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Abstract

To compare several promising product designs, manufacturers must measure their
performance under multiple environmental conditions. In many applications, a product
design is considered to be seriously flawed if its performance is poor for any level of
the environmental factor. For example, if a particular automobile battery design does
not function well under temperature extremes, then a manufacturer may not want to
put this design into production. Thus this paper considers the measure of a product’s
quality to be its worst performance over the levels of the environmental factor. We
develop statistical procedures to identify (a near) optimal product design among a given
set of product designs, i.e., the manufacturing design that maximizes the worst product
performance over the levels of the environmental variable. We accomplish this for
intuitive procedures based on the split-plot experimental design (and the randomized
complete block design as a special case); split-plot designs have the essential structure
of a product array and the practical convenience of local randomization. Two classes
of statistical procedures are provided. In the first, the d-best formulation of selection
problems, we determine the number of replications of the basic split-plot design that
are needed to guarantee, with a given confidence level, the selection of a product design
whose minimum performance is within a specified amount, J, of the performance of the
optimal product design. In particular, if the difference between the quality of the best
and 2nd best manufacturing designs is  or more, then the procedure guarantees that
the best design will be selected with specified probability. For applications where a
split-plot experiment that involves several product designs has been completed without
the planning required of the §-best formulation, we provide procedures to construct
a “confidence subset” of the manufacturing designs; the selected subset contains the
optimal product design with a prespecified confidence level. The latter is called the
subset selection formulation of selection problems. Examples are provided to illustrate
the procedures.

Keywords: Indifference-zone selection; Least favorable configuration; Optimal product de-

sign; Restricted randomization; Robust design; Statistical screening; Subset selection.



1 Introduction

The performance of most products varies, sometimes considerably, under different enviro-
mental (“noise”) conditions. Any comparison of potentially promising product designs must
account, for the multiplicity of potential operating conditions. In many applications it is
appropriate to use the worst possible performance of a product under the different environ-
ments as a performance or quality index. This criterion is natural in situations where a low
response at any level of the noise factor can have potentially serious consequence. Seat belts
or heart valves that fail catastrophically under rare, though non-negligable, sets of operating
conditions must be identified early in the product design cycle.

We call the criterion adopted by this paper the maxmin criterion for the choice of an
optimal product design. In contrast, Taguchi used the signal-to-noise ratio over the level of
the environmental variable as a criterion for choosing an optimal product design. However,
as shown in Box (1988), this quantity can be problematic for the analysis of experiments in
which a larger (smaller) response is better. Thus we adopt the maxmin criterion as natural in
applications involving the comparision of product designs that are to be used under numerous
environmental or noise factors.

A typical application of these ideas is an experiment comparing several engineering pro-
totypes of a prosthetic heart value that was initially reported in Beeson (1965) and is also
described by Anderson and McLean (1974). Beeson wished to evaluate the performance of
four prosthetic cardiac valves designs. He tested each design at the six pulse rates 60, 80,
..., 160 beats per minute in a tank of fluid that mimicked the circulatory system. Since it
was relatively difficult and time-consuming to change the valve once the apparatus was set
up, Beeson randomly selected a valve and measured its flow gradient at all six pulse rates
(using a separate random order for each valve). Thus his experiment involved a split-plot
design in which prosthesis design formed the whole-plot factor and pulse rate formed the
split-plot factor.

This paper proposes statistical procedures for assessing the performance of several prod-
uct designs under multiple environmental conditions using a split-plot experiment (and the
randomized complete block experiment as a special case by assuming appropriate variances
in the split-plot models to be zero). We study split-plot designs because they have the essen-
tial structure of a product array and allow the practical convenience of local randomization.

Following Box and Jones (1992) we assign product designs as the whole-plot factor and en-



viromental conditions as the split-plot factor; this arrangement is often the most logistically
convenient (or necessary). The opposite assignment is discussed in Section 5.

Implicitly, our quality criterion—the minimum performance over the levels of the noise
factor—assumes that larger responses are considered better for the application at hand.
However, the opposite can be the case and the procedures proposed herein can be modified
in an obvious manner. Also notice that when the response is bounded above, an engineering
design that is optimal by the minimum response criterion has the smallest mazimum range.
Thus this criterion conforms to the spirit of modern quality control in minimizing product
variability.

Frequently, each of the design and noise factors are themselves the set of treatment
combinations of two or more variables. For example, Box and Jones (1992) present a study
in which the goal is to formulate an optimal cake recipe, according the results of test taste,
when the ingredients of flour, shortening and egg powder are each set at two levels; their
example has 8 = 23 levels for the manufacturing design variable. In such cases, we regard
the set of treatment combinations corresponding to the manufacturing variables as the levels
of a single product design factor; we similarly construct a single environmental factor.

