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Maximum Likelihood Estimation

in Graphical Models with Missing Values

By Vanessa Didelez and Iris Pigeot

University of Munich� Institute of Statistics� Ludwigstr� ��� D�����	 Munich�

Germany

Summary

In this paper we discuss maximum likelihood estimation when some observations are

missing in mixed graphical interaction models assuming a conditional Gaussian dis�

tribution as introduced by Lauritzen � Wermuth ������	 For the saturated case ML

estimation with missing values via the EM algorithm has been proposed by Little

� Schluchter ����
�	 We expand their results to the special restrictions in graphical

models and indicate a more e�cient way to compute the E�step	 The main purpose

of the paper is to show that for certain missing patterns the computational e
ort

can considerably be reduced	

Some key words
 EM algorithm� Graphical interaction models� Maximum likelihood

estimation� Missing pattern� Missing values	

�� Introduction

Graphical models are used to describe complex multivariate association structu�

res	 They are mainly of interest in empirical research in the social� psychological

or behavioural sciences where a large number of variables is typically collected via

questionnaire or interview	 When analysing such data sets it is of interest to get

to know associations between pairs of variables where usually it is not su�cient to

allow for pure response and pure explanatory variables	 In contrast� the associa�

tion structure is such complex that so�called intermediates have to be introduced

which are responses for some of the explanatory variables and explanatory for the

responses and other intermediates	 In such situations� more sophisticated models

than simple regressions are called for	 Graphical models have been developed to

�



cope with association structures of such a high complexity	

As mentioned above� the data are usually collected via questionnaire or interview	

This gives rise to another problem	 Here� missing values are very likely to occur

because people refuse to answer or cannot remember the event which is asked for	

Thus� it is an essential task to �nd procedures which are on the one hand adequate

for estimating the parameters of a graphical model in presence of missing values

and on the other hand easy to handle	 We focus here on maximum likelihood �ML�

estimation in mixed graphical interaction models assuming a conditional Gaussian

�CG� distribution where ML estimation typically requires iterative solutions and

thus appropriate algorithms	 Missing patterns which allow for simpli�cations and

e�cient computation are therefore of special concern	

The outline of the paper is as follows	 In Section � we give a short introduction

to graphical interaction models with CG distribution	 Some of the most import�

ant properties of such models are reviewed	 ML estimates are presented for the

saturated model and in the special case of a G�Markovian CG distribution	 The

application of the EM algorithm for calculating the ML estimates in case that the

missing values occur at random is discussed in Section �	 Since computational e
ort

can be quite high� Section � emphasizes possibilities for simplifying the algorithm

dealing with special missing patterns which make computation much easier when

being taken into account	 An example is given for illustrating the gained reduction

in computational e
ort	 Additional aspects are addressed in the discussion	

�� Graphical Models and ML Estimation with complete data

For convenience let us brie�y introduce graphical interaction models with CG distri�

bution using the terminology established by Lauritzen � Wermuth ������	 Consider

a random vector X � �Y �� I��� where Y � �Y�� � � � � YR�
� is a vector of R conti�

nuous variables with realizations y � IRR and I � �I�� � � � � IQ�
� a vector ofQ discrete

variables with I denoting the set of possible realizations i	 The vector X is said to

have a CG distribution if the density function f�x� is given by

f�x� � f�y� i� � p�i���yj��i����i���

where p�i� is the discrete marginal probability of I � i with p�i� � � for all i � I

and ���j��i����i�� is the density of a multivariate normal distribution with mean
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vector ��i� � IRR and covariance matrix ��i� � IRR�R	 We assume ��i� to be

positive de�nite for all i � I	 The set fp�i�� ��i����i�ji � Ig represents the moment

parameterisation of the CG distribution and can be transformed to the canonical

parameters fg�i�� h�i�� K�i�ji � Ig by

g�i� � log p�i��
j�j

�
log�����

�

�

�
log j��i�j� ��i����i���i�

�
�

h�i� � ��i�����i� and K�i� � ��i����

The set fp�i�� h�i�� K�i�ji � Ig is called the standard mixed characteristics and is

often most convenient	 The graphical models we would like to consider specify con�

ditional independencies between certain components of the vector X which can be

represented by a graph and which result in restrictions on the parameters� usually

formulated for the canonical parameters �see Lauritzen � Wermuth� �����	 A graph

G � �V�E� is given by a nonempty �nite set V of vertices and a set E � V � V of

edges	 We only consider undirected graphs� that is �a� b� � E � �b� a� � E	 If we

identify the set of indices of the components of X with V then a multivariate dis�

tribution is called G�Markovian if it holds the following conditional independencies

