more e�cient in terms of

CPU time� A thorough discussion of the Hastings algorithm is given in Tierney 
�

�� and

Besag� Green� Higdon and Mengersen 
�

	��

For example� to update 
���� it is su�cient to generate a proposal � �t from the conditional

prior distribution p
�tj�s��t� �
�
u� and to accept the proposal as the new state of the Markov

chain with probability


 � min

�
��
p
ytj� �t �

p
ytj�t�

�
�

here �t denotes the current state of the chain� The resulting algorithm requires less compu�

tation time than pure Gibbs sampling since the conditional prior distribution is Gaussian

with known moments so proposals are easy to generate�

However� the generated Markov chain might show signs of slow convergence and does not

mix rapidly� That is� the Markov chain is not moving rapidly throughout the support of

the posterior distribution so that subsequent samples are highly dependent and Monte Carlo

estimates become imprecise� This is a consequence of the underlying single move strategy�

i�e� parameters �t� t � �� � � � � T are updated one by one� Various attempts have been made to

design algorithms that converge fast and mix rapidly� A fruitful idea is the use of blocking�

here blocks of parameters� say ��a�b� � 
�a� �a��� � � � � �b��� �b�� are updated simultaneously

��



rather than step by step� Such a blocking strategy is a compromise between updating �

all at once� which is infeasible for fundamentally non�Gaussian time series� and updating

� one at a time� The algorithms of Shephard and Pitt 
�

	� and Knorr�Held 
�

��

are based on blocking� Knorr�Held generalizes of the conditional prior proposal above to

block move algorithms� Generate a proposal � ��a�b� form the conditional prior distribution

p
��a�b�j����a���� ��b���T �� ��u� and accept the proposal as the new state of the Markov chain

with probability


 � min

�����������
bQ

t�a
p
ytj�

�
t �

bQ
t�a
p
ytj�t�


�������� �

One of the advantages of MCMC is the possibility to calculate exact posterior distributions

of functionals of parameters� For the Tokyo rainfall data� the posterior estimates of the

probabilities

�t �
exp
�t�

� � exp
�t�

���

are of main interest� Instead of plugging an estimate for f�tg in 
���� we calculate posterior

samples from f�tg� using the original samples from p
� jy�� The posterior distributions p
�jy�

can now be explored in detail without any approximation� In contrast� posterior mode or

splines estimation do not have this feature� Here plug�in estimates� especially con�dence

bands� are typically biased due to the non�linearity in 
���� Similar considerations apply to

the AHC example� where �t � exp
�t� is to be estimated�

Figure � shows the posterior estimates of the probabilities f�tg for the Tokyo rainfall data�

calculated by a conditional prior block�MCMC algorithm� A highly dispersed but proper

inverse gamma hyperprior 
��� with a � �� b � ������	 was assigned to ��u� This prior has

a mode at �������	� The estimated posterior median was ������� The pattern in Figure

�� with peaks for wet seasons� nicely re�ects the climate in Tokyo� It would be di�cult to

see this by looking only at the raw data 
Figure ��� In Fahrmeir and Tutz 
�

�� ch� 	����

the probabilities f�tg are �tted by a cubic smoothing spline� with the smoothing parameter

estimated by generalized cross�validation criterion� This criterion had two local minima at

� � �� and � � ����� The smoothing spline for � � ���� is quite close to the posterior

median �t in �� while the smoothing spline for � � �� is much rougher� Such rougher

��



posterior median estimates are also obtained if the parameter b for the inverse gamma prior is

set to higher values� For example� with a � �� b � ����	� the prior mode equals �����	� This

prior is in favor of larger values for ��u� so that posterior median estimates for f�tg become

rougher� As a third approach� posterior mode estimation� with an EM�type algorithm for

estimating ��u by maximization of the marginal likelihood� also gives estimates that are

in good agreement� These results correspond to empirical evidence experienced in other

applications� If smoothing and variance parameters are properly adjusted� posterior mean

and medians are often rather close to posterior modes or penalized likelihood estimates� Also�

estimation of hyperparameters by cross�validation or marginal likelihood can be helpful for

the choice of parameters of the hyperprior in a fully Bayesian model� Similar evidence is

provided by the next example�

days
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Figure �� Tokyo rainfall data� Data and �tted probabilities �posterior median within ��� �� and