We consider two formulations of the selection problem, each suitable for different practi-
cal situations. The first, d-correct selection, is appropriate when it is possible to design the
experiment by choosing the number b of replications of the split-plot (or RCBD) design. Its
objective is to determine the number of blocks required so that with prespecified confidence
level, the “natural” selection procedure identifies a product design whose minimum perfor-
mance over the levels of the noise factor is within a given value § > 0 of the mimimum for
the optimal product design. In practice, the quantity ¢ is the minimum quality difference
worth detecting. The §-correct selection formulation thus guarantees that if the difference in
quality between the best and 2nd best product is of practical importance, i.e. greater than
0, then the experiment has been designed on such a scale as to identify the optimal product
design with given probability. Conversely, if there are several “good” product designs whose
quality is trivially different from the best product design, then the procedure will select either
the optimal product design or one of the essentially equivalent product designs with given
probability. Lastly, notice that when quality of the 2nd best design is very close to that of
the best design, any reasonable statistical procedure will select the 2nd best as frequently as

the true best. This intuition shows that it is #mpossible to identify the true optimal product



with nontrivial prespecified confidence, i.e., to take 6 = 0. Thus d-correct selection is the
most natural formulation at the design stage of the experiment.

The second formulation, subset selection, is an analysis tool; subset selection is appropri-
ate when the number of replications b has already been chosen by external considerations
such as fiscal or time constraints. Its objective is screening; a random subset of the designs
is chosen so that the optimal product design is contained in this subset with a prespecified
confidence level. Bechhofer, Santner, and Goldsman (1995) give an introduction to these,
and other, selection formulations.

In this paper we propose both d-correct selection and subset selection procedures for
identifying the product design having the greatest value of the minimum mean performance
over the levels the environmental factor. Section 2 describes the model and the two formu-
lations of the selection problem. Section 3 describes an d-correct selection procedure and its
properties while Section 4 describes a screening procedure. An example is given to illustrate

the selection procedure.

2 Models and Problem Formulations

We assume that r product designs are to be evaluated in ¢ environments. In practice, it would
usually be the case that the (product) design factor would itself have a factorial structure—
thus r» would denote the number of factorial product designs and the same would be true
of c. A total of b replicates of the entire experiment with r X ¢ treatment combinations is
to be conducted. With the exception of the discussion in Section 5, we assume throughout
that the design factor is assigned to the whole-plots and the noise factor is assigned to the
subplots in a split-plot design.

Let Yjj, denote the response when the ¢th level of the design factor and the jth level of
the noise factor are used in the kth replication of the experiment. Let y;; denote the mean
of Yijr. We make no assumption about the structure of the y1;;. As usual for split-plot data,

we assume that
ka:ﬁk—l—uw—l—wzk—i—ewk (’621,,7“, j:]_,,C, kzlb) (21)

where the block effects, {f}x, the (potential) confounding effect, {wis }i s, and the measure-

ment errors {€;;x};;x, are mutually independent with

Bp iid. N(0,03) (k=1...0)



wi, iid. N(0,02) (i=1,...,r; k=1...b)

)’ w

e 1id. N(0,02) (i=1,....r;j=1,....,¢; k=1...b)

’ Y€

(see Milliken and Johnson 1984, for example). The Randomized Complete Block Design
corresponds to o2 = 0.
As motivated in Section 1, we adopt the minimum response across the levels of the noise
factor,
n; = min{ gy, ..., e} (I=1,...,7), (2.2)

as the measure of quality of the ¢th product design. Denote the ordered n;’s by

Any product design for which n; > 7, — ¢ is called a d-best product design. We call the
selection of a d-best product design a d-correct selection.

First we provide statistical procedures that select a d-best product design with given
confidence level and then we give procedures that select a subset of product designs that
contains the optimal design with given confidence level. The probability requirements for

the two cases are as follows.

Design Requirement Rs: For specified « (0 < a < 1) we require that
Pp{CS-0} > 1 -« (2.3)

for all g where CS-¢ denotes the event that a d-best product design has been selected.

If an experiment has been completed with b fixed by economic considerations, intuition,
or another crerition, we can still adopt the screening goal of selecting, with a prespecified
confidence level, a subset of product designs so that the subset includes the optimal design.

That is, we wish to identify a subset of {1,...,7} so that the following holds.
Confidence Requirement Rs: For specified o (0 < @ < 1) we require that
Pu{CS-G} >1-a (2.4)

for all g where CS-G occurs when the selected subset contains the design associated with
Mr]-

When 7;,) — nj—1) > 0 there is but one product design satisfying n; > n,) — J, namely
the product design associated with 7, itself. Thus (2.3) implies that the best design is

5



selected whenever 7] — n,—1) > 0. A procedure that selects the best design whenever the
best design is sufficiently better than the 2nd best design is said to satisify an indifference-
zone design requirement. Bechhofer (1954) introduced the indifference-zone formulation of
selection problems for the one-way layout. Fabian (1962) proved that Bechhofer’s procedure
satisfied a strengthened version, corresponding to our Ry, of the indifference-zone design
requirement.