Xa�XbjXV nfa�bg for all �a� b� �� E� a �� b� ���

Property ��� is called the pairwise Markov property	 For CG distributions ��� is equi�

valent to the global Markov property� that is for A�B�D 	 V � XA�XBjXD whene�

ver D separates A and B in G �Lauritzen � Wermuth� ����� where XA � �Xa�a�A

for A � V 	 If E � V � V the graph is called complete and the corresponding gra�

phical model is the saturated one since there are no conditional independencies	 If

G is not complete maximal subsets of V without any pairwise conditional indepen�

dencies are called cliques� that is C � V is a clique of G if �a� for all a� b � C� a �� b

it follows that �a� b� � E and �b� for all a � V nC it follows that there exists b � C

with �a� b� �� E	 The cliques of a graph are unique	

For A 	 V the induced subgraph is de�ned by GA � �A�EA� with EA � E
�A�A�	

We will further denote by M�G� the statistical model containing all G�Markovian

CG distributions	 It will be necessary to distinguish between M�G�A which deno�

tes the set of A�marginals of all G�Markovian CG distributions and M�GA� which

denotes the set of all GA�Markovian CG distributions	 In general they are not the

same	 Let in addition M�G�A be the set of conditional G�Markovian CG distribu�

tions conditioning on the variables XA	
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As X contains continuous and discrete components it will be convenient to divide

the index set V into disjoint sets V � � ��� where � is the index set of the discrete

components and � that of the continuous ones	 Note that � or � may be empty

yielding a graphical model with multivariate normal distribution or a loglinear gra�

phical model� respectively	 Whenever � and � are nonempty the corresponding

graph is called a marked graph	

In order to decompose the usually rather complex estimation problem in graphical

models into �smaller� estimation problems we will further need the notions of de�

composability and collapsibility	 A graph G is collapsible onto a subset A 	 V if

B � V nA is a strong and simplicial collection that is if each connected component

Bk� k � �� � � � � K� of B holds �a� bd�Bk� is complete and �b� Bk � � or bd�Bk� � �

where bd�Bk� is the boundary of Bk that is the set of vertices b � V nBk with

�a� b� � E for one a � Bk	 Given that the joint distribution of X is from the class

of G�Markovian distributions collapsibility is equivalent to the class of marginal

distribution of XA being identical to the class of GA�Markovian distributions �Fry�

denberg� �����	 A decomposition A ��B ��D � V of a marked graph G is de�ned by

�a� D separates A and B� �b� D is complete and �c� D � � or B � �	 Given such

a decomposition �A�B�D� the graph is collapsible onto A �D	 A graph is decom�

posable if it is complete or if there exists a decomposition �A�B�D� with A and B

both nonempty into decomposable subgraphs GA�D and GB�D	 Decomposability

can be checked by verifying that the graph is triangulated and does not contain any

path between two discrete vertices passing through only continuous vertices with

the discrete vertices not being neighbours	 For decomposable graphs there always

exist closed expressions for the ML estimates of the parameters of the corresponding

CG distribution �Leimer� ����� Frydenberg � Lauritzen� �����	

Given a random sampleX�� � � � � XN of i	i	d	 random vectors whereXj � �Y j�� Ij
�
��

is distributed according to a CG distribution the set of joint distributions con�

stitutes an exponential family with su�cient statistics N�i� �
PN

j�� 	�I
j � i��

S�i� �
P

j�J �i� Y
j and SS�i� �

P
j�J �i� Y

jY j� for i � I� where 	 is the indicator

function and J �i� � fj � f�� � � � � Ngjij � ig	 The realized su�cient statistics are

denoted by n�i�� s�i� and ss�i�	 For complete data the ML estimates in the saturated

