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Abstract

Dynamic models extend state space models to non—normal observations. This pa-
per suggests a specific hybrid Metropolis—Hastings algorithm as a simple, yet flexible
and efficient tool for Bayesian inference via Markov chain Monte Carlo in dynamic
models. Hastings proposals from the (conditional) prior distribution of the unknown,
time—varying parameters are used to update the corresponding full conditional distribu-
tions. Several blocking strategies are discussed to ensure good mixing and convergence
properties of the simulated Markov chain. It is also shown that the proposed method
is easily extended to robust transition models using mixtures of normals. The applica-
bility is illustrated with an analysis of a binomial and a binary time series, known in

the literature.
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1 Introduction

Markov chain Monte Carlo (MCMC) simulation in dynamic models with non-normal ob-
servation model is an ongoing problem. Such dynamic models relate observations y;, t =
1,...,T, to unobserved state parameters «; with a so called observation model, typically a
generalized linear model. Temporal dependence is modelled within a transition model, an
autoregressive Gaussian prior for the latent parameters a = (o, ..., a/)". Hyperparameters
are included in a third level of hierarchy and some conditional independence assumptions

complete the model specification.

Such models are known as state space models if the observations y; are Gaussian. MCMC
simulation in state space models is discussed in several papers. Carlin, Polsen & Stoffer
(1992) discuss Gibbs sampling and update «; with a sample from the corresponding full
conditional. However, Carter & Kohn (1994) and Fruehwirth—Schnatter (1994) observe bad
mixing and convergence behavior in such a “single move” blocking strategy. They propose
to update « all at once instead, again using a Gibbs step, i. e. a sample from the (now
high dimensional) full conditional. Special properties of this Gaussian distribution ensure

an efficient algorithm.

Corresponding work for the more general class of dynamic (generalized linear) models is
rather rudimentary; the full conditionals are now fundamentally non-Gaussian due to the
non-Gaussian observation model. Knorr-Held (1995) uses a specific Hastings proposal to
update the ay’s one at a time, when there is a large number of observations y,; for a given
time ¢. The resulting algorithm is appealing due to its simplicity and flexibility. However,
it may show signs of slow mixing and convergence when the prior is tight relative to the

information of the observation ¥, such as for binary time series.

Gamerman (1995) tries to counter this problem through a reparameterization of the model
to a priori independent system disturbances. A Gaussian Hastings proposal, based on an ap-
proximation of the full conditional with additonal Fisher scoring type steps, is used. Gamer-
man reports considerably improved mixing and convergence behavior. However, the simple

structure of the full conditional is distroyed, leading to an algorithm of quadradic computa-



tional complexity in 7. The algorithm also involves several evaluations of first and second

order derivatives of the observation model for every updating step.

Also Shephard & Pitt (1995) use “2 to 5” Fisher scoring type steps and analytic Taylor ex-
pansions to calculate the moments of a Gaussian Hastings proposal that tries to approximate
a specific full conditional. In contrast to Gamerman, they propose to divide « into several
blocks (“block move”) as an intermediate strategy between updating « one at a time and

all at once.

Both algorithms have in common proposals which try to approximate the full conditional,
imitating a Gibbs step with acceptance probability close to 1. However, this is not necessary
at all, as already mentioned in Besag, Green, Higdon & Mengersen (1995). For example, the
widely used Metropolis updating step has optimal performance for average acceptance rates

below 0.5 (Gelman, Roberts & Gilks, 1995).

For MCMC simulation in dynamic models we propose a specific proposal that reflects the
autoregressive prior specification but is independent of the chosen observation model. The
resulting algorithm is conceptually simple, since all proposals are Gaussian with known
moments. Furthermore, it is derivative—free, which is a major advantage concerning both
implementation and computation time. Updating is done within a certain blocking strategy
to ensure good mixing and convergence of the simulated Markov chain. Tuning of the
algorithm is done by choosing a block configuration, rather then the spread of the proposal

as in the Metropolis case.

The next section reviews dynamic models as a useful framework for the analysis of categorical
time series or panel-data. MCMC simulation by conditional prior proposals is discussed in
Section 3. Some simulation results are given for a dataset, known to be problematic for
the single move algorithm. Finally, extensions of the transition model to errors within the
class of t—distributions are discussed in Section 4. Such models allow abrupt jumps in the
transition model, also known as innovative outliers. As a final example, we analyze a binary

time series with an additional hyperprior on the degrees of freedom of the t-distribution.