Sections 2 and 3 provide statistical procedures that satisfy the J-correct and subset
selection probability requirements, respectively. Throughout the remainder of the paper we
let Vij. denote the sample mean of all observations having mean p;; for 1 < ¢ < r and

1<j<e

3 Procedures for Selecting a )-best Optimal Design

In this section we analyse the following “natural” selection procedure based on the sample

means.

Procedure N': Compute the estimate §j; = min{Y;1.,..., Y.} of m; (i =1,...,7). Denote
the ordered 1);’s by

My < - < 0. (3.1)
Select the product design corresponding to 7, as the optimal design.

In practice, the number of product designs, 7, and the number of environmental condi-
tions, ¢, will be specified by the experimenter. The procedure N is completely defined when
the amount of replication of the basic design, b, is determined. Subsection 3.1 determines b
so that AV correctly selects a d-best design with a specified probability when the confounding
variance, 02, and the measurement error variance, o2, are known. Subsection 3.2 finds b for
the case when the relative size of the confounding variance to the measurement error variance
is known with the magnitudes of the individual variances being unknown; this corresponds

to assuming that v = 02 /0? is known but the individual 02 and ¢? are unknown.

3.1 A Selection Procedure When (¢?,0?) is Known

We determine the minimum number of blocks b required by N to achieve the guarantee (2.3)
of selecting a d-best product design. To compute this value, we find a configuration of means

p for which the probability of correct selection over g is minimum. The number of blocks



required to achieve probability 1 — « at this, so-called, least favorable configuration is the
mimimum number of blocks needed to plan the experiment. Theorem 3.1 identifies such a

least favorable parameter configuration for .

Theorem 3.1 The probability of J-correct selection for N, Py {CS-¢}, is minimized over
the set of all g when

0 +00 -+ +00
= 3.2
Ho —§ 400 -+ 400 (3-2)

(and the PCS is calculated as the probability that N chooses the design r).

The proof the Theorem 3.1 is given in the Appendix. It shows that configuration p,
is not the unique least favorable parameter configuration. The same value as Py, {CS-d}
occurs for any p obtained by permutating the f;;’s in g, within columns (whole-plots) or
rows (split-plots). However, for the purpose of determining b, the least favorable parameter
configuration in Theorem 3.1 is the simplest to use.

According to Theorem 3.1, we need only set the probability of correct selection at p,

(greater than or) equal to 1 — a. It can be shown that Py, {CS-6} is equal to
P{lr%ichj+V >Qi—6 (1<i <7“)}

where all random variables are mutually independent, Uy, ..., U, are distributed N (0, 02 /b),
V is distributed N (0,02/b), and @, ..., Q,_; are distributed N (0, (02 + 02)/b). This
probability can be expressed as

\J o2+ o?
ple mian—i-U—wZHcZiZHC—d (1<i<r)
Vb isise Vb Vb

where Z, ..., Z,;. are mutually independent N(0,1) random variables or as
: Vb .
P 121],126 Z] + ﬁZr+c Z 1+ ’)/ZH_C - 0—6(5 (]_ S 1< 7") (33)

where v = 02 /o2

We summarize these results and give two equivalent expressions, (3.4) and (3.5)/(3.6),
that can be used to determine the required number of blocks. The first is a representation in
terms of standard normal random variables and can be used to calculate the b via simulation.
The second, obtained by conditioning on max;<;«, Z;;. and min;<;<. Z;, is a double integral

that can be used to evaluate b by quadrature.
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Theorem 3.2 The mimimum number of blocks required for Procedure N to satisfy Prob-
ability Requirement R; is the smallest integer b for which b > ¢%0?/6% where ¢ solves the
equation

P{mianZ 1+fyln<1a<XZi+c—\/f_er+c—q}:1—a, (3.4)

1<5<e
with 7y, ... Z,;. being mutually independent N(0,1) random variables. Equivalently, the
left-hand side probability in (3.4) is

z/14+7—9y—q
Nal

rve [ [T oot @ -owr [1-0 )| s 2

when v # 0 and

c-ne [T [T oot —ale @ ti-e -l tdidy  (36)
when v = 0.

We have used both simulation and quadrature to evaluate P, {CS-d}; our experience is
that both techniques work well with small » and ¢ (r < 4 and ¢ < 5). Figure 1 presents
plots of the left-hand side of (3.4) versus ¢ for a selected set of (r,¢,y). These values can be
used to determine, approximately, the associated number of blocks for a given experiment.
The interested reader can also obtain a FORTRAN program from the first author that uses
quadrature routines from the International Mathematics and Statistics Library (IMSL) to

evaluate the left-hand side of (3.5)/(3.6) for arbitrary (r,¢,7,q).