model are given by

�p�i� �
n�i�

N
� ���i� �  y�i� �

s�i�

n�i�
and ���i� � ssd�i� �

ss�i�

n�i�
� ���i����i���
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for i � I	 They exist with probability one when n�i� � R for all i � I	 If in addition

the CG distribution is G�Markovian with respect to a graph G that is not complete�

the set of su�cient statistics reduces as follows �Lauritzen� ���!�	 Let C� denote the

set of cliques in the graph induced by the discrete vertices� let further C��r�� r � ��

be the sets d � � with d � frg a clique in G��frg and C��r� s�� r� s � �� the sets

d � � with d� fr� sg a clique in G��fr�sg	 Then the minimal su�cient statistics are

�i� the marginal tables of counts N�id� �
PN

j�� 	�I
j
d � id�� d � C��

�ii� for each continuous variable r � � the set of marginal tables of sums S�id�r �
P

j�J �id� Y
j
r and sums of squares SS�id�r �

P
j�J �id��Y

j
r �

�� d � C��r��

�iii� for each edge �r� s�� r �� s� between continuous variables the marginal tables

of sums of products SS�id�r�s �
P

j�J �id� Y
j
r Y

j
s � d � C��r� s�	

Note that the su�cient statistics of the restricted model are sums of the su�cient

statistics of the saturated model	 The ML estimates are given by equating these

su�cient statistics with their expectations	 No general conditions to guarantee the

existence of the ML estimates can be given except for special cases for example when

there exists a decomposition or when the graph is decomposable which we consider

next	

Given a decomposition �A�B�D� of G the graph is collapsible onto A �D and the

joint density factorizes as follows

f�x� � f�xA�D�f�xBjxD�� ���

where f�xA�D� and f�xBjxD� denote the marginal and conditional densities of XA�D

andXBjXD� respectively	 Let 
 denote the parameter vector of the joint density� that

is 
 � �p�i�� ��i����i��i�I� and let 
A�D� 
BjD denote the corresponding parameter

vectors of the marginal and conditional densities which both are densities of CG

distributions	 Using ��� the log�likelihood L�
jx� is

L�
jx� �
NX
j��

log f�xjA�Dj
A�D� �
NX
j��

log f�xjBjx
j
D� 
BjD��

where L�
jx� can be maximized by separately maximizing the two summands	 It

follows from the central result of Frydenberg � Lauritzen ������ Proposition ��

that the �rst is maximized by the ML estimate in M�GA�D� based upon da�

ta �x�A�D� � � � � x
N
A�D� and the second by the ML estimate in the regression model






M�GB�D�
D based upon data �x�B�D� � � � � x

N
B�D�	 The estimation in M�GB�D�

D in

turn is based on the estimates in M�GB�D� and M�GD�	 Let ��p�C�� �h�C�� �K�C�� de�

note the ML estimates of the standard mixed characteristics in the model M�GC�

for any C � V � and let fMg	 be the matrix or vector obtained from M by �lling

up with zero entries so as to give it full dimension R � R or R	 If �A�B�D� is a

decomposition of G it is shown by the same authors that the ML estimates of the

standard mixed characteristics in M�G� are given by

�p�i� �
�p�A�D��iA�D��p�B�D��iB�D�

�p�D��iD�
� ���

�h�i� � f�h�A�D��iA�D�g
	 � f�h�B�D��iB�D�g

	 � f�h�D��iD�g
	� ���

�K�i� � f �K�A�D��iA�D�g
	 � f �K�B�D��iB�D�g

	 � f �K�D��iD�g
	� �
�

where for any C � V � iC � iC��	 These results can be applied to the situa�

tion of a graph G being collapsible onto a set A �Frydenberg� ����� using that

�V ncl�Bk�� Bk� bd�Bk�� is a decomposition of G for every k � �� � � � � K� where