2 Dynamic Models

Let y = (y1,- .., yr) denote the sequence of observations and a = (o, ..., o) the sequence
of state parameters. We assume that p(ay|a_y, Q) (t =2z +1,...,T) has a Gaussian distri-
bution with mean —Fio;_1 — Foay_9 — ... — F,au_, and dispersion @);. Here a_; denotes the

sequence () ,,...,a; ), the matrices F,..., F, are assumed to be known. So

T
p(a|Q) = H ploula_y, Q)
t=2z+1
denotes a Gaussian (vector) autoregressive prior of lag z for a.. It is often called the transition
model. We write short ) for the sequence of dispersions Q,y1, ..., Qr; if Q) is assumed to

be time—constant we just write () = Q.

Conditional independence of y;|ay, t = 1,...,T, leads to the following posterior distribution:
T
p(a, Qly) o< [T p(yeler) x p(al@) x p(Q);
t=1

here p(Q) is some hyperprior, independent of o and .

Typical examples of such transition models (with time-constant variance @)) are first (z =

1) and second (z = 2) order random walks

o, Q@ ~ N(ap1,Q)
Oét|057t; Q ~ N(Qatq - at—zaQ)

or seasonal models ay|la_y, Q ~ N(—ay_1 — ay_9 — ... — ay_,, Q) with period z + 1.

It is always possible to write Gaussian autoregressive priors within a penalty formulation
1 !
p(a]Q) = exp(~a'Ka).

Note, that p(«|Q) is improper due to implicitly assumed diffuse priors for the initial pa-

rameters oy, ..., q,; therefore K ! does not exist. For the random walks given above the
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corresponding penalty matrices are

1 -1
-1 2 -1
X -1 2 -1
)
-1 2 -1
-1 2 -1
-1 1
and
1 -2 1
-2 5 -4 1
1 -4 6 -4 1
1 -4 6 -4 1
K-t
0 ;
1 -4 6 -4 1
1 -4 6 -4 1
1 -4 5 =2
1 -2 1
respectively.

The penalty matrix K plays a key role in the derivation of the conditional distribution of a

subvector of . Defining

F, F,, ... F F
F= Fz szl Fl FO
Fz Fz—l Fl FO
and the block—diagonal matrix
Qz—i—l
Qz—l—?

Qr



it follows that K = F'Q 'F.

Since () is symmetric, so is K. Furthermore, it can be shown that the elements of

ki ko ook
K= /le' ko
kri ... kproy ker

are given by
min(z,z+s,T—t)

kt,t+s = Z F‘J{Q;}ij*S'

j=max(0,s,1+z—t)
Note that K has zero blocks outside the z off diagonals.

Applications of dynamic models are widespread. Fahrmeir & Tutz (1994a) discuss smoothing
of categorical time series, panel- and survival data. Fahrmeir & Tutz (1994b) introduce
dynamic models for ordered paired comparison data. Duration data is covered in Fahrmeir
& Knorr-Held (1996). Breslow & Clayton (1993) and Clayton (1996) discuss biostatistical
applications with second order random walk priors in mixed models, which is somewhat
related. Berzuini & Clayton (1994) propose second order random walk priors in survival
models with multiple time scales. Also Besag, Green, Higdon & Mengersen (1995) use

second order random walk priors in age—period—cohort models.

Most of the references above have bi— or multinomial logistic or log—linear Poisson models in
ng

the observation model. If several unitsi = 1,...,n; are observed, then p(y:|a;) = TI p(ysilou)
i=1

is usually assumed by suitable additional conditional independence assumptions.

3 MCMC Simulation with Conditional Prior Propos-
als
Our MCMC implementation is based on updating using full conditionals as described in full

detail in Besag, Green, Higdon & Mengersen (1995); we also use their terminology. We denote

full conditionals by p(ay| ), for example. We start this Section with a technical note about
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the conditional distribution of a subvector «, ..., ap, given aq, ..., 41 and apyq, ..., Q7.
Then the single and the block move with conditional prior proposals is introduced. Blocking
strategies, necessary for the implementation of the block move, are sketched. We close with

some simulation results.

3.1 Conditional properties of autoregressive priors

The conditional distribution of a subvector of «, given the rest of a plays a key role in our
algorithm. Let oy, denote the subvector (ag, agi1,--., @) and Ky denote the submatrix
out of K, given by the rows and columns a to b. Finally, let K, ; and K,y 7 denote the

matrix left and right of K, respectively:
Ki,afl
K = Kl,afl Kb Kb+1,T
K
Then the following result can be proved by simple matrix manipulations: The conditional

distribution of oy, given oy 41 and ayiq1 is normal N (f1gp, Xgp) With moments
1
—Kg Ko 01,1 a=1
_ -1
Hab = Ky Ko 101,41 b=T
1 .
—K,, (Ki4-100 41+ Kyp1rp1r)  otherwise

and X, = K@l.

Note that apart from hyperparameters, only ., ..., aq—1 and i1, ...,y , enter in pig,

since all blocks in K outside the z off-diagonals are zero.

