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Semiparametric Estimation in Regression Models for
Point Processes based on One Realization

Helmut Pruscha
University of Munich, Mathematical Institute, Theresienstr. 39
D-80333 Munich, e-mail: pruscha@rz.mathematik.uni-muenchen.de

Summary: We are dealing with regression models for point processes having a multiplicative
intensity process of the form a(t) - b;. The deterministic function « describes the long-term
trend of the process. The stochastic process b accounts for the short-term random variations
and depends on a finite-dimensional parameter. The semiparametric estimation procedure is
based on one single observation over a long time interval. We will use penalized estimation
functions to estimate the trend «, while the likelihood approach to point processes is employed
for the parametric part of the problem. Our methods are applied to earthquake data as well as
to records on 24-hours ECG.

Keywords: Semiparametric estimation, Point process, Self-exciting process, Intensity process,
Trendfunction, Ergodic behaviour, Earthquake data, ECG-data.

1 Introduction

Our basic object is a series of recurrent events, occurring at random times 7y, 79, . .., and being
quantified by metrically scaled marks (covariates) w1, xg,.... Two examples are considered i)
Earthquake data, where 7; and z; denote the occurrence time and the magnitude of the ¢« — th
shock, resp. ii) ECG-data, where the ¢ — th ventricular extrasystole occurs at time 7; and has
the strength ;. Such sequences will be analyzed in the framework of point process theory. The
intensity function of the point process will be put in the multiplicative form

A = alt) - by, (1)

where a(t) is a deterministic, slowly oscillating function, describing the long-term trend of the
process. The stochastic variation of the process is modelled by the factor b;, accounting for
short term oscillations around the trend. The process b; depends on earlier outcomes and on a
d-dimensional parameter. In fact, letting (") = (7, 21,...,7,,2,), we put

by = b (t, 2™ 0) fort ¢ (1, Tpa], 0 € RY. (2)

In sec. 6 below we will apply self-exciting models, where in (2) the dependence on t is of the
form ¢t — 7,,, the time elapsed since the occurrence of the last event. Hawkes’ self-exciting point
process model is a well-known example (Hawkes, 1971). The equations (1) and (2) constitute a
semiparametric statistical problem. We have here only one single realization over a long interval
[0,7]. This is different to related problems in life time analysis, where we have m processes
Ait =a(t)-by, 1 =1,...,m,over alimited time interval, and where we can get rid of the factor
a(t) by forming p;; = i/ 272, Ajs. Clearly, this partial likelihood approach is not available
in our situation of one univariate process. Instead, we use the penalized least squares (l.s.) and
the penalized maximum likelihood (m.l.) method. As in many semiparametric approaches, a



major task is to separate the two factors o and bin (1) by the estimation procedure. To tackle
this problem, we will need a kind of ergodic behaviour of the process.

In the following we denote by N;, t > 0, the counting process belonging to 7,, n > 1, 1. e.,
Ny = ZnZl 1(Tn < t)

2 Penalized l.s. criterion

In order to estimate the deterministic function a(t), ¢ € (0,T], we divide the interval (0, 7] into
K subintervals (u;—1,u;], ¢ = 1,..., K, where K is assumed to be considerably smaller than
Np. Let AN, = N,, — N,,_, be the number of events in the time interval (u;_q,u;]. We are
going to base the l.s. function on the difference AN; — FAN;. We have

EAN, :/ BN, ds :a(ti)-/ui Eb,(0) ds

Ui—1

for some t; € (u;—1,u;]. In order to tackle the separation problem mentioned above, we assume,
that for larger A; = u; — u;_1 an approximation of the kind

1 jw
E/ Eby(0) ds ~ b*)(8), (3)

b(*)(0) independent of 7, is possible. Such a final intensity 5()(f) can be identified in many
point processes showing an ergodic-type behaviour. As a further approximation will set

An asymptotic set-up justifying these approximations will be given below in sec. 5. Putting
AN;
aft) = alt) - H0), V= S (5

and using the approximation (3) we can write EY; ~ a(t;). We now define the penalized
l.s. criterion W(a) = %SSE(@) + )\H(z)(a), with
K
SSE(a) = Zwi(Yi —a;)®, a; = a(t;), w; weights,

=1
T
H®(a) = / (a"(s))2 ds, A > 0 smoothing parameter.
0
It is well known, that W(a) = min is solved by natural cubic splines (Green and Silverman,

1994). Note that a(t) can be estimated only in the form ¢ = a - (), where the factor 5>
does not depend on ¢, but on 4.