B � V nA and B�� � � � � BK are the connected components of B and that the joint

density factorizes as

f�x� � f�xA�f�xB�
jxbd�B��� � � �f�xBK jxbd�BK���

In addition Frydenberg � Lauritzen ������ show that closed expressions of the ML

estimates exist for decomposable graphs	 In general iterative procedures are needed

to calculate the ML estimates �Frydenberg � Edwards� �����	

�� Application of the EM algorithm

As already mentioned it often occurs that a collected data set is incomplete	 This

means that for some sample entities some of the components of the observation vec�

tor are missing	 Thus� we can divide each observation vector into its observed and

missing components� i	e	 X � �X�
Obs

� X�
Mis

��� �Y �
Obs

� I�
Obs

� Y �
Mis

� I�
Mis

��	 Note that

the sets of observed and missing variables can be di
erent for each observation vec�

tor Xj� j � �� � � � � N 	 To reduce computational e
ort it will be helpful to process all

cases with identical missing pattern in the same step if such cases exist	 In the follo�

wing we assume that for every entity at least one component of X can be observed	
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In addition we assume missingness at random �MAR� i	e	 the missing mechanism

is conditionally independent of the missing value given the observed components� it

may depend on the latter ones	 This strong assumption should be carefully veri�ed

in practice since violations of the MAR assumption can lead to considerable bias of

the estimates	 Under MAR� however� it is possible to get the ML estimates without

any further knowledge about the missing mechanism �Rubin� ��"��	 Their calcula�

tion requires maximization of the likelihood of the observed variables	 This can be

a tedious task especially in complex multivariate models as the ones considered here

where even with complete data the ML estimates do not always exist in closed form	

A general tool for handling this problem is the EM algorithm �Dempster� Laird �

Rubin� ��""� which is easy to apply when the considered model is an exponential

family	 This algorithm consists of two steps� the E�step that calculates the expected

su�cient statistics given the observed data and the current estimates of the para�

meters� and the M�step that determines the new estimates using the conditional

expectations of the su�cient statistics as if they were the observed	 Its drawback is

its slow convergence rate wherefore alternative strategies are worthwhile to explore	

We start by describing the EM algorithm for mixed interaction models with CG dis�

tribution	 The conditional expectations of the su�cient statistics given the observed

values are as follows

�i� E�N�id�jxObs� �
NX
j��

pr�Id � idjx
j

Obs
�

�ii� E�S�id�rjxObs� �
NX
j��

pr�Id � idjx
j

Obs
�E�Yrjy

j

Obs
� id� and

E�SS�id�rjxObs� �
NX
j��

pr�Id � idjx
j

Obs
�#�E�Yrjy

j

Obs
� id��

� � var�Yrjy
j

Obs
� id�$�

�iii� E�SS�id�r�sjxObs�

�
NX
j��

pr�Id � idjx
j

Obs
�#E�Yrjy

j

Obs
� id�E�Ysjy

j

Obs
� id� � cov�Yr� Ysjy

j

Obs
� id�$�

A �rst approach to calculate these conditional expectations will be to extend the

results of Little � Schluchter ����
� as already indicated by Edwards ����!�	 This

means that the conditional expectations of the su�cient statistics of the saturated

model have to be computed and that those of the restricted model are then obtained
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by appropriate summation over the former ones	 Note that

pr�Id � idjxObs� �
X

i��I
i�
d
�id

��i���

where ��i� � pr�I � ijxObs� is the posterior probability for an observation to

lie in cell i given all its observed components	 To compute the posteriors let

���i�Obs���i�Obs� be the parameters of the marginal distribution of YObs given

I � i	 Let further denote S � f�iObs� iMis�jiMis � IMisg the set of cells the obser�

vation could lie in given the observed discrete components	 Then

��i� �
exp ��i�P
s�S exp ��s�

with

��i� � y�Obs��i�
��
Obs

��i�Obs

�
�

�

h
y�Obs��i�

��
Obs

yObs � ��i��Obs��i�
��
Obs

��i�Obs
i
� log p�i��

This slightly di
ers from the formulae given by Little � Schluchter ����
� since due

to the non�homogeneity assumption the term �
�
y�
Obs

��i���
Obs

yObs does not cancel

out	 Note that ��i� � � if i �� S and ��i� � � if S � fig	

In addition� we need the conditional expectation E�YrjyObs� i� and the conditional

covariance cov�Yr� YsjyObs� i� for missing continuous components Yr� Ys	 They can

easily be computed for given parameters ��i� and ��i� using the properties of the

multivariate normal distribution�

E�YrjyObs� i� � ��i�r � ��i�frg�Obs��i�
��
Obs

�yObs � ��i�Obs� � yr�i��

cov�Yfr�sgjyObs� i� � ��i�fr�sg � ��i�fr�sg�Obs��i�
��
Obs

��i�Obs�fr�sg�

where cov�Yfr�sgjyObs� i� denotes the conditional covariance matrix of Yfr�sg with

entries cov�Yr� YsjyObs� i� as conditional covariance of Yr and Ys� var�YrjyObs� i� and

var�YsjyObs� i� each as conditional variance	 These entries will be denoted by cr�s�i�	