Example 1 Montgomery (Ch. 7, 1991) applies ANOVA methods to compare three engi-
neering designs for automobile batteries. Batteries of each engineering design are tested at
the three operating temperatures: 15°F, 70°F, and 125°F. The response is the total number
of hours of battery life. The manufacturer has, of course, no control over the environmental
temperature in which the battery will be used once it is purchased. Consider applying the
methods proposed in this paper to design an experiment to select a battery design that has
(near) the longest minimum mean life over the three operating temperatures.

Based on data from a factorial experiment conducted using a randomized complete block
design, Montgomery tests for interaction between the battery designs and operating temper-
atures, and their main effects. Treating Montgomery’s data as pilot information to suggest

parameter values, we design an experiment to select a d-best design with 6 = 24 hours



when o, = /675 hours. Thus we treat any battery design as “nearly” optimal if its mini-
mum mean life is no more than 24 hours worse than the best battery design. Suppose that
we specify that the probability in Rs that N selects such a design be 80%. If we follow
Montgomery and construct a randomized complete block experiment to compare the r = 3
designs at the ¢ = 3 temperatures, then v = 0.0 and ¢ = 2.35 solves (3.4); thus (¢* x 02)/§?
= (2.35? x 675)/24* = 6.47 or b = 7 blocks should be used. If a split-plot experiment is
conducted in which it is assumed the relative variability due to confounding is v = .2 then
q = 2.55 solves (3.4) and (¢® x 02)/6* = (2.55% x 675)/24? = 7.62 so that b = 8 blocks must
be used. O

3.2 Selection When (02, 0?) is Unknown

If the variance o of the experiemental errors is unknown, the Design Requirement R s cannot
be satisfied based on a one-stage experiment, even if the ratio v is known. Intuitively, the

number of blocks required to guarantee d-correct selection with probability 1 — « increases

2

2 increases. This paper will not discuss multi-stage

to infinity as the measurement error o
procedures.

There are at least two cases where a single-stage experimental design is possible. The
first is when 7 and an upper bound for o2 are known; then use of the upper bound in place of
o2 in Theorem 3.2 leads to a conservative solution for b. A second case where a single-stage
solution exists is when the experimenter is willing to adopt the following modified version of

Rs that is stated in terms of the relative difference of the treatment means.

Design Requirement Rsre;: For a prespecified o (0 < o < 1) we require that
Puo{CS-(0,0)} >1—a (3.7)

for all p and o, > 0; here [CS-(, 0,)] denotes the event that a product design i has been
selected for which n; > ny, — do..

Defining a d-best product design in terms of its mean divided by measurement standard
deviation in (3.7) is analogous to a power requirement of an F test stated in terms of
an appropriate non-centrality parameter. We determine the minimum number of blocks b
required for procedure N to attain Rs,.;.

It is straightforward to mimic the arguments in Appendix and show that, for A/, the

probability of §-correct selection is minimized over the set of all (p, o) when

9



—d0. 400 -+ +00

Ko = (3.8)

—60, 400 -+ 400
0 0 -+ 0
(and the PCS is calculated as the probability that N chooses design r). The value of
P, 5{CS-(6,0c)} is independent of o, when (3.8) holds; an analytic expression for this
minimum probability is obtained by setting o, = 1 in either Equation (3.4) or (3.5)/(3.6).
Thus the number of blocks required to satisfy Design Requirement Rz, is the smallest

integer b greater than or equal to ¢?/§? where g solves the Equation (3.4), say.

4 Procedures for Selecting a Subset Containing the
Optimal Design

In many applications, the number of blocks used in an experiment is determined by external
time or cost considerations rather than a design criteria such as Rs or Rs.¢. In such a
situation, the investigator might still elect to use the selection procedure AN to select the
optimal design after conducting a sensitivity assessment of the operating characteristics of
this procedure for the number of blocks used in the experiment. For example, the investigator
might compute the probability of correct selection in Equation (3.4) for a range of §’s based on
the ANOVA estimates of 02 and o2. A plot of the pairs of § values versus the corresponding
minimum probability of correct selection provides a basis to interpret the degree of confidence
about the selection.

This section considers the alternative approach of using a screening procedure that sat-
isfies the confidence requirement Rs as the inference tool for identifying the optimal de-
sign. If the data strongly indicate a single design as being best, the proposed procedure
selects one (or a few) designs; if the data show high variability or the 7); are very close,

the procedure chooses a larger subset. Subsection 4.1 considers the case when (02,0?) is

known while Subsection 4.2 studies the case when (¢2,0?) is unknown. Throughout, we let
7 = min{Y;1.,..., Y.} denote the estimator of n; (i =1,...,7) and let
My < .. < (4.1)

denote the ordered 7;’s

10



4.1 A Screening Procedure When (02, 0?) is Known

Of course, applications in which 62 and o2 are known do not occur as frequently as those in
which one or more of these variances is unknown. However, the known variance case provides

the basis for the analysis of the unknown variance case.

