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Summary

We present a class of multivariate regression models for ordinal response
variables in which the coe�cients of the explanatory variables are allowed
to vary as smooth functions of other variables� In the �rst part of the pa�
per we consider a semiparametric cumulative regression model for a single
ordinal outcome variable� A penalized maximum likelihood approach for
estimating functions and parameters of interest is described� In the second
part we explore a semiparametric marginal modeling framework appropriate
for correlated ordinal responses� We model the marginal response probabil�
ities and pairwise association structure by two semiparametric regressions�
To estimate the model we derive an algorithm which is based on penalized
generalized estimating equations� This nonparametric approach allows to
estimate the marginal model without specifying the entire distribution of
the correlated response� The methods are illustrated by two applications
concerning the attitude toward smoking restrictions in the workplace and
the state of damage in a Bavarian forest district�

Keywords� Ordinal response� marginal cumulative models� varying coe��
cients models� penalized likelihood� penalized generalized estimating equa�
tions� smoothing splines
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� Introduction

Recently several authors have proposed modeling approaches for multivari�
ate correlated ordinal outcomes� The methods are multivariate extensions
of models for univariate multicategorical responses� In this paper� we focus
attention on cumulative regression models for ordinal responses �McCullagh�
	
�� and multivariate extensions� Such models exploit� in a parsimonious
way� the ordered scale of the outcomes� An important example for a cu�
mulative model is the well�known proportional odds model� This and other
ordinal response models have been discussed in detail by Fahrmeir and Tutz
�	

�� ch� ��

First� we give a short review of models for correlated ordinal outcomes�
these models are related to the approach used in this paper� The methods
are similar in that they all use odds ratios to describe the association be�
tween responses� Dale �	
�� proposed a model for bivariate ordinal data�
She used marginal means and global odds ratios to specify the bivariate joint
distribution� Molenberghs and Lesa�re �	

� extended her model for the
case of three and more correlated outcomes using a multivariate Plackett�
distribution� In this likelihood�based model computation of the joint dis�
tribution is very computer�intensive� Heagerty and Zeger �	

� considered
a mixed parameter model� Starting with a loglinear representation of the
likelihood they transformed the �rst and second order canonical parameters
to marginal mean parameters and marginal global odds ratio parameters�
They assumed a regression model for these marginal parameters and used
very simple models for the higher order canonical parameters� e�g�� setting
them to zero� Heumann �	

� extended the full likelihood approach of Fitz�
maurice and Laird �	

� based on conditional log odds ratios to the case of
multicategorical response� Finally Fahrmeir and Pritscher �	

� developed
multicategorical generalized estimating equations �GEE by extending the
generalized estimation equations approach �Liang and Zeger� 	
�� to ordi�
nal response data� They formulated two distinct parametric regressions for
the marginal mean and the global odds ratios as a measure for the pairwise
association structure� For binary data their model reduces to a GEE	 with
odds ratio parameterization of the association structure �Lipsitz� Laird and
Harrington� 	

	�

In this paper� we extend the parametric marginal model of Fahrmeir and
Pritscher �	

� to a more �exible semiparametric model� Semiparametric
means that the e�ects of some or all covariates in both regressions are allowed
to vary smoothly with other covariates� For example� we allow the e�ect of
gender of a person to depend on the level of the covariate age of the person�
What we get is a special kind of multiplicative interaction between these
two covariates� For longitudinal data we can assume� for example� a time�
stationary model for the pairwise association structure by modeling the global
odds ratios as an unspeci�ed function of a time�lag variable �see Example ��
This yields a very �exible modeling framework for both� the mean structure
and the association structure of the marginal model�

Our model belongs to the general class of varying coe�cients models



�

�Hastie and Tibshirani� 	

�� For joint estimation of the marginal mean and
the pairwise association structure we derive penalized generalized estimation
equations �PGEE� which can be motivated as an extension of penalized esti�
mation equations derived from a penalized likelihood approach to correlated
data� By this PGEE we are enabled to estimate the functions and param�
eters of interest without specifying the entire distribution of the correlated
response�

Wild and Yee �	

� presented an additive extension of generalized esti�
mating equation methods for correlated binary data� To describe the mean
and association structure they used a logit model and a model for the log odds
ratios� In both regressions the in�uence of covariates is modeled nonpara�
metrically by unspeci�ed functions� Their approach for univariate outcomes
is included as a special case of our multivariate semiparametric model�

Section � of this paper describes a semiparametric extension of the cu�
mulative regression models� A roughness penalty approach together with a
system of orthonormal spline base functions �Demmler and Reinsch� 	
��
is used to estimate the unknown functions� In Section � the methodology is
illustrated by an application concerning the attitude toward smoking restric�
tions in the workplace� The marginal semiparametric model for correlated
ordinal outcomes is described in Section �� In Section � the model is applied
to forest damage data� in this study the ordered response �damage state� is
measured repeatedly over time�

� Univariate cumulative models for ordinal re�

sponse

We consider the common situation of a cross�sectional regression analysis� In
this setting� the response variable Y is ordinal with q�	 ordered categories� In
addition we have a vector x � �x�� � � � � xp