If the continuous components are not missing� we get yr�i� � yr and cr�s�i� � �	

Now we can compute the conditional expectations of the su�cient statistics given

the observed data in a graphical model with CG distribution following a graph G	

They are given as follows

E�N�id�jxObs� �
NX
j��

X

i��I
i�
d
�id

�j�i��� d � C�� �!�
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where �j�i� is ��i� for the j�th observation�

E�S�id�rjxObs� �
NX
j��

X

i��I
i�
d
�id

�j�i��yjr�i
��� d � C��r�� r � �� �"�

and for r � s or �r� s� � E �r� s � ���

E�SS�id�r�sjxObs� �
NX
j��

X

i��I
i�
d
�id

�j�i��#yjr�i
��yjs�i

�� � cjr�s�i
��$� d � C��r� s�� ���

The E�step of the EM algorithm determines �!�� �"� and ��� for the current para�

meter iterates	 While �!� and �"� di
er from the saturated case only through the

additional summation over i� � I � i�d � id and thus constitute no simpli�cation

we can see from ��� that the conditional covariances only have to be calculated for

missing continuous components Yr and Ys with �r� s� � E	 The M�step consists

in computing the next parameter iterates using the conditional expectations of the

su�cient statistics as if they were the observed ones and thus can be performed in

the same way as for complete data	

As noticed by Lauritzen ����
� the e
ort to compute the E�step can be considerable

in particular when dealing with high dimensions	 Considering the following example

it becomes clear that an acceleration is possible	 To compute the conditional expec�

tation of the su�cient statistics E�N�id�jXObs� we need the probabilities pr�Id �

idjxObs�	 If now the set of observed variables xObs contains the boundary of d� then

it follows from the local Markov property that pr�Id � idjxObs� � pr�Id � idjxbd�d��

what makes clear that the computation depends on fewer variables	 If in contrast

there is no path inG from the set d to the set of observed variables then we even have

marginal independence and pr�Id � idjxObs� � pr�Id � id�	 These are cases in which

the computation can be simpli�ed but that are not taken into account if we proceed

as described above	 The procedure proposed by Lauritzen ����
� to accelerate the

E�step relies on a computational scheme developed by Lauritzen � Spiegelhalter

������ in the context of probabilistic expert systems	 Lauritzen ����
� considers

graphical models with only discrete variables but points out that the procedure can

be generalized to work for mixed graphical interaction models using the propagation

scheme of Lauritzen ������	 The mentioned probabilistic expert systems specify the

existing knowledge about association structures in a system of variables by graphical

models	 For given evidence� that is for known values of a subset of the variables�
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properties of the updated system are of interest where updating corresponds to a

conditioning process	 The computational task is therefore essentially the same as

for the E�step if we consider the observed values as evidence and the conditional

expectations of the su�cient statistics as interesting properties	 The possible gain in

computational ease is based on two aspects	 Computation can be done with unnor�

malized density functions and the Markov properties of the graph can be exploited

being re�ected by the product structure of the joint density	 For this it is necessary

to form a junction tree that is a special organization of the cliques of the graph

so that calculations can rely on operations only between neighbouring cliques	 The

operations in turn are done on CG potentials avoiding normalization	 For further

details we refer to Lauritzen ������	

�� Special Missing Patterns

The EM�algorithm applies when the marginal likelihood of the observed data is too

complicated to be maximized directly	 In some situations� however� we can �nd

simple formulae for this marginal likelihood by factorization	 This is well known

for monotone missing patterns and certain underlying distributions as the multino�

mial and multivariate Gaussian �Little � Rubin� ���"�	 These distributions have

the property that their conditional and marginal distributions are of the same type	