Procedure Syx: Include design i in the subset if and only if
ﬁi Z 7/7\[7"} - dae; (42)

where d = q/\/b and q is the solution of (3.4); equivalently the left-hand probability in (3.4)
can computed from (3.5)/(3.6).

In principle, to determine d we require an expression for the minimum, over all p, of
the probability of correct selection. The following theorem describes the least favorable

configuration for the procedure S which then allows us to compute the minimum probability.

Theorem 4.1 The probability that the selection procedure Sy contains the optimum design

is minimized for the configuration

0 40 +00
_ : 4.3
H 0 +oo +00 (4:3)
0 0 0

and the PCS is calculated as the probability that Sy includes design r.

The value of the probability of correct selection at p; can be computed as

Py,l{CS—g} = Pu,l { min ?rj. > 71'1. —do, (]_ <i< 7“)}

1<j<e

or equivalently it is

P{min Zi 4V Zrre > 1+ 7 Ziye —Vbd (1gz'<r)} (4.4)

1<5<

where Z;, j = 1,...,r + ¢ are iid N(0,1) random variables and v = o2/02. With the
identification ¢ = v/bd, this probability is exactly the left-hand side of (3.4).

11



4.2 A Screening Procedure When o2 and o2 are Unknown

We propose a screening procedure that selects a random-sized subset of the designs in such a
way as to contain the optimal design with prespecified probability 1 — a no matter what the
p and the variances 02 > 0 and o2 > 0. First we provide an exact solution for the situation
when the relative ratio v = 02 /o2 is assumed to be known and then an approximate solution
when ~ is unknown.

When 7 is known, we propose the following subset selection procedure which satisfies the
confidence requirement

Puo,{CS-G} >1—-a (4.5)
for all g and all o, > 0.

Procedure Sy: Include design i in the subset if and only if
7/7\2' Z 7/7\[1"] - dSe;

r c b

where s2 =YY" > (Yij = Yij — Yop + Y..)? /v is based on ve = (¢ — 1)(rb — 1) d.o.f.,
i1 j=1 k=1

d = q/Vb, and q is the solution of (4.6); equivalently the left-hand probability in (4.6) can

be computed from (4.7)/(4.8).

The yardstick d must make the procedure achieve (4.5) for the parameter configuration
(p,0.) at which the probability of correct selection using Sy is a minimum. Theorem 4.2

identifies global minimizer of the PCS and is the analog of Theorem 4.1.

Theorem 4.2 The minimum of the probability that procedure Sy contains the optimal

design occurs at the configuration p, defined by (4.3).

The PCS evaluated at g, is independent of o2, To obtain d, we need only set the probability
of correct selection computed at p, equal to 1 — . This probability, set equal to the desired

confidence level, is

Py, o, {lrgjigc?rj. >V —ds, (1<i< 7“)} =1-oq.

Using an argument similar to that in Subsection 4.1, we can reexpress this equation as

P{min Z; > /147 maXZH_c—ﬁZHC—\/Wq(1§i<r)}:1—a (4.6)

1<j<e 7 T 1<j<r

12



where Zy,...,Z,4. are tid N(0,1) variables and v.W ~ xZ_is independent of the Z;s (recall
ve = (¢ —1)(rb — 1)). Alternatively, if f,(¢) denotes the density function of a chi-square
random variable with v d.o.f., the left-hand probability in (4.6) is

% VIFyz—y—q/t
vai

c-ve [ [T oot (@@ - @ ()

)] o () dtdzdy

(4.7)

for v # 0 and

e[ T[T ¢<x>¢<w—y—qﬁ> @ (@) |1- ( —y- q\/f)] fuu (1) dtdedy
(4.8)

when v = 0.

As in Section 3, both simulation and quadrature can be used to compute the minimum
probability (4.6). However, quadrature involving the three-fold integral (4.7)/(4.8) is sub-
stantially slower than simulation. In fact, we found that quadrature was not feasible to
perform the simulation study described two paragraphs below.

