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1 Introduction

On-line monitoring of time series becomes more and more important in different
areas of application like medicine, biometry and finance. In medicine, on-
line monitoring of patients after transplantation of renals [1] is an easy and
prominent example. In finance, fast end reliable recognition of changes in level
and trend of intra-daily stock market prices is of obvious interest for ordering
and purchasing. In this project, we currently consider monitoring of surgical
data like heart-rate, blood pressure and oxygenation.

From a statistical point of view, on-line monitoring can be considered as on-
line detection of changepoints in time series. That means, changepoints have
to be detected in real time as new observations come in, usually in short time
intervals. Retrospective detection of changepoints, after the whole batch of
observations has been recorded, 1s nice but useless in monitoring patients during
an operation.

There are various statistical approaches conceivable for on-line detection of
changepoints in time series. Dynamic or state space models seem particularly
well suited because “filtering” has historically been developed exactly for on-line
estimation of the “state” of some system. Our approach is based on a recent
extension of the so-called multi-process Kalman filter for changepoint detection
[2]. Tt turned out, however, that some important issues for adequate and reliable
application have to be considered, in particular the (appropriate) handling of
outliers and, as a central point, adaptive on-line estimation of control- or hyper-
parameters. In this paper, we describe a filter model that has this features and
can be implemented in such a way that it is useful for real time applications
with high frequency time series data.

Recently, simulation based methods for estimation of non-Gaussian dynamic
models have been proposed that may also be adapted and generalized for the
purpose of changepoint detection. Most of them solve the smoothing problem,
but very recently some proposals have been made that could be useful also for
filtering and, thus, for on-line monitoring [4, 5, 6]. If these approaches are a
useful alternative to our development needs a careful comparison in future and

1s beyond the scope of this paper.



2 The Dynamic Linear Model

Throughout this paper we will use the notation as in [3].

2.1 Definition of the Dynamic Linear Model

Let Y; € R be the observation at time ¢ € [0,1...7}. Then for each timepoint ¢
the dynamic linear model is defined by

Observation equation: Y; = F/0; 4+ v, , vy ~ N(0,V})
System Equation: 6, = G40,-1 +w; , w; ~ N(0,W;)

where I}, G; are known design matrices describing the deterministic part of the
observation process and of the system evolution. Both processes are disturbed
by the Gaussian noise terms v(t) (observation variance) and w(t) (evolution
variance), which are assumed to be mutually independent with variances V,
and W,.

The model is initialized by a known prior for the initial state vector 6y, usually
taken to be

(00| Do) ~ N(mo, Co),

where generally D, = {Y;,..., Yo} = {Y,, D,_,} represents the information set at
time ¢, such that Dy represents the initial information.

The dynamic linear model with design matrices F;, G; and variances V;, W, may
symbolically be written as M, = {F, G, V., W },.

2.2 Estimating the state vector 6,
The following updating equations are used in estimating 6, (see also [3]):
(a) Given posterior information at time ¢ — 1

(075—1|Dt—1) ~ N (mt—h Ct—l)

we arrive at the

(b) Prior at time ¢
(0¢| Dy—y) ~ N (ay, Ry),



Where ay = Gtmt_l ) Rt = GtCt_lG; + Wt.

Next we can forecast Y;, thereby using information up to time ¢ — 1.

(¢) One-step forecast

(Ye|Dior) ~ N (fi, Q¢)
Where ft = Ft’at ) Qt = Ft/RtFt + ‘/t

Eventually we obtain the

(d) Posterior at time ¢
(0¢| D) ~ N (my, Cy)

Where my = ay + Atet ) Ct = Rt — AtA;Qt

with A; = RtFtQt_l e =Yy — fi.

3 A Multi-Process Model for the On-line Moni-

toring Problem

Combinations of different filters are called Multi-Process Models. Let A be
some index set and for a € A let M(a) be the model corresponding to o (for
some F,G,V,W depending on ¢ and o).

In the simplest case there is some fixed (though maybe unknown) o such that
the model M;(«) holds for all ¢ and this is what turns out to be general enough
to handle the on-line problem.

For the estimation of o we use Bayes’ theory. Given an initial prior p(a|Dy),
inferences about o can be done sequentially by p(a|D;) o p(a|Di—1)p(Yi|a, Di—y).
Our multi-process model for the on-line monitoring problem—including mul-
tiple changepoints—is based on the dynamic changepoint model developed in
[2], covering situations with at most one changepoint. In the following we give

a brief description of the latter model.