� of p covariates� The observations
�Yi� xi� i � 	� � � � � N are assumed to be independent� A univariate cumulative
regression model relates the cumulative response probabilities pr�Yi � rjxi�
r � 	� � � � � q to the covariates xi by a smooth link function g of the form

g�pr�Yi � rjxi � ��zi� � � � �� �qziq � �q��zi�q�� � � � �� �mzim� �	

where zik� k � 	� � � � � q are indicator functions with zik � 	 if k � r and zik �
� if k �� r �McCullagh� 	
��� The remaining design variables� zi�q��� � � � � zim�
are functions of the covariates� e�g�� ��	 variables for a categorical covariate�
Instead of a single probability� as for example in logistic regression� we have
q linearly independent probabilities� Note that the highest response category
is excluded from considerations to yield a non�redundant set of parameters�

The cumulative model provides a parsimonious way of describing how the
category probabilities change as the covariates vary� A very intuitive and
useful way of motivating this model is to think of an underlying continuous
response� say U � which is unobserved� What we observe� Y � is a categorization
of U into q � 	 intervals� By this mechanism the density of U is divided
into slices determined by the thresholds ��� � � � � �q� The explanatory part�



�

�q��zq�� � � � � � �mzm� shifts the location of the underlying response U
�Fahrmeir and Tutz� 	

�� ch���

To further explain the model� we have to give some de�nitions� Let�
ting zi � �zi�� � � � � zim� and � � ���� � � � � �m�� we can de�ne a predic�

tor �
�r�
i � z�i�� As usual� the response Yi is represented as a vector yi �

�y
���
i � � � � � y

�r�
i � � � � � y

�q�
i � of q indicator variables with y

�r�
i � 	 if Yi � r and

y
�r�
i � � if Yi �� r� r � 	� � � � � q� The associated response probabilities� cumu�

lative response probabilities� and predictors are �i � ��
���
i � � � � � �

�r�
i � � � � � �

�q�
i �

with �
�r�
i � pr�Yi � rjxi � pr�y

�r�
i � 	jxi� �i � ��

���
i � � � � � �

�r�
i � � � � � �

�q�
i �

with �
�r�
i � pr�Yi � rjxi� and �i � ��

���
i � � � � � �

�r�
i � � � � � �

�q�
i �� Finally we can

write �	 for each subject i in the compact form

g��i � �i � Zi��

where g is the q�dimensional version of the univariate link function g and Zi

is the design matrix de�ned by

Zi �

�
BBBBBB�

	 � � � � � zi�q�� � � � zim

� 	 � zi�q�� � � � zim
���

� � �

� � � � � 	 zi�q�� � � � zim

�
CCCCCCA
�

In the examples� we use a cumulative logit link� i�e�

logit��
�r�
i  � log

�
�
�r�
i

	� �
�r�
i

�
� �

�r�
i � r � 	� � � � � q� ��

We obtain the response probabilities as

�
���
i ��i �

exp�����i 

	 � exp��
���
i 

and

�
�r�
i ��i �

exp��
�r�
i 

	 � exp��
�r�
i 

�
exp��

�r���
i 

	 � exp��
�r���
i 

� r � �� � � � � q�

from ��� The model parameters � are estimated by maximizing the log�
likelihood�

In many situations such a model with �xed parameters seems to be too
restrictive� One possibility to increase the �exibility of the �xed parameter
model is to allow the coe�cients of �	 to vary with the values of other covari�
ates� say v�� � � � � vm� We obtain a cumulative model with varying coe�cients
of the form

g�pr�Yi � rjxi � ���vi�zi� � � � �� �q�viqziq

��q���vi�q��zi�q�� � � � �� �m�vimzim� ��



�

where ����� � � � � �m�� are su�ciently smooth real functions and the covariates
v�� � � � �vm are assumed to be continuous� To keep the model interpretable we
require the threshold functions ����� � � � � �q�� to vary with the same variable�
i�e� vi� � vi� � � � � � viq � This yields a very �exible model� which allows us
to modify the e�ects of covariates with the values of other covariates�

To estimate the unknown functions we choose a penalized likelihood ap�
proach and maximize the log�likelihood with integrated quadratic roughness
penalty terms

lp���� � � � � �m �
NX
i��

li����vi�� � � � � �m�vim�
	

�

mX
j��

	j

Z
����j �v

�dv ��

over all twice continuously di�erentiable functions� In the penalized like�
lihood criterion� Equation ��� li�� denotes the multinomial log�likelihood
of subject i in terms of the functions ���vi�� � � � � �m�vim� The smoothing
parameters 	 � �	�� � � � � 	m� control the trade o� between goodness of �t
and roughness of the estimated functions� In this paper� we assume that all
smoothing parameters are known and �xed�

Using the well�known fact that the maximizing functions of �� are nat�
ural cubic splines with knots at the unique values of vij� we represent ��
in terms of basis functions for these spaces� Choosing a system of orthonor�
mal basis functions f
j���� � � � � 
jnj��g introduced by Demmler and Reinsch
�	
��� we write �j�v �

Pnj
k�� �jk
jk�v� where nj is the dimension of the

�nite dimensional spline space�
This yields a representation of �� in terms of evaluated basis functions

g�pr�Yi � kjxi � ���
���vi�zi� � � � �� ��n�
�n��vi�zi�

� � � � � �q�
q��viqziq � � � �� �qnq
qnq�viqziq

� � � � � �m�
m��vimzim � � � �� �mnm
mnm �vimzim� ��

For simpli�cation we de�ne the
Pm

j�� nj�dimensional vector of basis coe��
cients

� � ����� � � � � ��n�� � � � � �q�� � � � � �qnq � �q����� � � � � �mnm 
�

and the q �
Pm

k�� nk design matrix

Zi�

�
BBB�


i�� � � � 
i�n� � � � � � � � � � � 
iq����ziq�� � � � 
imnmzim
� � �

���
���

� � � � � � � � � � � 
iq� � � � 
iqnq 
iq����ziq�� � � � 
imnmzim

�
CCCA

with 
ijk � 
jk�vik� With this notation� we write

g��i � �i � Zi��

exactly as in the case of �xed parameters�
The Demmler�Reinsch basis f
j���� � � � � 
jnj��g satis�esZ


��jk�v

��

jl�vdv � �kl�jk�



�

where k� l � 	� � � � � nj and �kl � I�k � l� The �jk�s can be computed by
solving an eigenvalue problem �see Eubank� 	
��� ch���

Using ��� the in�nite dimensional function estimation problem �� re�
duces to the estimation of the basis coe�cients �� We obtain the �nite
dimensional criterion

�� � argmax
�

�lp�� � argmax
�

�
NX
i��

li�� �
	

�
���P�

�
� ��

where P � diag��jkj�������m�k�������nj is a diagonal penalty matrix and � is a
diagonal matrix of smoothing parameters�

Setting the derivative of �� with respect to � to zero gives the penalized
estimation equations

u�� �
NX
i��

Z�

iDi���
��
i ���yi � �i�� � �P� � �� ��

where Di�� � h���� is the derivative of the response function� h�� �
g���� at �i � Zi�� and �i�� � diag��i�� � �i����i�� denotes the co�
variance matrix of observation yi given �� The expected negative second
derivative H�� of the penalized log�likelihood lp�� is given by

H�� � E

�
�
�lp��

���

	
�

NX
i��

Z �

iWi��
�k�Zi ��P

with a weight matrix Wi�� � Di���
��
i ��D�

i���
The penalized estimation equations �� are solved iteratively� In a �quasi�

Fisher scoring step the update is determined by

H���k����k��� � ��k� � u���k��

where ��k� is the result of the current step and ��k��� denotes the next
parameter vector� If we de�ne a working observation vector  yi�� by

 yi�� � Zi� � �D��
i ����yi � �i���

we may equivalently express the �quasi� Fisher scoring iterations in the form�
NX
i��

Z�

iWi��
�k�Zi ��P

�
��k��� �

NX
i��

Z�

iWi��
�k� yi��

�k��

Iterations are stopped according to a termination criterion�
Up to now we have assumed that each coe�cient in �� must vary with

a covariate� Of course� in general� this will not be the case� In many ap�
plications we want to allow only some of the coe�cients in �	 to vary with
covariates� while others stay �xed� To do so we have to modify our design
matrix Zi and our penalty matrix P as follows� In Zi we replace the columns
of multiplications with the basis functions by the design vector zij itself� In



�

the penalty matrix P the diagonal element� which now corresponds to the
�xed e�ect �j � is set to zero� We get a semiparametric predictor and refer
to our model as a semiparametric cumulative model� In the special case of
no varying coe�cients we reduce to a parametric model and our estimation
procedure is ordinary Fisher scoring or iteratively weighted least squares�

It follows from the results of Hastie and Tibshirani �	

� and Wahba
�	

� that a unique solution of �� exists if the corresponding embedded
parametric model� where we have restricted each function �j�� to be lin�
ear� has an unique solution� This means that the design matrix Z�par� �

�Z�par�
� � � � � � Z

�par�
i � � � � � Z

�par�
N � with

Z
�par�
i �

�
BBBBBBBBB�

	 vi� � � � � � ziq�� viq��ziq�� � � � zim vimzim

�

�� �
� � �

� � �
� � �

���
���

���
���

�

� � � � � 	 viq ziq�� viq��ziq�� � � � zim vimzim

�
CCCCCCCCCA

must be of full rank� Often this will not be the case� For example� if zij � 	�
then the jth term in �� is simply an unspeci�ed smooth function ��vij in
vij and clearly the corresponding parametric design matrix Z�par� does not
have full rank� But we can solve this problem in an elegant way by reducing
the system of basis functions� Here we use the fact that the system of basis
functions can be divided in two spline function spaces which span up the
linear part and the nonlinear part of the spline� Due to this split�up� we can
now reduce the linear parts of the splines until we get a unique solution� This
means in our example that we have to delete the redundant intercept term�

A rigorous asymptotic theory for models using cubic splines as smoothing
method is still not available� We apply in a heuristic way the asymptotic
theory of maximum likelihood estimation in misspeci�ed generalized linear
models to the penalized likelihood case �Fahrmeir� 	