When v is unknown, an exact procedure can be developed by replacing s, with s., .
in Procedure Sy. However, the resulting procedure can be conservative and will be very
complicated to analyse. An approximate procedure results when one uses Sy with ~y replaced

by the moment estimator

4 = max {0, [(Szw+e/5§) - 1] /C}

where
T Cc

b
S =S Vi =Y =Y o+ Y.)? Ve
k=1

i=1 j=1
is the ANOVA estimator of the sum co? + 02 with Ve, = (r — 1)(b— 1) d.o.f. Thus ¢, and
hence d, depends on the data through 4. When the degrees of freedom associated with ~
are moderate to large, even for experiments with a few blocks, the approximation will be
reasonably good. Intuitively, the reason is that the value of the minimum probability of
correct selection is fairly flat when viewed as a function of g. Thus “small” errors resulting
from the estimation of o2 in the definition the selection rule will not have a large effect on
the achieved PCS.

To illustrate, we present the results of a simulation study in which the achieved PCS

of the approximate rule was estimated at the (least favorable) configuration p, for (o, r,c)

13



= (1,3,4). These estimates, based on 1000 simulation trials, are for a variety of true (v, b, 0%)
values. For each of the 1000 trials, the value of ¢ corresponding to the sample ¥ for that trial
was determined from (4.6) based on a secondary simulation of 500 replicates. The standard

error of the estimated PCS is about .005.

Table 1: Estimated Achieved Probability of Correct Selection for Sy at (u,0c) = (u1,1)
when (r,¢) = (3,4) and the Nominal Confidence Level is 80%

0'3) b Ve Vewte PMI,I{CS‘Q}
00 3 4 24 0.812
0.0 6 10 51 0.810
0.0 9 16 78 0.794
0.0 12 22 105 0.818
02 3 4 24 0.795
02 6 10 51 0.811
02 9 16 78 0.792
0.2 12 22 105 0.811
04 3 4 24 0.785
04 6 10 51 0.814
04 9 16 78 0.786
04 12 22 105 0.816

The performance of the procedure depends primarily on the degrees of freedom for the
the two mean squared errors which are v, = 3(3b — 1) and v, = 2(b— 1) for this example.
Even for the smallest values of these degrees of freedom, 4 and 24, the achieved performance

characteristics are nearly nominal for a wide range of v values.

5 Discussion

We comment on three issues—the minimum of the PCS of the proposed procedures compared
with certain no-data procedures, the use of less conservative bounds for the means, and the
symmetric assignment of whole-plots and split-plots to the noise and product design factors.

Consider the probability of correct selection using N. In the case of a one-factor selection
problem one can use the no-data procedure that picks a level of the factor at random. If
there are r levels of the factor, this procedure achieves probability of correct selection 1/r. In
the asymmetric two-factor problem discussed in this paper we also wish to select the levels of

one factor; the same no-data procedure achieves probability of correct selection equal to 1/r
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in the present problem. However, if one uses ' and the true p is “near” the least favorable
configuration, then the achieved PCS can less than 1/r if the number of blocks, b, is too
few. The reason for this can be seen by examining (3.4) for the simplest possible case, 7 =0

(02 = 0: the randomized complete block design). This probability is

P{min Zj; > max Zi+c—q}.

1<j<¢ 1<i<r

The best level of the design variable is 7; in order for level r to be selected as best the
minimum of the column variables, min;<;j<. Z;, must exceed the minimum for each of the
other rows. However, in the least favorable configuration, only the first column comes into
play because the remaining columns all have mean +oco0. Thus there is an ‘order statistic
effect” for this case that increases with c.

To illustrate this effect consider (3.4) when ¢ = 0. Table 2 illustrates this phenomenon.
First notice that all values of (3.4) are less than 1/r (.5 or .25 for r = 2 and r = 4,

Table 2: Probability (3.4) for ¢ = 0 and Selected (7, ¢, )

roc v | (34) withg=0
2 2 00 0.333
2 4 00 0.200
2 2 0.2 0.349
2 4 02 0.236
2 2 04 0.361
2 4 04 0.249
4 2 0.0 0.102
4 4 0.0 0.003
4 2 0.2 0.116
4 4 0.2 0.005
4 2 04 0.126
4 4 04 0.006

respectively). The lower bound decreases as ¢ increases (r and 7 fixed) and the lower bound
increases as 7 increases (1 and ¢ fixed). However, for any fixed (r, ¢, 7), (3.4) — 1 as ¢ — 400
showing that it is always possible to design an experiment achieving R4 for any (0, a).

The argument in the previous paragraph also shows that if an experimenter knows that
the relative spread of the means among the operating conditions is less than the +o0o that

occur in the least favorable configuration (3.2), then it is desirable to improve the lower
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bound (3.4). For example, if it is known that L < p;; < U for all 7, j, then

L U : U LU : U
: : : and A
L u ... U LU --- U
L+¢6 L+ -+ L+9 L L -+ L

are the least favorable configurations for d-correct selection using N and G-correct selection
using Sy, respectively. However the value of the corresponding PCS at these p is more
complicated to calculate than those at either p, or p,.