3.1 The dynamic changepoint model

The structural component model of [2] describes a system without a change-
point by a simple random walk. Changepoints are incorporated by a “switch,”
which adds at some fixed but unknown time 7 a (possibly noisy) drift to the

system equation. Thus the observation and system equations are:

Observation equation: Y; = u; + vy , vy ~ N(0, 05)
System Equation: u; = ;1 + z,@ﬁt_l +wy , wye ~ N(0,07)
By = Bior + wa Woy ~ N(O,Ué)

where 2 is an indicator variable with

(r) 0 : t<r
Zt —
1 : t>7

We shall use the following notation: the “O-filter” refers to a filter with 27 =0
and the “1-filter” refers to filter with 27 = 1.

Every 7 € {0,1,...,7T} defines a different model. The collection of all these
single-process models labeled by 7 is called the multi-process model M,(7).

In matrix notation:

Yi=[1 0]0+uv

N—_———
F/
ﬁt 0 1 ﬁt_1 Wt
N—_—— N—_———’
0 GT e _1 wt

t

with
Var(vy) =: Vi, Var(w) = W,

We discuss the problem of choosing V; and W, in section 4.2. The updating

equations given a changepoint 7 = j are described in section 2.2.

3.2 The estimation of changepoints

The posterior distributions of the changepoints P(r = j|D;) , 7 =[1,...,T], can
be calculated by Bayes with:



P(r =j3Dy) < P(Y4|Di_y,7 = j) P(1 = 3| D)

These probabilities must be initialized. If 7= denotes the probability that a

changepoint occurs until time T, a reasonable initial prior is the uniform prior:

. mo.
P(T:]|D0):T,]:1...T

For the estimation of 7 it is only necessary to consider models up to time ¢,

since all conditional models with 7 > ¢t 4+ 1 are i1dentical:

P(Y|Dioy,m=3) =P (Y| Dy, =t+1) , g >t +1

Hence the posterior distribution of the changepoint 7 at time ¢ is given by

th)(yt;ftij{)'P(T:j|Dt—1) )<t
e P (ye; f“a ?H) -P(r=j|Di=1) t<j<T

P(r=jlby) = {

P(r>TID) = e® (i fiH,Q1) - P(r > T|Diy)

where f/ = E(Y|Di_y,7 = j) and Q] = Var(Y;|Di_y,7 = j) are the mean and
variance of the one-step forecast density (see section 2.2) and @ is the density
of the normal distribution, ¢, being the normalization constant.

The dynamic linear changepoint model seems to be an appropriate model, which
allows to detect on-line deviations from an assumed course of a monitored

variable. But there exist still some unsolved problems:

- Outliers can have an important influence on the probability of a change-

point.

- Long observation periods entail the need for handling many models simul-
taneously such that the algorithm becomes too slow for real time applica-

tions.

- The original model allows only to detect at most one changepoint during

the observation period.



- The variances V; and W, are in many practically important cases unknown.

The next chapter shows how these problems can be solved.

4 Towards an On-line Monitoring Alert System

4.1 Introduction of a time window for the 1 — filters

The computational time increases rapidly with the increasing number of -filters
to be processed such that the speed may easily drop below the limit for real
time applications. To overcome this problem we introduce a window [t — b, ]
for these I-filters, with some positive b depending on the computational power

and the specific problem. Then the probabilities for the changepoints are

a®(ys f1.Q1) - P(r=j|Dimy)  t—b<j<t
P (7' = j|Dt) = th)(yt; f“a ?H) : P(T = j|Dt—1) t<y<T
0 g<t—=»b

P(r>TID) = a® (i fiH,Q1) - P(r > T|Diy)

Only the 0-filter and the t-b+1 I-filters are considered in the calculations of the
changepoint probabilities. The result is a constant calculation speed over time.
An additional advantage is that the model is now able to deal with more than
one changepoint. Since a changepoint before time ¢ — b 1s no longer respected,
we estimate the posterior distribution of the actual changepoint using informa-
tion only from within this time window. However, the window ¢ — b 1s dynamic.
One 1 — filter 1s added for the new observation and in the same moment we
drop the 1 — filter for observation ¢ —b. Hence, in moving the window over time

we are able to detect sequential changepoints.

4.2 Hierarchical Multiprocess Models

Let P(Mt(a)|Dt) be the probability that the model M(*), for some a € A, holds
at time t. Then we define a hierarchical model by the probability

P(]wt(@)7 Mt(ﬁ)u)t) _ P(Mt(a)|Mt(ﬁ), Dt)P(Mt(ﬁ)|Dt)7

7



where 8 € B, and A, B are disjoint parameter sets.