�� In analogy to
Fahrmeir and Klinger �	

� we use

V � �� � H� ����F � ��H� ����� ��

with F � �� �
PN

i�� Z
�

iDi� ���
��
i � ��D�

i�
��Zi as an approximation to the co�

variance matrix of the estimate ��� Among others the quality of the ap�
proximation depends on the ratio of sample size to parameters involved in
criterion ��� In practice this seems to be a critical point� because in general
the number of basis functions and with it the number of parameters grows
with the number of distinct observations of a continuous covariate� But nev�
ertheless we use �� as a useful approximation� The estimated variances of
�� are on the diagonal of V � ��� we can use them to reduce the dimension
of the problem considerably by performing a �heuristic test procedure and
select the �signi�cant� basis functions� Pointwise con�dence bands for the
estimated functions themselves can be computed from the diagonal elements
of the matrix Z�V � ��Z with Z � �Z�� � � � � Zi� � � � � ZN ��



�

� Example �� Attitudes toward smoking re�

strictions in the workplace

To illustrate the methodology we use data from a study which was examined
with the impact of a bylaw regulating smoking in the workplace� This bylaw
was implemented in the city of Toronto in March 	
��� A detailed description
of the study together with a comprehensive analysis using a multicategori�
cal logit model is given by Bull �	

�� Using the ordered structure of the
response variable �attitude toward smoking restrictions� we re�analyze the
data set with a cumulative logit model� As data for the study two surveys
were conducted� one immediately before implementation of the bylaw and a
second� eight to nine months later� Sampling was carried out independently
for each survey� Due to this design� it is possible to determine the impact of
the bylaw on the attitudes of the residents�

The city of Toronto is geographically surrounded by several jurisdictions�
these jurisdictions were not subject to the bylaw� However� many residents
of this area were a�ected because their workplaces were in the city� For this
reason� persons from the whole aera were included in the survey� So the
survey covers persons who worked in the city of Toronto� as well as persons
who worked outside the city� and �nally persons who do not work outside the
home� A total of ���� residents participated in the study�

The outcome variable � say Y � �attitude toward smoking restrictions� has
the following three categories! smoking in the workplace should not be per�
mitted at all �Y � � � reference� smoking should be permitted in restricted
areas �Y � �� and smoking should not be restricted at all �Y � 	� We use
the cumulative logit model

logit�pr�Y � r � �r r � 	� �

to clarify how the attitude depends on the following covariates!

TS Time of the survey �post�implementation � 	� pre�implementation �
reference

PW Place of work �outside the city of Toronto and outside the home � 	�
at home � �� and in the city and outside the home � reference

S Smoking status �current smoker � 	� former smoker � �� and never
smoked � reference

K Knowledge of health e�ects of environmental tobacco smoke �score with
a range from �� to �

G Gender of the person �male � 	� female � reference

A Age of the person in years �with a range from 	� to �� years

First� we estimate a model with �xed parameters of the form

�r � �r���TS���PW
�����	PW

�����
S
������S

������K��G����A
c�

where PW ���� PW ���� S���� S��� represent the dummy variables for the cat�
egorical covariates PW and S� The variable Ac is the centered age with
Ac � �A� ���	��






We compute the following maximum likelihood estimates!

Covariate Estimate SE p�value

TH��� ������� ��	��� ������

TH��� �����	 ��		�� ������

TS ������� ������ ������

PW ��� ���	�� ���
�� ������

PW ��� ���	�	 ��		�� ������

S��� 	����� ��		�� ������

S��� ������ ��	��
 ���	��

K ���	�
� ���	�� ������

G ��	��� �����
 �����


Ac ����
	� ������ ����	�

We summarize the results as follows� The individual predicted probabili�
ties for a �fty years old non�smoking woman� having a medium knowledge
of health e�ects� and working in the city before the bylaw implementation�
i�e� all design variables have the value zero� are ���� for �unrestricted�� ���� for
�restricted�� and ���� for �prohibited smoking�� The changes associated with
the bylaw implementation �TS are very small and not signi�cant� Workers
outside the city �PW ��� tend to prefer lower response categories� i�e� the pre�
dicted probabilities for �unrestricted� and �restricted� are higher compared
to city workers� In contrast� the not�outside�home workers �PW ��� behave
like the city workers� As expected smoking status is a relevant determinant of
the attitude� Especially current smokers �S��� prefer no restrictions� There
is a strong� positive association of having good knowledge of health e�ects
with support for prohibition� i�e� those with higher scores are more likely
to prefer prohibition� Men are somewhat more likely than women to prefer
unrestricted and restricted smoking� The negative value of the parameter
belonging to age indicates that increasing age yields lower probabilities for
the categories �unrestricted� and �restricted�� i�e� preference for prohibition
increases with age�

In a second analysis� we examine the data with a more �exible model�
We try to check if the in�uence of the covariate age on the attitude is really
linear as assumed in the �rst model� We also investigate if the e�ect of gender
is constant over age of the person� For this reason� we �t a semiparametric
cumulative logit model excluding the covariate time of survey� The predictor
of the model is now!