Suppose that one considers the (symmetric) alternative design in which the experimenter
assigns the levels of the noise factor to the whole-plots and then the levels of the product
design factor to the split-plots using, as usual, separate randomizations for each whole-plot
and split-plot. The following shows that such a design is much more difficult to implement
than the assignment of product design and noise factors as advocated in Section 3.

When the noise factor is assigned to whole-plots,
Yije = Br + pij + wjr + €k (5.1)

is the appropriate analog of Model (2.1) where wjj is the potential confounding effect of the
jth level of the noise factor in the kth block, and Jj, y;; and €;;;, are as in Model (2.1). If,
aside from the means, all terms have independent normal distributions then it can be shown
that if ¢ is determined by

o B P (V2 B 2 e (A ) a1 6
where 71, ..., Zyio 1, and Z7, ..., Z* are iid N(0,1) random variables, then procedure N
satisfies Rs when b is the smallest integer for which b > ¢%0?/6% and that procedure Sk
satisfies Rs when d is defined by d = ¢/v/b.

Unfortunately, the ordered (r — 1)-tuple (ji,...,J,_1) that minimizes the probability in
(5.2) depends on r, ¢, and v. A lower bound for the left-hand side of (5.2) is

P { min {\/f_ij + Z]*} > max /7Z; + max Z; . — q} (5.3)

1<j<e 1<i<m 1<i<r
r4+c—1

“+o0 +oo ¢
— /700 /OO jHl{1—(1)<ﬁlr§2>&zi+{2?<§zi+c—ﬁzj—q>] Z:H1 (2;)dz;

where m = min{r — 1,c}, and the Z; and Z} are as in (5.2). Setting (5.3) equal to 1 —

and defining b or d as in the previous paragraph gives conservative procedures satisfying
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the corresponding probability guarantee. Clearly, it is much simpler to use the alternative
randomization recommended in Section 3 than attempting to implement the exact procedure
via (5.2) or the conservative procedure defined by (5.3).

In some situations, cost and time may demand the use of a fractional factorial design
instead of a split-plot design. Selection and screening procedures for fractional factorial
experiments based on the minimum mean performance over the levels of the noise factor are
being investigated by the authors. Interested readers are referred to Santner and Pan (1997)

for details.
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A Appendix
Proof of Theorem 3.1

Proof: Let 7); be the estimator corresponding to the design with ny, 7(1')1., ...V(i)c. be
the sample means associated with 7)), and let {uy;);}5-, denote the means associated with
ni- Thus 7y = min{V(i)l., o ,Y(i)c.} and 7 = min{ppn, ..., gt for i = 1,...,r. For
simplicity, let s = r — 1 throughout.

The idea of the proofis to first show that the procedure selects the (unique) best treatment
when 7)) — 7,—1] > § and then prove that this implies (2.3) for any p. Suppose first that p
satisfies 7] — 1p5) > 0. Then, by definition, the probability of correct selection is

Pu{CS-6} = Pu{ijpy >0 (1<i<r)}
= Ppd{iie) —npy = () — ma) + (g — ) (L <d <)}
> Pp{iiey —nmm = (e —ma) =6 1 <i<r)}, (A.4)
since 7y — M) < -0,

min {(Vy;. = 1) + (s =) } > (y —ma) =0 (1< < T)}

min {Y);. — gyt = (e — ) =0 (1< < 7“)} : (A.5)

1<j<¢c

> P

because pi;; — 7] > 0. Thus

(45) > Pu{ min (Vi — b = Vg~ =0 1<i<nf, (A

1<j<e

where j; is the index for which ny; = pyz;, since Y(Z-)ji. — pij; = Me) — np)- We have

(A6) = Py { min (V5. — ppy} > Vo — s — 0 (1< < r)} . @A)

1<j<¢c

because the distribution of (Y(l)jl- = 1)1+ s Y(s)js- — H[s]js> mil’llgjgc {7(7“)] - MMJ}) is the
same as that of (?(1)1 - M[l]l) e ,?(3)1. - M[s]l; minlSjSC {?(r)] - M[T]]}) This giVGS

(A7) = Py { min {V,; — pirg} > Voo — iy — 6 (1< i < r)}, (A.8)

1<j5<e

because the distribution of (Y(I)L = M1 .- - ,?(5)1. — M[s]1; minlSjSC {Y(r)j- - N[r]j}) is iden-
— urj}). Finally,

tical to that of (711. — M1ty .-y Ysl- — Ms1, minlSjSC {Yrj~

(A8) = Py {lrgjlgc{ym} >V, (1<i< r)} (A.9)
_ {1125126{YW}> win (V;;} (1< <7“)} (A.10)
= Ppu {iiey > i (1 <i<r)} =Py {CS-6} (A.11)
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where (A.9) holds because the distribution of (711. — 11y ey Vg1 — 1, MiNg << {Vrj. - ,urj})
under p is the same as that of (711., oY, min;<<. {Yrj.}) under p,, and (A.10) holds
because j;j = +oofori=1,...,5and j =2,...,c.