3.2 Single move

The most natural blocking strategy for « is to update a; one at a time. The main advantage
is that the full conditional has a simple form, achieved by the hierarchical structure of the

model:

plag| ) o< p(yslas)pla|ags, Q).
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One way to update «; is to use a proposal «;, distributed as p(ay|asz, @). Such a “condi-
tional prior proposal” is independent of the current state of a; but, in general, depends on
the current states of all other parameters (here o, and Q). Note, that “Gibbs proposals”,

i.e. samples from the full conditional, have exactly the same “conditional independence”

property.

It is illustrative to discuss differences between conditional and unconditional independence
proposals (Tierney, 1994). It is often very difficult, at least for higher dimensions and non—
normal models, to construct an (unconditional) independence proposal with good acceptance
rates. In contrast, a conditional independence proposal depends on the current state of
neighboring parameters, it is therefore far more constrained then the unconditional version,
being already in the right part of the state space. On the other hand, its distribution changes
in every iteration step (if neighboring parameters are updated and accepted), it is therefore
still very flexible (Unconditional independence proposals are generated from exactly the same

distribution in every iteration step).

The Hastings acceptance probability simplifies for the conditional prior proposal to

win 1, 2080}
p(ye| o)
the likelihood ratio for observation g;. Conditional prior proposals have a natural interpre-
tation: o is drawn independently of the observation model and just reflects the specific
autoregressive prior specification. If it produces improvement in the likelihood at time ¢, it
will always be accepted, if not, then the acceptance probability is equal to the likelihood
ratio. The «;’s should be visited in random order to avoid an artificial drift of the simulated

Markov chain.

Of course, a simple random walk proposal can be used instead, but it has to be tuned. Other
single move updating schemes are more demanding in their proposals and therefore are likely
to be slower in CPU time, slower also due to the fact that the computation of the acceptance
probability gets more complicated. Gamerman (1995) and Shephard & Pitt (1995) construct
proposals that try to approximate the full conditional using additional Fisher scoring steps

and Taylor approximations. These procedures involve the evaluation of score functions and



information matrices at every update step. A real Gibbs step requires additional iterations

via a rejection sampling procedure and is likely to be inefficient.

However, the single move blocking scheme might be very slow converging, especially if neigh-
boring parameters are highly correlated. This is typically the case when the likelihood at
time ¢ is very flat in a; and does not give much information relative to the autoregressive
prior specification. Binary time series are a typical example. A simple modification of the
single move conditional prior algorithm addresses this problem without losing its simplicity

both in programming and computing time.

3.3 Block move

Instead of updating one parameter oy at a time, the block move is based on updating one
block a,s = (ay, ..., as) at a time. The number of blocks may range from 2 up to 7', which
corresponds to the single move. Consider the breakpoints that divide « into blocks as fixed
for the moment. The idea of this blocking strategy is to use blocks that are large enough,
so that the corresponding likelihood provides enough information to ensure a good mixing

and convergence behavior. So what kind of proposals are useful for the block move?

It is generally not clear how to choose the spread of a multivariate Metropolis proposal.
But, in contrast, the generalization of the conditional prior proposal is straightforward:
The simple structure of the full conditional is retained, since p(oys|ay -1, asi1.7, Q) is still
normal with known moments (see Section 3.1). Therefore a conditional prior proposal can
be implemented similarly as in the previous section (using the Cholesky decomposition):

Generate o, distributed as p(a,s|a1,—1, @s41,7, Q) to update the full conditional

S

plars| ) o< [T p(yelen)planslan . asiir, @)
t=r
Note, that both for the single and the block move, the conditional prior distribution
playslog p_1, o517, Q) depends on not more then 2 % z state parameters and the hyperpa-

rameter (), a convenient fact for implementation of the conditional prior proposal. The



acceptance probability simplifies again to a likelihood ratio

I1 p(yeloy)
min ¢ 1, 7t:sr
tH P(ye]ow)
=r

Typically a bigger block size coincidences with smaller acceptance rates, since the likelihood
is more informative for an increasing number of units. Shephard & Pitt (1995) propose a
different proposal in the block move. It is again based on a Taylor approximation of the full
conditional like their version of the single move proposal. Furthermore they propose “2 to 5”
additional Fisher scoring iterations to get a reasonable approximation and perform a pseudo
rejection sampling step (Tierney, 1994). In contrast, conditional prior proposals benefit of
block updating without spending too much effort in constructing appropriate proposals and

calculating acceptance probabilities.