�r � �r�A � ��PW
��� � ��PW

��� � �	S
��� � �
S

��� � ��K � ���AG�



	�
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Figure 	! Estimated threshold functions ��� �left and ��� �right with point�
wise ��standard error bands �model based � dashed line� robust � shaded
region

i�e� we allow the threshold functions and the e�ect of gender to change with
age of the person�

Figure 	 shows the estimated threshold functions ����A and ����A� The
�rst threshold is decreasing across age up to �� years showing that increasing
age yields a lower probability for the category �unrestricted�� The second
threshold is almost constant in this period this means that the probability
is shifted to the middle category �restricted�� Afterwards the probabilities
do not change too much up to about �� years� The shift to the category
�prohibited� for older people must be interpreted with some caution because
the data are very sparse� This interpretation applies to women� for men we
have to consider the e�ect of gender� Figure � shows that especially younger
men prefer the lower categories �restricted� and �unrestricted�� The table
gives the remaining �xed e�ects

Covariate Estimate SE SE p�value p�value

�model �robust �model �robust

PW ��� ���	�� ���
�� ���
�	 ������ ������

PW ��� ������ ��		
� ��		
� ��
�	� ��
�	�

S��� 	����
 ��		�� ��		�� ������ ������

S��� ������ ��	��
 ��	��
 ���	�
 ���	��

K ���	��� ���	�� ���	�� ������ ������

The values are almost unchanged compared to the �rst model and thus the
interpretation remains the same�

With the semiparametric model it is possible to get a deeper insight into
the structure of the dependence on the covariates� By allowing the e�ect of
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Figure �! Estimated e�ect of the male category and pointwise �� standard
error bands �model based � dashed line� robust � shaded region

gender to vary smoothly with age of the person we consider the interaction
between the continuous covariate age and the ��	 covariate gender in a nat�
ural way� By allowing age to modify each threshold function separately we
drop the sometimes too restrictive proportional odds assumption�

� Marginal cumulative models for correlated

ordinal response

Suppose that a study has been conducted with N subjects as primary units�
For the ith subject Ti ordinal responses Yit with q � 	 categories together
with covariates xit are observed� For simplicity� we assume a longitudinal
data situation where we have Ti � T repeated measurements at times t �
	� � � � � T � The discrete or continuous covariates are either time�constant� for
example� individual characteristics� or time�varying� such as time� To avoid
complications we assume that the time�varying covariates are either non�
stochastic or stochastic but external� i�e� their values are not in�uenced by
outcomes of the responses Yit� Thus the data are given by �Yit� xit� i �
	� � � � � N � t � 	� � � � � T �

As in the application of this paper� the in�uence of covariates on the
marginal probabilities of the response categories is often of prime interest�
whereas association is regarded as nuisance� Marginal regression models per�
mit separate modeling of the marginal means and the association among
repeated observations of the response for each subject� To estimate the
marginal mean and association parameters without specifying the entire like�
lihood of the multivariate response we will derive a penalized estimation
equations approach that allows the estimation of the mean structure even
under misspeci�cation of the association structure�

In the �rst step we specify a model for the in�uence of the covariates on
the marginal probabilities of the response categories� To utilize the ordinal
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scale of Yit we again adopt a cumulative model� It relates the marginal

cumulative probabilities of Yit to the predictor �it � ��
���
it � � � � � �

�r�
it � � � � � �

�q�
it �

in the form
g fpr�Yit � rjxitg � �

�r�
it � r � 	� � � � � q�

with a known link function g� e�g� the logit link function� For a complete
determination of the marginal mean model we have to specify the functional

form of the predictor �it � ��
���
it � � � � � �

�r�
it � � � � � �

�q�
it �� As in the cross�sectional

case we allow the e�ects of the design variables to vary with the values of
other variables and obtain the predictor

�
�r�
it � �r�vitr � �q���vitq��zitq�� � � � � � �m�vitmzitm�

r � 	� � � � � q� �


with real�valued smooth functions ����� � � � � �m���
It is worthwhile to look at special cases of the model� If we put the restric�

tion on a function to be the constant function� i�e� �k�vitk � �k� then that
term is linear in zitk and we get a marginal semiparametric model� If all terms
are linear� then �
 reduces to the predictor of a marginal parametric cumu�
lative model �Fahrmeir and Pritscher� 	

�� For vit� � � � � � vitm � t �
time we can regard the model as a dynamic marginal regression model with
parameters changing smoothly with time� With appropriate speci�cations of
the predictor �
� we get several useful models� For example� we can model
the e�ect of a time�constant covariate separately for each time by introduc�
ing T unspeci�ed functions �t��� t � 	� � � � � T of this covariate and setting
the corresponding design variables either to 	 or to � depending on the actual
observed time� In a similar way we can form predictors with category�speci�c
covariate e�ects�

To simplify the notation� we de�ne again some vectors� As before

the response Yit is represented as a vector yit � �y
���
it � � � � � y

�r�
it � � � � � y

�q�
it �

of q dummy variables� For the vectors of marginal response prob�
abilities and marginal cumulative response probabilities we get �it �

��
���
it � � � � � �

�r�
it � � � � � �

�q�
it � with �

�r�
it � pr�Yit � rjxit � pr�y

�r�
it � 	jxit� and

�it � ��
���
it � � � � � �

�r�
it � � � � � �

�q�
it � with �

�r�
it � pr�Yit � rjxit� The time�speci�c

vectors are combined to vectors of responses yi � �y�i�� � � � � y
�

iT 
�� response

probabilities �i � ���i�� � � � � �
�

iT 
�� predictors �i � ���i�� � � � � �

�

iT 
� and covari�

ates xi � �x�i�� � � � � x
�

iT 
� of subject i�

As in section �� we use cubic smoothing splines to estimate the unknown
smooth functions� This means that we can construct a parameter vector �
and a design matrix Zi � �Zi�� � � � � ZiT �� where the time�speci�c matrices
Zit are formed from the design variables and the spline basis functions� This
yields again a multivariate predictor of the form