3 Penalized m.l. criterion

As an alternative we now consider the penalized m.l. approach. The log-likelihood function of
a realization (71, 21,...,7,,,) can be written as

n

I, = ilog (a(ris1) - 59 (7i41,0)) / a()by(0) ds. (6)

0



With 7, = T and the subintervals (u;_1,u;], 72 = 1,..., K, of (0,7 as in sec. 2 above, we assume
here, that for larger A; = u; — uw;_1 an ergodic-type approximation

1w

Al by(0) ds ~= b (9) (7)

is possible. Then we can write, with some t;, ¢ € (u;_1, u],

K K

Lo~ Y- AN log (a(t:)b™)(8)) = 3 a(t) Ab™)(9)

= > Ai(Yiloga(t;) — a(t})),

=1

neglecting additive terms not depending on «, and using notation (5). Letting ¢; and ¢} as in
(4), we will use

K
Ik (a) = Zwi(Yz’ loga; —a;), a; =a(t;), w; weights,

=1
as part of the penalized m.l. criterion

1 1
P(a) = ?ZK(CL) — 5)\[{(2)(@).

Here, we can use the Fisher scoring algorithm to find a cubic spline solution of ®(a) = max
(Green and Silverman, 1994, sec. 5.3).

4 Parametric intensity functions

For the parametric part of the problem we apply the m.l. method in point processes. We write
down the log-likelihood function (6) in the form

n—1

L(0) = 3 (log(a(ran) (i, 0)) - [

=0 ¢

Ti+1

a(5)b (s, 0) ds) : (8)
The second term can be approximated by

a(r) - /T“r1 b(i)(s, 6)ds.

Putting again a(t) = a(t)/b(>)(0) and plugging into (8) the cubic spline solution a from sec. 2
or 3 above, evaluated at the occurrence times 7;, we arrive at a purely parametric problem

[,(0) = max, under the side condition b(>)(#) = 1. 9)

The side condition should guarantee that the two factors o and b in (1) can be identified: the
long term trend (including the general mean) is completely described by a(t); b; accounts for
the short term oscillation of the process around the trend.



We model the intensity function b; by a self-exciting process of the form
by = b, 2 0) = f(w™ 1 —7,), 1€ (Tny Tus1], (10)

with (" being iteratively defined by

n+1)

n
w! = u(w( ),Un,xn+1), On = T4l — Tn-

This recursive scheme enables a quick calculation of the derivatives %ln(ﬁ). Further, by argu-
ments via autoregressive schemes (or iterative function systems; see Norman, 1972; Pruscha,
1983; Doukhan, 1994) an explicit expression of the limit value b(>)(#) can be gained—which is
crucial for solving (9). Let us consider two examples:

Ex. 1. In the special case
flw,s)=p+ePw, ulw,(s,2))=e"w+ ke’ (11)

the intensity function b; is of the form of Hawkes’s self-exciting point process (Hawkes, 1971).
In fact, under (11) and w® = 0 we can write equation (10) as

b(n)(t, 0) =p+x Z eV (t=7i) BT wi

=1

— otk / e=1(t=9) 872 g
(0,75]
with x(7;) = x,. Here, the limit intensity value is identified by

- p
o) (p,y) = ———,

1 - o'(oo)'y

where ¢(>) = a.s.- lim(+ 3725 0;). This formula can be derived from Hawkes (1971, p.84) by
approximating A\; & ab;, e?’ 2 1 and putting &« = N¢/T.
Ex. 2. Letting
T
Fwys) = w0, u(w, (5,2)) = pe~w + re5"™,
we are faced with a piecewise constant intensity function b; (Pruscha, 1983). We have the closed
formula .
b(n)(t7 0) =K an_ie_’Y(Tn_ﬂ)eﬁva Ty = 07 To = 07

=0

and the limit value x/(1 — pe‘g(oo)w).

5 Asymptotic set-up

a) We will first introduce a device for the limit operation which is known from nonparametrics
(Eubank, 1988) and from non-stationary time series analysis (Dahlhaus, 1996). Let a4(t),
t € [0,1], be a positive function with a continous derivative and define for 7' > 0

ar(t) = s (%) , telo,7). (12)

4



Let further (w;—17,ui7r], ¢ = 1,2,..., be a division of (0,7] into subintervals of (let us say
equal) length Ay = w; 7 — u;—1 7. Then we consider limits of the kind

A
T — o0, Ar— o0, TT—>O. (13)

For each T' > 0, a counting process N, r, t € [0,T], with intensity process
)\t,T = OéT(t) : bt((g)a te [OvT]v

may be given, fulfilling the ergodic laws

1
— | Erby(0)ds — b>=)(0
o Erb)ds = 690

1

— | by(0)ds — b)(9) [P

o, B0 ds = 60) [P
for limits of the kind (13), where I denotes an interval of length Ay. Then the approximations
(3) and (7) are justified. Since for s,s" € Iy

Ar

Jar(s) = ar ()] < Ap max oz (0)] = - max]ai (0],

which tends to 0 under (13), the setting (4) is established, too.

b) Secondly, we will sketch the determination of the limit intensity value 6(6). We assume
that the process has a stationary probability distribution P, under a« = 1. This is the case in our
Ex. 1 and 2 above, where final limit values 63°(8) can be explicitely calculated (Hawkes, 1971;
Pruscha, 1983). Next, the limit 6°°(8) = b2°(0) must be established under the non-stationary
probability P,;, with « being of the form (12) (see Pruscha, 1988, where a similar, but purely
parametric problem was considered).