	� 
 credible regions�� The data is reproduced as relative frequencies with values �� ��� and ��

Estimates for the AHC data are shown in Figure �a� and b� for both �rst and second order

random walk priors� The posterior distribution of the intensities f�tg shows a peak around

weak �� similar to the results of Kashiwagi and Yanagimoto 
�

��� Compared to the model

with second order random walk priors� estimates in Figure �a� are somewhat rougher and the

��



peak around week �� is lower and more �at� This re�ects the fact that �rst order random

walk priors are in favor of horizontal� locally straight lines� Figure �c� shows Bayesian

cubic spline�type estimates with thec continuous�time prior 
���� As was to be expected

with equally spaced observations� these estimates are in very close agreement with those in

Figure �b�� Figure �d� shows displays the cubic smoothing spline� which is the posterior

mode estimator from the Bayesian point of view� As with the rainfall data example� it is

again quite close to the posterior median in �c��

In more general dynamic models� response yt is related to some unknown parameter vector


t� see for example the state space representation 
��� of the spline�type prior 
���� MCMC

simulation in dynamic models can be performed similarly as for the simple dynamic trend

model� where 
t � �t is a scalar� by single� or block�move algorithms� Shephard and Pitt


�

	� make speci�c Fisher scoring type steps to construct a proposal that approximates the

full conditional distribution taking the observation into account� In contrast� conditional

prior proposals are built independently of the observation and are therefore easier to con�

struct� Their performance is good for situations� where the posterior is not very di�erent

from the conditional prior� This is typically the case for discrete valued observations such

as bi� or multinomial logistic models as in our examples� Sometimes components 
j of


 � 

�� � � � � 
T � 
compare the notation in 
�	�� are a priori independent and a componen�

twise updating strategy with conditional prior proposals can have advantages� Componen�

twise updating becomes inevitable in problems with multiple time scales or� more general�

generalized additive models� see Section ��

Finally we note� that it is possible to combine robust transition models with non�Gaussian

observation models similarly as in Section ���� For example� on may use random walk priors

with t�distributed errors for trend components� allowing for abrupt large jumps� MCMC

simulation in such models is often straightforward� since error terms are still Gaussian� given

unknown mixture values� An example is given in Knorr�Held 
�

�� with t
���distributed

errors and an additional hyperprior on the degrees of freedom ��

�
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Figure �� AHC data� Data and �tted probabilities �posterior median within ��� �� and 	�


credible regions��

��



��� Non�Gaussian longitudinal data

In this section� we consider longitudinal data where observations


yti� xti�� t � �� � � � � T� i � �� � � � � n�

on a response variable y and a vector x of covariates are made for a cross�section of n units

at the same time points t � �� � � � � T � Models for Gaussian outcomes yti have been treated

already extensively� but much less has been done in the non�Gaussian case� As an example�

we will consider monthly business test data collected by the IFO institute in Munich for a

large cross�section of �rms� Answers given in a monthly questionnaire are categorical� most

of them trichotomous with categories like �increase� 
��� �no change� 
�� or �decrease�


��� compare Fahrmeir and Tutz 
�

�� Examples ���� ��	�� Selecting a speci�c response

variable y� say answers on production plans� we obtain categorical longitudinal data�

Observation models for longitudinal data can be de�ned by appropriate extensions of models

for time series data� A straightforward generalization within the exponential family frame�

work is as follows� For given covariates xti and a possibly time�varying parameter vector


t� the q�dimensional response yti comes from a linear exponential density with conditional

mean

E
ytijxti� 
t� � h
�ti� 
���

and linear predictor

�ti � Zti
t� 
���

Here h� IRq � IRq is a q�dimensional link and the matrix Zti is a function of the covariates xti

and possibly past responses� Individual responses are assumed to be conditionally indepen�

dent� A dynamic model for longitudinal data is obtained by supplementing the observation

model 
��� and 
��� with transition models as smoothness priors for 
 as in Section ����

Just as for time series� some subvector e
t of 
t may indeed be time�constant� Such partially

dynamic models are formally covered by 
��� with the additional restriction e
t � e
t�� or by

making this explicit and rewriting the predictor in additive form �ti � Zti
t � Vti	�

��



The posterior mode or penalized likelihood approach leads to

PL

� �
TX
t��

nX
i��

lti

t��
pX

j��

�jI

j�� max
�

� 
���

Here� lti

t� � log f
ytijxti� 
t� is the conditional likelihood contribution of observation yti�

Computationally e�cient solutions can be obtained� for example� by extended or iterative

Kalman�type smoothers� see Fahrmeir and Tutz 
�

�� ch� ���� and Wagenpfeil 
�

���

Observation models of the form 
���� 
��� may be appropriate if heterogeneity among units

is su�ciently described by observed covariates� This will not always be the case� in particular

for larger cross�sections� A natural way to deal with this problem is an additive extension

of the linear predictor to

�ti � Zti
t �Wtibi�

where bi are unit�speci�c parameters and Wti an appropriate design matrix� A dynamic

mixed model is obtained with usual transition models for 
 and a �random e�ects� model for

the unit�speci�c parameter� A common assumption is to assume the bi
�s are i�i�d� Gaussian�

bi � N
��D�� 
���

with covariance matrix D� For posterior mode or penalized likelihood estimation of 
 �



�� � � � � 
T � and b � 
b�� � � � � bn�� a further penalty term

I
b� �
nX
i��

b�iDbi�

corresponding to the Gaussian prior 
��� is added to 
���� An algorithmic solution for the

resulting joint posterior mode or penalized likelihood estimates 
b
� bb� is worked out in Biller

�

��� also in combination with an EM�type algorithm for estimation of smoothing param�

eters� However� computation times become large for multicategorical responses� Moreover�

serious bias may occur� see Breslow and Clayton 
�

��� Breslow and Lin 
�

	��

MCMC techniques are more attractive for dynamic mixed models through their model �exi�

bility� The additional parameters b�� � � � � bn are added to the set of unknown parameters and

are updated with some well designed proposals� for example with Metropolis random walk

��



proposals� in every MCMC cycle� Besides� a hyperprior for D has to be introduced� The

usual choice is the inverted Wishart distribution

p
D� � jDj����m����� exp
�tr
BD����

with parameters � � 
m � ���� and jBj � �� here m is the dimension of bi� A Gibbs step

can then be used to update D�

Turning to the IFO business test example� we investigate the dependency of current pro�

duction plans on demand and orders in hand in the speci�c branch �Vorprodukte Steine

und Erden�� We have complete longitudinal observations of 	� �rms for the period from

�
�� to �

�� Our model allows for time�changing e�ects of covariates and for trend and

seasonal variation of threshold parameters� which represent corresponding probabilities of

the response categories� Additional unit�speci�c parameters bi are introduced to allow for

�rm�speci�c di�erences of these probabilities�

The response variable �production plans� is given in three ordered categories� �increase� 
���

�no change� 
�� and �decrease� 
��� Its conditional distribution is assumed to depend on

the covariates �orders in hand�� �expected business conditions� as well as on the production

plans of the previous month� All these covariates are trichotomous� We used a dummy

coding approach for comparison with previous analyses with the category 
�� as reference

category� The corresponding dummies are denoted by A�� A� 
orders in hand�� G�� G�


expected business conditions� and P�� P� 
production plans of the previous month� and

de�ne the covariate vector xti� The inclusion of P as a covariate reduces the panel length by

� to T � ��
 
February �
�� to December �

���

A cumulative logistic model 
e�g� Fahrmeir � Tutz� �

�a� ch� �� was used due to the ordinal

nature of the response variable� Let eyti � � and eyti � � denote the response categories
�increase� and �no change� respectively� Then