�i � Zi��

In addition to the model for the e�ects of covariates on the marginal
probabilities� we also have to specify a model for the association among ob�
servations from each subject� Here we only consider the association between
two outcomes and ignore the higher order associations�
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Often the analysis is based on the working assumptions of independence�
Letting �it � diag��it����it���

�

it�� denote the covariance matrix of the
response yit� we we obtain by setting

Vi � blockdiag��i�� � � � ��iT 

the simplest model for the covariance matrix of the marginal model�
With this assumption we get penalized generalized estimating equations

for the estimation of the parameters �� These penalized generalized estimat�
ing equations are identical to estimating equations obtained from a penalized
likelihood criterion for independent observations�

Instead of using the independence model� we can supplement the marginal
mean model by a model for the pairwise association which determines the
covariance of the marginal model� A common measure for the pairwise asso�
ciation of two ordinal responses Yit and Yis of the same subject is the global
odds�ratios �Dale� 	
��� Fahrmeir and Pritscher� 	

�� For each pair of
categories l and r of Yit and Yis the global odds�ratio at cutpoint �l� r is
given by

�
�lr�
i�st �

pr�Yis � l� Yit � rjxipr�Yis � l� Yit � rjxi

pr�Yis � l� Yit � rjxipr�Yis � l� Yit � rjxi
� l� r � 	� � � � � q� �	�

This means that the �q � 	 � �q � 	 contingency table of probabilities

�
�lr�
i�st � pr�Yit � l� Yis � r is collapsed at cutpoint �l� r to a � � � table

and a usual odds ratio is computed with this coarser table� Furthermore�
by solving �	� we can express the bivariate cumulative probability function

�
�lr�
i�st � pr�Yis � l� Yit � rjxi of Yis and Yit in terms of the corresponding

global odds�ratio �
�lr�
i�st and the marginal cumulative probabilities ��l�is and

�
�r�
it � yielding

�
�lr�
i�st �


���
��

�
�l�
is �

�r�
it � if �

�lr�
i�st � 	�

��

q
�� � ��

�lr�
i�st �	� �

�lr�
i�st �

�l�
is �

�r�
it

���
�lr�
i�st � 	

� if �
�lr�
i�st �� 	�

�		

where � � 	� ��
�l�
is � �

�r�
it ��

�lr�
i�st � 	� With this formula we can calculate the

second�order moments �
�lr�
i�st � E�y

�l�
is y

�r�
it  � pr�Yis � l� Yit � r in terms of

the univariate marginal cumulative probabilities �
�l�
is � �

�r�
it and also the global

odds ratios ��lr�
i�st through the relation

�
�lr�
i�st �


�������
������

�
�lr�
i�st � l � r � 	

�
�lr�
i�st � �

�l�r���
i�st � l � 	� r � 	

�
�lr�
i�st � �

�l���r�
i�st � l � 	� r � 	

�
�lr�
i�st � �

�l�r���
i�st � �

�l���r�
i�st � �

�l���r���
i�st � l � 	� r � 	�

�	�
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Now the o��diagonal elements of the model covariance matrix Vi are deter�

mined by cov�y
�l�
is � y

�r�
it  � E�y

�l�
is y

�r�
it  � �

�l�
is �

�r�
it � �

�lr�
i�st � �

�l�
is �

�r�
it �

We use a logarithmic model for the vector of global odds ratios �i �

�� � � � ��lr�
i�st � � � �

�� l�m � 	� � � � � q� s � t � 	� � � � � t of subject i and get

log��i �  Zi�� �	�

The design matrix  Z and the vector of association parameters � result either
from a parametric predictor of the association structure� e�g��

log��
�lr�
i�st  � �lr �

�

jt� sj

or from a semiparametric predictor� e�g��

log���lr�
i�st  � �lr � ��jt � sj�

where ��� is a smooth function of the time lag� Of course more complex
predictors� possibly including covariates� zi�st � z�xis� xit� are possible and
in some situations useful�

To estimate the marginal model� we propose using penalized generalized
estimating equations �PGEE	 by extending the estimating equations ��
derived from the penalized maximum likelihood criterion �� to the case of
correlated data� This transfer can be justi�ed by the same arguments as in
the parametric case �Laird� 	

�� We estimate � and thereby the unknown
spline functions by solving the multivariate penalized generalized estimating
equation

NX
i��

Z �

iDiV
��
i �yi � �i� �P� � �� �	�

where Di �blockdiag��it��it� The matrix � contains the smoothing pa�
rameters and P is the penalty matrix� Both are de�ned as in Section ��
Equation �	� is a multivariate version of equation ��� except that the �true�
covariance matrix of the multivariate response yi is replaced by a �work�
ing� covariance matrix Vi� This covariance matrix Vi is determined by the
marginal response probabilities and the pairwise associations and thus by �
and �� The other terms in �	� are not in�uenced by the association model�

To estimate the association parameter � jointly with � we augment �	�
by a second PGEE

NX
i��

 Z�

iCiU
��
i �wi � �i �"#� � �� �	�

where " is a second matrix of smoothing parameters and # is the penalty

matrix corresponding to the association model� In �	� wi � �� � � � w
�lr�
i�st � � � �

�

contains the centered products w�lr�
i�st � �y�l�is ��

�l�
is �y

�r�
it ��

�r�
it � l�m � 	� � � � � q�

s � t � 	� � � � � t and �i � �i��� � � �� � � � �
�lr�
i�st � � � �

� is the vector of expecta�
tions

�
�lr�
i�st � E�w�lr�

i�st  � E�y�l�is y
�r�
it  � �

�l�
is �

�r�
it �	�
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for observations �y
�l�
is � y

�r�
it  of subject i� The matrix Ci is the Jacobian� ob�

tained from inserting �		 and �	� in �	� and di�erentiating with respect to
the predictor in �	�� The matrix Ui is a further working covariance matrix�
now for the �observations� wi� For the PGEE	 approach the following two
simple diagonal speci�cations are useful� As in the binary case �Prentice�
	
�� the simplest choice is the identity matrix speci�cation

Ui � I�

Another choice is

Ui � diag�var�w�lr�
i�st l�r�������q�s�t�������T �

where

var�w�lr�
i�st  � �

�l�
is �	� �

�l�
is �

�r�
it �	� �

�r�
it � ���lr�i�st 

�� �
�lr�
i�st �	� ���l�is �	� ���r�it �

Note that the PGEE	 for � reduces to an ordinary GEE	 if we use a para�
metric model for the pairwise association structure and of course the second
PGEE is not necessary if we use the independence assumption�

We can compute the estimates of the parameters � and � by switching
between the iterations�

NX
i��

Z�

iDiV
��
i D�

iZi ��P

�
��k��� �

NX
i��

Z �

iDiV
��
i D�

i  yi

�
NX
i��

 Z�

iCiU
��
i C �

i
 Zi �"#

�
��k��� �

NX
i��

 Z �

iCiU
��
i C�

i  wi

until convergence� Here we use again working observations  yi � Zi� �
�D��

i ��yi � �i and  wi �  Zi� � �C��
i ��wi � �i� Note that the solution

of the penalized generalized estimating equations for � depends on � only
through the working covariance Vi� Therefore like in parametric GEE ap�
proaches the estimator �� should be robust against the misspeci�cation of the
association structure�

To get an approximation for the covariance of the �nal estimate �� we use
the robust sandwich matrix

V � �� � H��GH��

with

H �
NX
i��

ZiD
�

iV
��
i DiZ

�

i ��P

and

G �
NX
i��

ZiD
�

iV
��
i �yi � ��i�yi � ��i

�V ��
i DiZ

�

i�

Alternatively we can use the model�based or naive covariance matrix

V � �� � H���
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� Example �� Forest damage data

Since 	
�� a yearly visual forest damage inventory is carried out in the forest
district of Rothenbuch in the northern part of Bavaria� There are �� obser�
vation points with occurrence of beeches spread over the whole area� In this
damage study we analyze the in�uence of covariates� e�g�� age of the trees�
pH value of the soil� and canopy density of the stand� on the defoliation of
beeches at the stand� We use the degree of defoliation as an indicator for
damage state of the trees� Due to the survey design� responses must be as�
sumed to be serially correlated� The ordinal response variable� Yt� �damage
state� at time t is measured in � categories! none �Yt � 	� light �Yt � ��
and distinct�strong �Yt � � � reference defoliation� Figure � shows the
relative frequencies of the damage categories in the sample for the years 	
��
to 	

�� There is an apparent change for the worse up through the year 	
��
followed by an improvement during the next � years� A detailed survey and
data description can be found in G$ottlein and Pruscha �	

��
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Figure �! Damage class distribution by time
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Due to the ordinal scale of the response� we use a cumulative logistic
model to relate the marginal probabilities of �damage state� to the following
covariates!

A Age of the trees at the beginning of the study with categories! below
�� years ��	� between �� and 	�� years ���� and above 	�� years
��reference�

PH PH value of the soil in ��� cm depth� The measures range from a
minimum of ��� to a maximum of ��	�

CD Canopy density at the stand with categories! low ��	� medium ����
and high ��reference�

The covariates pH value and canopy density vary for each stand over time�
while the variable age is time constant by construction� In particular� we
assume for the marginal cumulative probabilities of no damage �r � 	 and
none or light damage �r � � the following model

logit�pr�Yt�r��r�t����tA
�������tA

�����	�PHt��
CD
���
t � ��CD

���
t �

r� 	� ��

where A���� A���� CD
���
t � CD

���
t are dummy variables for the categorical co�

variates A and CD� To capture the time trend in the data we allow the
threshold functions and the e�ects of the time constant variable age to vary
smoothly with time t� Due to a lack of information about the form of the in�
�uence� it is reasonable to model the e�ect of pH value nonparametrically by
an unspeci�ed smooth function� The e�ects of canopy density are assumed
to be �xed like in an ordinary parametric model�

First� we analyze the data with the working assumption of independent
responses� This results in point estimates which are identical to the pe�
nalized maximum likelihood estimates of a model based on T independent
responses� Figure � shows the estimated threshold functions ����t and ����t�
Both curves decrease up to the year 	
�� with a more pronounced decrease
of the �rst threshold ����t� This indicates a shift to higher probabilities for
the categories light and distinct�strong damage up to this year� After an
improvement� i�e� a shift to the none damage category� up to 	