If one is interested in marginal probabilities one may calculate them via
P(M{|D,) =
Yies P(]wt(@)“wt(ﬁi)7 Dt)P(Mt(ﬁi)

D,).

This definition should not be confused with a multiprocess model of class II, in
which one will not distinguish between A and B. A hierarchical model is the
combination of two ore more multiprocess models of class I. So one is able to
follow a decision tree within the set of different filters. We will use it to build
an estimation procedure for the unknown V, and W, as well as for the outlier

detection.

Before we propose the estimation procedures for the unknown variances we
make some basic considerations. Until now we did not distinguish between dif-
ferent filters and their variances. However, this will become important, when
we are going to estimate this variances on-line. The fundamental approach to
the On-line monitoring problem using the dynamic linear changepoint model
is, that the new observation Y, is explained by two types of models (the 0- and
1-filters). A changepoint is detected when the 1-filters are better in predicting
Y; with than the 0- filter.

Since the system equations of the 0- and 1 — filters are different ( p; = 114, + !
for the 0 — filter and p; = pi_y + Bioy + w,ET) for the 1 — filters) one will have
different evolution variances W%, W, r = 1,...¢.

The only difference between the 0— and 1 — filters is the slope parameter 5.
Hence, in adding a slope parameter to the system equation a part of the evolu-
tion variance estimated for the 0 — filter, 1s now explained by the slope itself,
and therefore W < W/!”. However, the observation variance V;, which has the
interpretation of measurement error, is identical for both models, because the
observation equations are identical too.

These considerations lead to the following estimation concept. Since we are not
able to find a closed estimation procedure, in terms of a single multiprocess
filter, to estimate V; and W, simultaneously we have to estimate these variances
separately and independent from the estimation of a changepoint. Therefore

we will introduce, for estimation of the unknown variances, a new multiprocess



filter consisting of the O-filter and the 1-filter (with 7 = 1). This leads to what

we call a hierarchical on-line estimation procedure.

Online Estimation of the unknown Variances V and W

4.3 Estimation of V

To estimate the unknown observational variance V, treated here as constant
over time, we adapted a conjugate sequential updating procedure, described
in West, Harrison (1989, 118ff). Since V becomes now a random quantity
the normal distribution changes into a t-distribution and we will obtain the

following system:

Observation equation: Y; = F'0; + v, , vy ~ N(0,V)
System Equation: 6, =GJ0,_1 +w, , wy~T,,_ (0,W,),7e{T+1,1}

where T,,_, (11,0%) denotes the noncentral T-distribution with mean g, variance

o? and n,_; degrees of freedom. The expression 7 € {T + 1,1} indicates two

filters, one for the 0 — filter and one for the 1 — filter, that started from the

beginning. The updating equations will take now the form:

(a) Posterior at ¢t — 1: (0,_4|Dy—1,7) ~ Ty, (my—1, Ciy)

(b) Prior at ¢: (6,|D—1,7) ~ Tp,_, (as, Ry)

a{ = G‘me_l

Rl = GICL,GY +W,
(c) one-step forecast: (Yi|Di—1,7) ~ T, , (f1, Q)

flo = Fla

Q = S+ FRF
(d) Posterior at t: (6,|D,,7) ~ T,,_, (m4, Cy)

m! = al + Alel

9



¢ = Si/Si Rl = AlAQ]]

d

1y

where

ne=n;q+1, di=di1 + Sf_le”t/Qi and A; = RiF/Qi

Under the assumption, that the estimated variances V() and V(=Y are now
known quantities, we can combine the two filters in a multiprocess model and
use this to get an estimate of V' simultaneously.

Using Bayes we get

P(VI|Dy) o P(Yi|V?, Dy )P(VI|Ds_y),5 € {T +1,1}

and we can get an estimate of V' by
V=Y V'P(V|D,).
J

As initial probabilities P(V?|Dy) one can use the probabilities 7,1 — 7, which
were used to initialize P(7]|Dy) in the changepoint estimation procedure. The

single estmates of V7 will be passed to the hierarchical changepoint model.