6 Applications

The proposed semiparametric estimation methods will be illustrated by means of two kinds of
data sets:

6.1 Earthquake data

A data set on the aftershock series of the great earthquake in Friuli (Italy, 1976) consists of
consecutive occurence times 7;, together with the magnitude ; of the shocks (i=1,...,n=355).
In this context, Hawkes’s self-exciting model is an appropriate choice for b;, see Ogata (1988)
or recently Peruggia and Santner (1996).

The trend of the occurrence frequency is decreasing, with some accumulations in between and
at the end. The cubic spline function a(t) was calculated by the penalized l.s. method with
K = 24 knots. It describes the trend of the process quite well, as is shown by a point process
illustration and by a time series plot (see Fig. 1). The model in Ex.1 comprises the parameter
k, which is fixed to 1, as well as



e /3, i.e. the regression coefficient of the (centered) magnitude values
e p, i.e. the lower bound of the intensity b;

e 7, i.e. the rate of exponential decay, calculated from the side condition 6> (p,v) = 1 by
y==r/(c-(1 —=p)), where 0 = 7, /n.

They were estimated by the m.l. method as

N

3=0.87, p=0.87, 4=113.78,

6.2 ECG data

Data sets on the 24-hours ECG of patients suffering on heart arrhythmias consist of the oc-
curence times 7; of ventricular extrasystoles. Here the covariates z; are the strength of these
events measured as the relative deviation from the normal beat (Pruscha, Ulm and Schmid,
1997). If s; is the time between two beats and 3; the mean value of the 5 time intervals around,
we put @; = 1 — s;/8;. Only events with a significantly small s;/s; value are collected in the
data sets of the following two patients.

e OVXSBH. n = 714 extrasystoles within a 20 hours observation period. The m.l. solutions
are

N

B=187, p=062 5=093.95.

o OTDJFZ. n = 482 extrasystoles within a 21 hour observation period. The m.l. solutions
are

N

5 =238 /=097, 4 =765.08

(see Figs. 2 and 3). In the latter case the events are much more equally distributed over the
observation period than in the first case; its realization is similar to that of a (inhomogeneous)
Poisson process with rate a(t). This fact is supported by the following results.

i) The formal log-likelihood ratio test statistic 7, = 2- (ln(én) — ln(Poisson)) (asymptotically
a x3) assumes the values

OVXSBH T, =870.9, OTDJFZ T,="73

ii) The mean cluster size m, = b(>(p,~)/p, which is equal to 1/p under b(>) = 1, is estimated
by
OVXSBH m.=1.61, OTDJFZ rm.=1.03.

See Hawkes and Oakes (1974) for a cluster process representation.

6.3 Computing the parameter values

The parameter values in 6.1 and 6.2 above were gained by putting a(s) = a(s) into (8), i.e.
by letting 6(>) = 1, and then by finding the maximum of /,(f) along the curve definded by
b (p,7) = 1.

Alternatively, we put a(s) = a(s)/b*)(p,~) into (8) and then compute the unconstrained
maximum of 7,(#). This method led to the following estimates for limit intensity value b(>)
and mean cluster size m.:



e FRIULI earthquake data b(o2) = 1.73, m. = 1.26
o OVXSBH ecg data b = 1.39, 1, = 2.26
o OTDJFZ ecg data b = 1.11, v, = 1.01.

It should be noted that the algorithm of this alternative method, however, turned out to be
much more sensible.
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Point process plot, aftershock sequence Friuli
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Figure 1: (a, top) Point process plot of the aftershock sequence Friuli (19.05. - 10.09.1976).
The n = 355 time points of occurrences were plotted on a (transformed) time scale, together
with the magnitude = of the shock and the trend function a. (b, bottom) Time series plot
of the aftershock sequence. The occurrence frequencies Y were plotted over the K = 24
time intervals, together with the estimated trend function « (see Pruscha, 1994, for a purely
parametric analysis).



Point process plot, cardiac arrhythmia
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Figure 2: (a, top) Point process plot of the extrasystoles within a 20 hours ECG record of
the patient OVXSBH. The n = 714 time points of occurrence were plotted on the time scale,
together with the strength = of the event and the trend function a. (b, bottom) Time series
plot of the extrasystole sequence. The occurrence frequencies Y were plotted over the K = 20
hours of the period, together with the estimated trend function «.
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Figure 3: The same plots as in Fig. 2 for the patient OTDJFZ, where n = 482 extrasystoles
occurred within the 21 hours ECG record.
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