� there is
another increase in damage up to 	

�� This result is true for beeches above
	�� years� i�e� for the reference category of age� For the other two categories
of age we have in addition to consider the e�ects of the corresponding dum�
mies� Both e�ects are positive over the 	� years �Figure �� left plot� This
indicates a positive in�uence on minor damage� i�e� younger beeches are less
damaged� The positive e�ect of the category with below �� years old trees
�upper curve is greater and the increase of this e�ect after 	
�� corrects the
change to the worse after 	

� indicated by the threshold functions� These
interpretations are further illustrated by Figure �� where the sums of the
threshold functions and e�ects of the dummy variables of age are plotted
against time� The estimated function for the in�uence of pH value is almost
linear over the range of observed pH values �Figure �� right plot� Stands
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Figure �! Independence model! Estimated thresholds ��� �left and ��� �right
with pointwise standard error bands �model based � dashed lines� robust �
shaded region

with low pH values have a negative in�uence on damage state compared to
stands with less acid soils� i�e� low pH values aggravate the condition of the
trees� Finally we have the following parameter estimates for the e�ects of
canopy density together with model based and robust standard errors!

Covariate Estimate SE SE p�value p�value

�model �robust �model �robust

CD
���
t �	����� ������ ������ ������ �����


CD
���
t ������� ��	��� ������ ������ �����


This means that stands with low �CD���
t  or medium �CD���

t  density have
an increased probability for high damage compared to stands with a high
canopy density�

We see that the model assuming independence distinctly underestimates
the standard errors for the thresholds and covariate e�ects� This indicates
that the independence assumption is quite far away from the real association
structure� Hence we try to �nd a more realistic working model�
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Figure �! Independence model! Estimated e�ects of age �left and pH value
�right with pointwise standard error bands �model based � dashed line� ro�
bust � shaded region
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Figure �! Independence model ! ��r�t � ����tAGE��� �left and ��r�t �
����tAGE��� �right

In the second analysis� we combine the marginalmean model with a model
for the pairwise association structure� With T � 	� measures per stand we
have �� time pairs at which we measure the pairwise association by global
odds ratios� A preliminary descriptive analysis with empirically estimated
global odds ratios indicates di�erent values of the odds ratios for each cut�
point �l� r and a decline in association with the time distance between the
visits to the stand� Thus the association structure is parameterized by the
logarithmic model of the form

log��
�lr�
i�st  � �lr � ��jt � sj l� r � 	� ��

i�e� we use a time�stationary association for each cutpoint �l� r� Note that
we do not force the dependence on the time lag into a special parametric
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Figure �! Estimated log global odds ratios log��
�lr�
st 

form� We use again a unspeci�ed smooth function to determine the in�uence
of the time�lag jt� sj on the global odds ratios�

Estimating simultaneously both models using two penalized estimating
equations yields the following estimates for the association parameters

���� ���� ���� ����

Estimate ������ ����
� ������ �����


The estimates are quite similar for the association parameters ������� and
���� only the global odds ratio ��� for the cutpoint ���� is on a higher level�
Figure � shows the logarithmic global odds ratio� There is a distinct decrease
in the association between two responses as the time distance increases�

Looking at the estimated mean structure we observe that the predicted
marginal probabilities for both models are very similar� Figure � shows these
probabilities of the second model for the three categories of age assuming the
stand has a medium canopy density and a medium PH value �PH � ����
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Figure 
! Re�ned model � Estimated thresholds ��� �left plot and ��� �right
plot with pointwise standard error bands �model based � dashed line� robust
� boundary of shaded region

In contrast to this similarity� the estimated thresholds and e�ects partially
change considerable� In particular� the e�ect of di�erent PH�values is less
distinct� i�e the course of the estimated curve is �atter �Figure 	�� right plot�
In fact there is some doubt that PH�value has an in�uence at all� Also the
�xed e�ects of canopy density are quite di�erent for both models �

Covariate Estimate SE SE p�value p�value

�model �robust �model �robust

CD
���
t �	����� ���
�� �����	 ����	� ������

CD
���
t ������� ������ ������ ������ ����
�

But note that the model�based and robust standard errors for the sec�
ond model are closer together� We take this observation as an indication
that the association structure is better considered in the second model� The
e�ects of age are almost unchanged �Figure 	�� left plot� To adjust these
changes the threshold functions are on a lower level �Figure 
 compared to
the independence model� but their overall shape remains the same�
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Figure 	�! Re�ned model � Estimated e�ects of age �left and pH value �right
with pointwise standard error bands �model based � dashed line� robust �
boundary of shaded region

� Conclusions

In two applications� we have shown that semiparametric methods provide
a �exible tool for an analysis of multicategorical and multivariate correlated
data� Therefore they may supplement existing parametric standard methods�

Our estimation approach is either based on penalized likelihoods for uni�
variate ordinal response or on penalized estimating equations for correlated
response� Alternatively we can specify the entire likelihood of the correlated
outcomes by one of the parametrizations mentioned in Section 	� Start�
ing from this full likelihood we can derive penalized likelihood methods for
marginal regression models� This will be the topic of forthcoming paper�

It should be mentioned that the methodology can be applied to other
multivariate structures� For example� correlated nominal responses can be
analysed by a semiparametric marginal model using local odd ratios to mea�
sure the association�
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