4.4 Estimating W,

Similar to the previous section we will build an estimation procedure to calculate
W;. In a first step we transform the problem of estimating W; to a problem were
we have to estimate a discounted variance. As proposed by [3] we introduce a

discounting factor ¢, with 0 < § < 1. By definition we can set
Wy=P(1—6)/6

with
P,=GICL GY.
One advantage is now that in contrast to W;, ¢ is scale free. Furthermore &

1s related to the signal to noise ratio r = W;/V; = (1 — §)?/46. In the literature

values like § = 0.7 or 0.9 are chosen to be fixed and the usual updating equations

10



are used to estimate the state vector §,. Hence, a possible strategy could be
to analyze several data sets with defined changepoints and to look for the best
value of §, where not more but the maximum of the defined changepoints can
be detected. But this would not be an On-line estimation of the evolution
variance W,;. Another possibility is to estimate the unknown discounting factor
§ similarly to the observation variance V. Our proposal is to do the following:
As mentioned in the beginning of this chapter we need a § for the 0 — filter and
the 1 — filter. So we have to build two different multiprocess models. First let
re€{T+1,1}. Then

(a) choose a discrete set [dy, s, ..., dx] of values for § (k appropriately chosen)

(b) calculate at each step the probabilities of § using

P(D|D,) < P(Y;|6), Doy, 7) P87 Dy, 7)
one may estimate 6(7) using
5 = fj §:P(6;] Dy, 7)
i=1
It seems to be natural to use the uniform distribution P(d;|Do) = +,j = 1,.., k for
the initial probabilities. This method appears to be a good estimation strategy

for the unknown §("). Onece again the estimated parameters are passed to the

hierarchical changepoint model.

4.5 Respecting Outliers

To detect outliers we used the ideas of [1]. An outlier can be interpreted as
a sudden perturbation of the observation equation. To include this possibility
we could enlarge the multiprocess model by an extra filter for outliers (which
we call “N-filter”), which is exactly the 0-filter with an enlarged observation
variance. Since, V and W, are estimated on-line this will not work. Instead of
including the extra N — filter into the changepoint model we introduce an extra
multiprocess model for outliers. This model will become the first level of our

hierarchical multiprocess model. Let

Mi(k) + Yi=F'O;+ v, v ~ N(0,kV)
0, = G0,y + wy, w ~ N(0,W,),

11



where « is chosen sufficiently large, say « = 100. Now we may estimate the

probability of an outlier by

P(Outlier|Dy) o< P(Yi|Outlier, D;_1) P(Outlier|D;_1)

4.6 Initialization

We show now how the prior distributions of the state vectors must be specified.
We initialize the 0 — filter and 1 — filter similar to [2] with a data driven prior.
The variances C{” follow hereby a diffuse prior.

The 0 — filter (66| Do, T + 1) ~ N(m& ™, ¢{T™) is initialized by

m{T*) = (v, 0) and T+ = ( Vo+Wo 0 ) ‘

0 0

Prior information of the 1— filters (6o|Do, 7 < t) ~ N(m{<", <Y is recursively
defined by

my= = (T v, = ml Ty,

0 - T=t— T=t— :
e ¢/ S (R 1

Furthermore, we have to specify starting values for the variances V, W and we
have to choose a discrete set for the discounting factor §. Since we are going
to estimate all parameters on-line we need a good guess for the signal to noise
ratio r of the underlying process. Otherwise the estimation procedure will not
converge to the true values.

For the approximation of r we will use the first 2k observations (chose k appro-

priately) and we define the following quantities:

a=V(Y;=Yi_1),i=1,.., 2k,
b=V(Yi+ Yor—iz1),i =1,.., k.
Then
5 a—>b
(2k+1)b—a’

12



With this we are able to choose V and W such that r = W/V. Furthermore,
we can now choose a discrete set for §. Since r = (1 — §)?/¢ it is convenient to
choose a discrete interval of § about r. This interval can then be updated as

new observations are made using the same approximation as before.

5 Example

The following data are the ECG measurements, taken every five seconds, from
a patient undergoing a skin transplantation. Monitoring did start when the
first steps in preparing the patient were finished and anesthesia was completed.
The first window will show the ECG measurements with the filtered values of
the 0— filter. The second window displays the estimated cumulative probability
that a changepoint did occur during the observation window. Furthermore we

will display the probability of an outlier at the actual timepoint.

o
n

n

-~ 0O 0o o

n

100 200 300 <00 =00 RO a0 oo a0 1001

100 200 00 400 200 BO0 Fan s00 J00 1001

888. |
0.3626 0.6666 | 0.6485 | 0217 § 01329
rurn done

We see from the figure, that at observation 120 an alert is given. This coincides
with the beginning of the first skin cut. At 250 we did introduce an outlier, who
was detected by the N — filter. At 285 the operation starts. Since the patient
did react to this, the anesthesiologist did intervene. The weak changepoint at
506 was in this stabilization period. From 540 to 752 we have a stable phase.
At 752 we do observe a weak changepoint. This was to the end of the operation

13



and the anesthesiologist did begin the weak up phase. At 821 the patient did

awake.
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