For the second part of the proof, assume that p is such that 7, — 7 < J. Let Sy denote

the index of the design selected by N, i.e., 7js,, is the maximum 7;. By definition

Pu{CS-0} = Pu{ny—06<ns}
> P[,l, {775,\/ > Mr) — d+ (ﬁSN - ﬁ(r))} (A'12)
= Pu {(ﬁ(r) — ) = (Msy — Nsw) — 5} (A.13)

(A13) > P/"’ {(A(,n) — 77[1"]) > (ﬁ(i) — nm) —0 (1 <1< T)}
= Pu{(i) +6) = my = (e —ma) (1 <i<r)} (A.14)
Let p’ = (p2;) be defined

5 ,LLZ]_T][Z] for Z?é[r] and 1§j§c
Fij = Iu[r]]—{—6—77m for Z:[T] and I1<j<c¢

For i = 1,...,r, let 0 correspond to p’. Then 1! = min{p; — n;} = 0 for i # [r] and

776@ = min{ypy; + 0 — 1} = 0. Thus we obtain,

(A14) = Pys {im > iy 1 <i<r)}
> Py {CS-6} (A.15)

where (A.15) holds by (A.11) because p’ has an associated n° that satisfies the condition of
Part I. O

Proof of Theorem 4.1

Proof: Using the same notation as in the proof of Theorem 3.1, the probability that the

optimum design is contained in the selected subset is

Pu{CS-G} = Pulie) > iy —doc}

= Py { min {Yy;.} > min {Y;);.} —do. (1<i< T)}

1<j<e 1<j<e

= Pu, { min {?(r)] — ’I]m} > min {7(2)] - 77[2]} + (’I]M - ’I]m) - dO’6 (1 S 1< 7“)}

1<j<e ~ 1<j<e
> Pu {lrgjigc{V(r)j. — Nt > 11%1}26{7(2')3: -} —doe (1<i< 7“)} (A.16)
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since ny) — Ny < 0 for 1 <7 < r. Thus

(A16) = Py { min {Y (). = pppgj + Py = e} 2 min {Y e — g} —doe (1<i< T)}

i<j<e I<j<e
= Fu {%@jﬁr)j- = pips} = min {Y . —ma} —doc (1<i< T)} (A.17)

since (pup); — M) = 0 for j = 1,...,c. For 1 <4 < r, let j; denote the index for which

?(Z’)ji. = min<j<. Y (;);.; we obtain

(A.l?) > Pp, {gl}gc{(?(”j' — /ij)} > ?(i)ji~ — N — do, (1 <1< 7“)}
> Pu {lrg]igc{(7<r>j- = )} 2 Y — pie — doe (1< < T)} (A.18)
= Pp, {llzljigc{(?(r)j. - /ij)} Z 7(z’)1~ - /J[m - dU6 (1 S 1< 7“)} (A.19)

where (A.18) holds because p;j;, —np; > 0 and equality holds in (A.19) because (Y );,. — f435,)

for 1 <i<r, and lrgig {V(T)j — Ji(r);} are mutually independent and their distributions do
<j<e

not depend on p. Thus

(Alg) = Pp, { min {71"]3 — /»Lrj} Z ?il. — M1 — dUG (1 S 1< ’I")}

1<j<c
= Pu, {in (V) 2 Vo~ doe (1<)}, (A.20)
where g, is given in Theorem 4.1 because the joint distribution of (Y,;—u,;), for j =1,...,¢,

and (Yi. — pi1), for 1 < i < r, under p, is identical to the joint distribution of Y,;., for
j=1,...,¢,and Y., for 1 <7 < r under p,. Thus

(A20) = Py, {&Ei?c?ﬂ' > 11;1]1261@-]-. —do. (1<i< r)} (A.21)
= Py {CS-G}

where (A.21) holds because f;; = +oo for1 <i<rand j=2,...,cin p, O
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Figure 1: Plot of (q, P {minlgjgc Zi + /7 Zyye 2 /147 maxicicy Zige — q}) for (r,e,v) €
{2,3,4} x {3,5} x {0.0,0.2,0.4,0.6}. Here Z1, ..., Z,,. are iid N(0,1) random variables.

The solid line (——) is 7 = 0.0, dotted line (---) is 7 = 0.2, the short-dashed line (- -) is
v = 0.4, and the long-dashed line (— —) is 7 = 0.6. Panel (a) is (r,¢) = (2, 3), panel (b) is
(r,e) = (2,5), panel (¢) is (r,¢) = (3, 3), panel (d) is (r,¢) = (3,5), panel (e) is (r,¢) = (4, 3),
and panel (f) is (r,¢) = (4,5).

22