P 
eyti � j� � F 
�tij � x�ti	t�� � j � �� ��

is assumed with xti � 
G�� G�� P�� P�� A�� A��� and F 
x� � ��
� � exp
�x���

We decompose both threshold parameters �ti� and �ti� into trend parameters �t� seasonal

��



parameters �t and unit speci�c parameters bi� one for each threshold�

�tij � �tj � �tj � bij� j � �� ��

Note that the threshold parameters have to follow the restriction �ti� � �ti� for all combi�

nations of t and i� A seasonal model 
�� with period m � �� was chosen for the seasonal

parameters of both thresholds� First order random walk priors are assigned to all covariate

e�ect parameters 	t and to both trend parameters �t�� �t�� All time�changing parameters

are assumed to be mutually independent with proper but highly dispersed inverse gamma

hyperpriors 
a��� b�����	�� The �rm�speci�c parameters bi � 
bi�� bi��� are assumed to

follow a Gaussian distribution with mean zero and dispersion D� We used the parameter

values � � � and B � diag
����	� ����	� for the inverted Wishart hyperprior speci�cation

for D�

This model can be written as a dynamic mixed model with

�ti � h
�ti� � h
Zti
t �Wtibi��

where 
�
t � 
�t�� �t�� �t�� �t�� 	

�
t��

Wti �

�B	 � �

� �


CA
and

Zti �

�B	 � � � � x�ti

� � � � x�ti


CA �

The responses variable yti is multinomially distributed

yti �M�
�� �ti�

where yti � 
�� ���� 
�� ��� or 
�� ���� if the �rst 
��� second 
�� or third 
�� category is

observed� The link function h is given by

h
�ti� �

�B	 F 
�ti��

F 
�ti��� F 
�ti��


CA �

Figure � displays the temporal pattern of the trend parameters �tj � j � �� �� and of both

threshold parameters �tj � �tj��tj � j � �� �� The �rst trend parameter is slightly decreasing

��
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Figure �� Estimates of trends and thresholds� Dashed vertical lines represent the month January

of each year�
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while the second remains constant over the whole period� A distinct seasonal pattern can

be seen with higher probabilities of positive response in spring and negative response in

fall� However� �rm�speci�c deviations from this pattern are substantial as can be seen from

Figure 	� Here� posterior median estimates of the �rst and second �rm�speci�c parameter

bi� and bi� are plotted against each other for all 	� �rms� Interestingly� these two parameters
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Figure 	� Plot of the estimates of bi� against bi� for each unit�

are often highly negatively correlated� The estimated dispersion matrix of the random e�ect

distribution is

cD �
�B	 ���� �����

����� ����


CA �
and the estimated correlation� based on posterior samples of the corresponding functional of

��



D� is ������ Both estimates are posterior median estimates� It seems that some �rms are

more conservative in their answers and often choose �no change� for the response variable�

relative to the overall frequencies� Such �rms have negative values for bi� and positive values

for bi�� Other �rms avoid the category �no change� and answer often more extremely with

�decrease� or �increase�� For these �rms bi� is positive and bi� negative�

The estimated patterns of time�dependent covariate e�ects 
Figure �� show an interesting

temporal pattern� in particular the e�ect of the dummy G� 
Figure ��� which stands for

expected improved business conditions� relative to G�� A distinct low can be seen end at the

of �

�� when the German economy was shaken by a recession� In �
�� a new government

under the leadership of chancellor Helmut Kohl was established� From that time onwards

the e�ect increases until �
�
��

� with some additional variation and can be interpreted

as a growing trust in the government�

The peak in �
�
��

� coincidences with the German reuni�cation� which was expected to

have a catalytic e�ect on the economy due to the sudden opening of the market in former

east Germany� In the years �
��� 
� and 
�� parliament elections were held in fall� In these

years the e�ect is always decreasing towards the end of the year� which may be due to the