The joint likelihood can be factorized by suitable conditional and marginal densities

allowing a separate maximization of each factor	 Given a monotone missing pat�

tern� we can then �nd a factorization in these models such that maximization of

each factor corresponds to a complete data situation	 In general this simpli�cation

only works for saturated models because maximizing separately is often impossible

when there are restrictions on the parameters	 A lot of papers in the literature

on graphical models� however� are concerned with simpli�cations of the estimation

problem using the properties of decomposability and collapsibility of graphs leading

to factorizations of the likelihood	 As shown in Section � a decomposition of a graph

leads to ML estimates that are functions of the ML estimates in special submodels

induced by the decomposing sets	 We will now make use of factorization ��� to

show that for a special missing pattern the computation of the ML estimates needs

no further e
ort than for complete data	 In addition we will indicate more general
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missing patterns for which at least a separate application of the EM algorithm to

the submodels generated by A�D and B �D is possible yielding the ML estimates

in M�G� in a similar way as given by ���� ��� and �
�	

Let �A�B�D� be a decomposition of the graph G	 The missing pattern that will be

of interest here is given when only the components XB are incompletely observed in

a way that the whole vector XB is either missing or observed	 Let V B � f�� � � � � Ng�

V B �� �� denote the index set of those observations where XB is known	 It follows

that for an incomplete observation the marginal density of the observed variables is

f�xA�D� and the log�likelihood of the observed data is thus given by

LObs�
jxObs� �
NX
j��

log f�xjA�Dj
A�D� �
X

j�V B

log f�xjBjx
j
D� 
BjD�� ���

It follows that we can get the ML estimates of 
A�D and 
BjD by separately maxi�

mizing

LA�D�
A�Djx
j
A�D� j � �� � � � � N� �

NX
j��

log f�xjA�Dj
A�D��

LBjD�
BjDjx
j
B�D� j � V B� �

X

j�V B

log f�xjBjx
j
D� 
BjD��

where both log�likelihoods correspond to complete data situation� the maximization

of LBjD being based on a smaller data set with the observations j � V B	 The ML

estimates for this incomplete data situation are given as in ������� and �
� replacing

�p�B�D�� �p�D�� �h�B�D�� �h�D�� �K�B�D� and �K�D� by the estimates based only on the obser�

vations j � V B	

If we consider more general missing patterns it will be necessary to fall back upon

the EM algorithm	 But a special missing pattern will at least allow a separate ap�

plication of the algorithm in the models M�GA�D� and M�GB�D�	 This pattern is

given whenever XD is �more observed� than XA and XB	 To describe this formally

let Obs�A� denote the observed components of a subvector XA for any A � V 	 In

a sample X�� � � � � XN the vector XD is more observed than XA if from Obs�A� �� �

it follows that Obs�D� � D for each observation	 To see why this pattern allows

a separate application of the EM algorithm let us recall that for a decomposition

�A�B�D� the conditional independence A�BjD holds	 Thus� if components of XA

are missing and XD is fully observed the conditional expectation of a function de�

pending on XA�D given the observed variablesXObs is identical with the conditional

��



expectation of the same function given �XObs�A�� XD�� where knowledge of XObs�B�

is not required	 The same argument holds for functions of XB�D if components of

XB are missing and again XD is completely observed	 This can directly be applied

in the E�step of the EM algorithm since the su�cient statistics are either functions

of XA�D or XB�D if D separates A and B in G	 This yields that both� E�step

and M�step� can be processed separately	 The observations where XA and XB are

completely missing only contribute to the estimation of the parameters inM�GA�D�

since they contain no information about the conditional distribution of XB given

XD	 More formally� let V A� V B � f�� � � � � Ng� both nonempty� denote the index sets

of those observations for which at least one component of XA and XB� respectively�

is known� and V AB those for which all components XA�B are missing but at least

one of XD is observed	 The set V AB may be empty and it is possible that V A � V B

or V A 
 V B � �	 The factorization ��� yields similarly as in ��� the log�likelihood

of the observed data

LObs�
jxObs� �
X

j�V A�V AB

log f�xj
Obs�A�D�

j
A�D� �
X

j�V B

log f�xj
Obs�B�

jxjD� 
BjD��

where f�xj
Obs�A�D�

j
A�D� is the marginal density of the observed variablesXObs�A�D�

and f�xj
Obs�B�

jxjD� 
BjD� the one of the variables XObs�B� given XD	 We then have

the following result	 The ML estimates of the mixed characteristics in modelM�G�

are given as in ���� ��� and �
� where

�i� �p�A�D�� �h�A�D� and �K�A�D� result from maximization of the likelihood in model