uncertainty regarding the election results�

� Generalized additive and varying coe�cient models

Let us now turn to a cross�sectional regression situation where observations 
yi� xi�� � � � � xip��

i � �� � � � � n on a response y and a vector 
x�� � � � � xp� of covariates are given� Generalized

additive models 
Hastie and Tibshirani� �

�� assume that� given xi � 
xi�� � � � � xip�� the

distribution of yi belongs to an exponential family with mean �i � E
yijxi� linked to an

additive predictor �i by

�i � h
�i�� �i � f�
xi�� � � � �� fp
xip�� 
�	�

Here f�� � � � � fp are unknown� smooth functions of continuous covariates x�� � � � � xp� If some

covariates are assumed to have a linear e�ect on the predictor� then semiparametric or

��
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Figure �� Estimated time
changing covariate e�ects� Dashed vertical lines represent the month

January of each year�

generalized partial linear models like

�i � f�
xi�� � � � �� 	pxip 
���

are appropriate modi�cations of 
�	�� In 
���� xip could also be a binary or categorical

covariate� In the following� we will focus on model 
�	��

Nonparametric estimation of the functions f�� � � � � fp can be based on the penalized likelihood

criterion

PL
f�� � � � � fp� �
nX

i��

li
yij�i��
pX

j��

�j

Z

f ��j 
u��

�du� max
f������fp


���

with individual likelihood contributions li from yijxi� The maximizing functions are cubic

smoothing splines bf�� � � � � bfp� Other types of penalty terms may also be used� replacing for
example second derivatives by m�th order derivatives f

�m�
j 
u� or using discretized penalty

terms� Computation is usually carried out by back�tting algorithms� see Hastie and Tibshi�

rani 
�

�� or Fahrmeir and Tutz 
�

�� ch� 	�� As a drawback� construction of con�dence

bands relies on conjectures of approximate normality of penalized likelihood estimators�

��



1980 1982 1984 1986 1988 1990 1992 1994

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

post. median
50 % cred. region

Figure �� Estimated time
changing covariate e�ect of G�� Dashed vertical lines represent the

month January of each year�

with a rigorous proof still missing� Also� data�driven choice of smoothing parameters can

be problematic�

Bayesian inference in generalized additive models� as outlined in the sequel� uses ideas from

dynamic models for time series data� Basically� time is replaced by metrical covariates� with

di�erent covariates xj� j � �� � � � � p� corresponding to di�erent time scales tj�

For each covariate� let

tj� � � � � � tjs � � � � � tjTj � Tj � n

denote the strictly ordered� di�erent values of observations xij� i � �� � � � � n� Bayesian

smoothness priors for the unknown values

f
tj�� � � � � � f
tjs� � � � � � f
tjTj�

can now be de�ned by adapting random walk models 
	�� 
��� for non�equally spaced time�

points or continuous�time priors like 
��� to the present situation� Setting 
js � fj
tjs�� and

�





js � tjs � tj�s��� �rst and second order random walk priors are given by


js � 
j�s�� � ujs� ujs � N
�� 
js�
�
j �

and


js �

�
� �


js

j�s��

�

j�s�� �


js

j�s��


j�s�� � ujs� ujs � N
�� kjs�
�
j �� 
���

with mutually independent errors ujs� Priors for Bayesian cubic spline�type smoothing�

corresponding to the penalized log�likelihood 
��� are given by the stochastic di�erential

equations
d�fj
s�

ds�
� �j

dWj
s�

ds
� s � tj� 
�
�

with mutually independent standard Wiener processes� Wj
tj�� � �� and di�use initial con�

ditions for


js � 
fj
s�� f
�
j
s���

In complete analogy to Section ���� the priors 
�
� can be written in state space form 
���

and some hyperpriors are assigned to �j�

The likelihood p
yj
� ��� the priors p

�� p
�� and as a consequence� the posterior p

jy�

have the same structure as in Section 
����� Therefore single� or block�move schemes as

outlined there can be used to simulate from the posterior� Details and some generalizations

are given in Lang 
�

�� for random walk priors and Biller and Fahrmeir 
�

�� for stochastic

di�erential equation priors�

As an application� we consider the credit�scoring problem described in Fahrmeir � Tutz


�

�� ch� ����� In credit business banks are interested in estimating the risk that consumers

will pay back their credits as agreed upon by contract or not� The aim of credit�scoring is

to model or predict the probability that a client with certain covariates 
�risk factors�� is

to be considered as a potential risk� The data set consists of ���� consumers�s credits from

a South German bank� The response variable of interest is �creditability�� which is given

in dichotomous form 
y � � for creditworthy� y � � for not creditworthy�� In addition� ��

covariates that are assumed to in�uence creditability were collected� As in Fahrmeir and

Tutz� we will use a subset of these data� containing only the following covariates� which are

��



partly metrical and partly categorical�

x� running account� trichotomous with categories �no running account� 
� ���

�good running account� 
� ���

�medium running account� 
�less than ��� DM� � � � reference category�

x� duration of credit in months� metrical

x� amount of credit in DM� metrical

x	 payment of previous credits� dichotomous with categories �good��

�bad� 
�reference category�

x
 intended use� dichotomous with categories �private� or

�professional� 
�reference category�

x� marital status� with reference category �living alone��

A parametric logit model for the probability P
y � �jx� of being not creditworthy leads to

the somewhat surprising conclusion that the covariate �amount of credit� has no signi�cant

in�uence on the risk� Here� we reanalyze the data with a partial linear logit model

log
P
y � �jx�

�� P
y � �jx�
� 	� � 	�x

�
� � 	�x

�
� � f�
x�� � f�
x�� � 		x	 � 	
x
 � 	�x��

Here x�� and x
�
� are dummies for the categories �good� and �medium� running account� re�

spectively� The predictor has semiparametric or partial linear form� The smooth functions

f�
x��� f�
x�� of the metrical covariates �duration of credit� and �amount of credit�� are

estimated by usual cubic splines and by Bayesian spline�type smoothing using second order

random walk models 
��� for non�equally spaced observations� The constant 	� and the

e�ects 	�� � � � � 	� of the remaining categorical covariates are considered as �xed for penal�

ized likelihood estimation and estimated jointly with the curves f� and f�� For Bayesian

estimation� di�use priors are chosen for 	�� 	�� 	�� 		� 	
� 	�� and additional M�H�steps with

random walk proposals are included for MCMC simulation�

Figure � shows the estimates for the curves f� and f�� Again� the posterior mean of the

spline�type smoother and the posterior mode or penalized likelihood estimator 
full line� are

not far away from each other� While the e�ect of the variable �duration of credit� is not

��



too far away from linearity� the e�ect of �amount of credit� is clearly nonlinear� The curve

has bathtub shape and indicates that not only high credits but also low credits increase the

risk� compared to �medium� credits between ��������� DM� Apparently� if the in�uence

is misspeci�ed by assuming a linear function 	�x� instead of f�
x��� the estimated e�ectb	� will be near zero� corresponding to an almost horizontal line b	�x� near zero� and falsely
considered as nonsigni�cant� Table � gives the posterior means together with �� credible

intervals� and maximum likelihood estimates of the remaining e�ects� Both estimates are in

good agreement�

posterior mean �� CI ML estimator

x�� ����� ������ ����	 �����

x�� ������ ������ ������ ������

x	 �����	 ����	� �����	 ���

�

x
 ������ �����	 ����
 ������

x� ���	�� ������ ����� ���	��

Table �� Estimates of constant parameters in the credit
scoring data�

Finally we note� that the whole approach can be extended to varying coe�cient models