M�GA�D� based on data �xj
Obs�A��D

� j � V A� and �xj
Obs�D�

� j � V AB��

�ii� �p�B�D�� �h�B�D� and �K�B�D� result from maximization of the likelihood in model

M�GB�D� based on data �xj
Obs�B��D

� j � V B� and

�iii� �p�D�� �h�D� and �K�D� result from maximization of the likelihood in modelM�GD�

based on data �xD� j � V B�	 Note that this corresponds to a complete data

problem since XD is always completely observed for j � V B	

Depending on the missing patterns within the vectors XA�D� XB�D the separate ma�

ximizations in �i� and �ii� possibly require the EM algorithm	 If we have a symmetric

decomposition which means that the sets A and B are interchangeable as it is the

case for pure graphs or when D contains all discrete variables the graph is collapsible

onto D	 For a missing pattern where D is more observed than A and B we can then

��



get the estimates by separate maximization in the models M�GA�D�
D based on da�

ta j � V A�M�GB�D�
D based on data j � V B andM�GD� based on all observations	

Concerning conditions related to the existence of the ML estimates we refer to Fry�

denberg � Lauritzen ������	 Of course� even when ML estimates exist for complete

data this is not necessarily the case with missing values since problems of identi��

cation can occur	 This has to be taken into account by choosing a sparser model if

necessary	

�� Example

Following Frydenberg � Lauritzen ������ let us consider the following graph for

illustration� G � �V�E� with V � fI�� I�� Y�� Y�g and E � V �V nf�I�� Y��� �Y�� I��g	

The graphical representation is given in Fig	 �	

I� Y�

I� Y�

u e

u e�
�
�
�
��

Fig� �� A decomposable marked graph	

With A � fI�g� B � fY�g and D � fI�� Y�g we have a decomposition and since A

and B are complete the graph is decomposable	 To determine the su�cient statistics

note that C� � ffI�� I�gg� C���� � ffI�� I�gg� C���� � ffI�gg and C���� �� �

ffI�gg	 Thus� the su�cient statistics are given by N�i�� i��� S�i�� i���� SS�i�� i����

S�i���� SS�i��� and SS�i����� for �i�� i�� � I	 Having complete data there exist

explicit ML estimates that are given in Frydenberg � Lauritzen ������ for the

chosen graph	 Let us now assume that Y� is incompletely observed	 The application

of the EM algorithm would require the computation of

E�Y�ji
j� yj�� � ��ij�� �


�ij���

�ij��

�yj� � ��ij��� and

var�Y�ji
j� yj�� � 
�ij�� �


�ij���

�ij��

��



for each incomplete observation j � V nV B and for the current parameter iterates	

Since the discrete variables I� and I� are completely observed we have either �j�i� �

� or �j�i� � � depending on whether Ij � i or not	 These quantities are used to

compute �!�� �"� and ��� yielding the E�step	 In the M�step the new parameter

iterates are determined in the same way as for complete data	 The EM algorithm is

not complicated for this missing situation but taking into account that we have the

special missing pattern that allows explicit estimates according to Section � avoids

iterating	 These explicit ML estimates are given as follows	 Compute the ML

estimates in the submodels M�GI��I��Y�� using all observations and M�GI��Y��Y�� as

well asM�GI��Y�� using only the complete observations and combine them according

to ���� ��� and �
�	 In this special case we have

�p�I��I��Y���i�� i�� �
n�i�� i��

N
�

�K�I��I��Y���i�� i�� � n�i�� i��#ssd�Y���i�� i��$
���

�h�I��I��Y���i�� i�� � �K�I��I��Y���i�� i�� y��i�� i��

estimated from all observations since the variables I�� I� and Y� are always observed	

The other estimates indexed by #I�� Y�� Y�$ and #I�� Y�� $ make use only of the complete

observations that is those for which Y� is observed	 They will be denoted by � to

mark the di
erence	 We then have

�p��I��Y��Y���i�� �
n��i��

N�
and

�p��I��Y���i�� �
n��i��

N�
�

where n��i�� � jfj � V Bjij� � i�gj and N� � jV Bj	 And further

�K�
�I��Y��Y��

�i�� � n��i��#ssd
�
�Y��Y��

�i��$
���

�h��I��Y��Y���i�� � �K�
�I��Y��Y���i�� y

��i���

�K�
�I��Y��

�i�� � n��i��#ssd
�
�Y��

�i��$
���

�h��I��Y���i�� � �K�
�I��Y��

�i�� y
�
��i���

Let us now consider a missing pattern where only I� and Y� are always observed

that is I� and Y� are sometimes missing but not necessarily simultaneously	 We then

have the second type of missing pattern mentioned in Section � where the separating

��



set is more observed than the separated ones	 The estimates indexed by #I�� Y�� Y�$

and #I�� Y�� $ remain the same as above based on those observations where I�� Y�

and Y� are observed	 They are not a
ected by the incompleteness of I�	 Of course�

�p�I��I��Y���
�h�I��I��Y�� and �K�I��I��Y�� are a
ected	 Here� the data base cannot be reduced

to those observations where I�� I� and Y� are completely known since then the in�

formation from the observations where only I� and Y� are observed would be lost	

The estimation of p�I��I��Y��� h�I��I��Y�� and K�I��I��Y�� based on data �ij� yj��� j � V A

and �ij�� y
j
��� j � V AB� therefore needs the EM algorithm which in turn requires in

each iteration the computation of �j�i� � pr�I � ijij�� y
j
��� j � V AB� which is zero

for i� �� ij�	

	� Discussion

As demonstrated in Section � and � the calculation of the ML estimates in the pre�

sence of missing values typically requires the application of the computer�intensive

EM algorithm	 The resulting computational e
ort can heavily increase when the

EM algorithm is applied in models of high complexity such as graphical models	

The approach presented in this paper to reduce the computational e
ort is based

on the idea of taking special missing patterns into account when computing the ML

estimates	 It has been shown that for a certain kind of pattern the decomposition of

the graph into subgraphs allowing separate maximization is possible even with mis�

sing values and essentially simpli�es the algorithm	 In special cases� ML estimates

can even be explicitly determined� i	e	 avoiding the EM algorithm	

The general approach proposed in Section � may give additional hints to further

simpli�cations	 If for example in a pure graph the subgraph GB�D is complete there

exist closed expressions for the ML estimates inM�GB�D�
D not only for the situati�

on that the whole vector XB is either missing or observed but also when the missing

pattern in XB is monotone as described by Little � Rubin ����"�	

Furthermore� if the sets A and B are not connected at all� that is D � �� then sepa�

rate maximization of the likelihoods in M�GA� and M�GB� is possible regardless

of the missing pattern	 Of course one or both may require the EM algorithm	

As we have seen from our results� most simpli�cations are derived from a decompo�

sition of a graph� where such a decomposition is often not unique	 In that case it

�




should be chosen according to the missing pattern in order to apply the results of

Section � and to get further decompositions if possible	

Having this in mind� it is straightforward to use the procedure proposed in Section

� in the situation of G being collapsible onto a subset A 	 V when the vectors XBk

are incompletely observed for k � �� � � � � K where B�� � � � � BK are the connected

components of B � V nA since �V ncl�Bk�� Bk� bd�Bk�� is a decomposition of G for

every k � �� � � � � K	 It is intuitively clear that it can also be applied to decomposable

graphs where the suitable missing patterns may even be more general	

Finally� it should be pointed out that another important situation where special

missing patterns are worth to be taken into account is that of a chain graph	 Here�

the joint distribution is speci�ed by conditional distributions each constituting a

CG regression �Lauritzen � Wermuth� �����	 Missing patterns which considerably

simplify the estimation task in these models are given when the �past� of a variable

is always more observed than the variable itself since then regressions can be com�

puted with complete covariable information	
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