Hastie and Tibshirani� �

��� where the predictor has the form

�i � f�
xi��zi� � � � �� fp
xip�zip� 
���

with zi�� � � � � zip as further �factors�� For the special case zi� � � � � � zip � �� 
��� reduces

to a generalized additive model 
�	�� If z�� � � � � zp are further covariates� possibly including

some components of x� then a term fj
xij�zij can be interpreted as an interaction term

between x and z� or fj
xij� can be considered as an e�ect of z� varying over the �e�ect�

modi�er� fj
xj�� For xj 	 t� i�e� if covariate xj is time t� fj
t� is a time�varying e�ect� and

for x� � � � � � xp � t the linear predictor has the same form as in dynamic models for time

series or longitudinal data�

��
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Figure �� Estimated functions of the covariate �duration of credit� and �amount of credit��
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� Conclusions

In this chapter we showed that dynamic models with Bayesian smoothness priors and semi�

parametric models based on the roughness penalty approach provide supplementary ways for

nonparametric function estimation� Semiparametric Bayesian smoothing has some attrac�

tive features� It provides a natural framework for Bayesian analysis beyond posterior mode

or MAP estimation and recent advances in MCMC techniques allow to estimate posterior

means� medians� quantiles and other functionals of regression functions or other parameters�

No approximation� based on conjectures of asymptotic normality� have to be made� Bayesian

data�driven choice of smoothing parameters is automatically incorporated in the model� Due

to the hierarchical model formulation and modular estimation techniques� the Bayesian ap�

proach o�ers much �exibility in modifying or extending methods to other situations� for

example to dynamic mixed models for longitudinal data 
Section ����� to generalized addi�

tive and varying coe�cient models 
Section �� or to data with missing values� an issue not

treated here�

To some extent� of course� one has to pay for these advantages� MCMC techniques produce a

rich output� but computation times can also be quite high� Metropolis�Hastings algorithms

provide a wide variety of possibilities for updating steps� but convergence and mixing of the so

constructed Markov chain has also to be checked empirically� Careful convergence diagnostics

deserve much attention in particular applications� Above all� the choice of reasonable priors

on the unknown functions remains subjective and may not be easily accepted�

Semiparametric models based on the roughness penalty approach are useful supplementary

tools for data analysis� Roughness penalties corresponding to smoothness priors can be

interpreted without any underlying Bayesian framework� Thus� if the roughness penalty

looks reasonable it supports the choice of the smoothness prior� As we have shown� the

penalized likelihood estimator can always be interpreted as a corresponding posterior mode

estimator from a Bayesian point of view� Computation is done by numerically e�cient

solutions of a nonlinear maximization problem� relying on commonly accepted and well�

understood optimization routines� As we demonstrated by examples� the posterior mode is

��



often quite near to posterior means or medians and� therefore� can be quite useful to check

convergence of MCMC simulations�

We focused on non�Gaussian models for times series� longitudinal and regression data within

the set up of generalized linear models with a prespeci�ed link functions of known parametric

form� as for example the logistic or the exponential functions� Tis restriction could be relaxed

by de�ning a generalized parametric family of link functions 
as for example in Stukel� �
���

Czado� �

�� and estimating unknown parameters in the link function jointly with unknowns

in the predictor� A non�parametric Bayesian approach� avoiding any parametric speci�cation

of a link function� has been proposed by Arjas and Gasbarra 
�

�� and Arjas and Liu 
�

��

in the related context of hazard regression� Generally� we believe that in situations with

many covariates �exible non� or semiparametric modelling and exploration of the predictor

is more important compared to nonparametric choice of the link function while retaining

linear parametric predictors� For Gaussian models� Bayesian analysis of regression splines

with adaptive knot selection has been recently proposed by Smith and Kohn 
�

��� Smith�

Wong and Kohn 
�

�� and Denison� Mallick and Smith 
�

��� It would be interesting to

adapt these methods for non�Gaussian regression models�

Extensions to other data structures are possible by choosing other observation models and

smoothness assumptions� In particular� event history analysis and spatial statistics are a

wide and promising �eld of research� e�g� Fahrmeir � Knorr�Held 
�

��� Arjas and Liu


�

��� Arjas and Heikkinen 
�

�� and Besag� York and Mollie 
�

��� Also� problems of

model diagnostics and model choice have to dealt with convincingly� Here again� Bayesian

and non�Bayesian data analyses could complement one another in a productive way�
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