3.4 Blocking strategies

The block move provides a considerable improvement in situations where the single move
has bad mixing behavior. However, fixed blocks still cause convergence and mixing problems
for parameters close to a breakpoint. Changing the block configuration in every iteration
cycle is a simple remedy. This can be done either by a deterministic or a random scheme.
The random mechanism has to be independent from the MCMC output, though. In all
following examples we used random blocking with fixed standard block size. The first block
has uniform random block size between 1 and the standard block length. So, most of the
updating involves blocks of a fixed block length, which has computational advantages, since
the dispersion matrix of the standard block size full conditional can be computed in advance,
at least for Gaussian transition models with constant variance. Block sizes proportional to
the number of observations n; per block may also be considered in situations where n; is

changing over time as in survival models (Fahrmeir & Knorr-Held, 1996).
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3.5 An example: Tokyo rainfall data

To illustrate the gain of the block move, we analyze the Tokyo rainfall data (e.g. Fahrmeir
& Tutz, 1994a), which is known to be problematic for single move algorithms. This data
consists of a single binomial time series of length 7" = 366. We assume a binomial logit

model

B(2,m) t#60
Y |ay ~ , m=1/(1+exp(—ay)),
B(l,m;) t=60
with a second order random walk prior for {cy}. A highly dispersed, but proper gamma prior
was chosen for the random walk precision (a = 1, b = 0.005). This choice reflects sufficient

prior ignorance about () but avoids problems arising with improper posteriors. Figure 1

displays the data and some characteristics of the posterior distribution of {m;}.

We separate our empirical analysis into two parts, speed of convergence and efficiency of
estimation. First we focus on the empirical convergence behavior. For block size 1, 5, 20
and 40 we computed the average trajectories of 100 parallel chains after 10, 50, 100 and 500
iterations. For every chain, the state parameters were initialized to zero and the variance
Q@ to 0.1. We also computed the average acceptance rate of the Hastings steps, averaged
over all a;’s. Figure 2 shows clear empirical evidence that the block move converges much
faster for bigger block sizes, at least for this data set and model. The single move algorithm
does not converge at all, at least for the first 500 iterations. The algorithm with blocksize
40 seems to have reached equilibrium after only 50 iterations. The corresponding empirical
average acceptance rates have been 99.4 % (block size 1), 94.4 % (size 5), 65.5 % (size 20)
and 35.3 % (block size 40).

We repeated the same analysis, assuming a random walk of first order instead. Conver-
gence was a bit faster and, again, the block move algorithm exhibits superior convergence

performance.

A measure of efficiency of estimation are the autocorrelations of parameters of the simulated
Markov chain after reaching equilibrium. The larger these correlations are, the larger the

variances of the estimate of the posterior mean. Intuitively it is clear that other posterior
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Figure 1: Tokyo rainfall data. Data and fitted probabilities (posterior median within 50, 80 and

95 % credible regions). The data is reproduced as relative frequencies with values 0, 0.5 and 1.
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Figure 2: Speed of convergence of the block move algorithm for different block sizes.
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characteristics are less efficiently estimated as well. We started the chain in equilibrium,
ran it for 1000 iterations and stored every 10th sample until we had 10,000 samples. We
calculated autocorrelations for 12 parameters, namely for ¢ =1, 33, 67, 100, 133, 167, 200,
233, 267, 300, 333, 366 and for the hyperparameter ). We did this analysis twice, for
blocksize 1 and blocksize 20, both assuming a second order random walk prior. The results
can be summarized as follows: For block size 1, all autocorrelations up to lag 40 of these
parameters and hyperparameters were all larger than 0.5. In contrast, for blocksize 20,
the autocorrelations of all parameters considered were close to zero for lag 5 and bigger.
Autocorrelations for the hyperparameter ) were somewhat bigger (around zero for lag 20

and more) but still much smaller than for blocksize 1.

Figure 3 shows trajectories of the last 2000 iterations for three representative parameters oy,
100, (333 and the variance (). Whereas the mixing behavior of the blocksize 1 algorithm is
catastrophic, the blocksize 20 algorithm shows well-behaved mixing. The plots for the other

parameters look very similar.

4 Incorporating model uncertainty

The temporal variation of underlying parameters may have jumps, so called innovative out-
liers. The Gaussian distributional assumption in the autoregressive prior, however, does not
allow such abrupt movement. Distributions with heavier tails such as t—distributions are
more adequate. In this section we will sketch how autoregressive priors can be extended via
an hierarchical t—formulation with unknown degrees of freedom (Besag, Green, Higdon &

Mengersen, 1995).
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Figure 3: Trajectories of ay, aqgp, asss and @ (from up to down).
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4.1 Hierarchical t—autoregressive priors

Introducing hyperparameters v = (y,41, - .., 1), the autoregressive prior formulation can be

extended to
Oét|at;Q;'YtNN<_ZF‘lOétl;Q/7t>7 (t:Z+177T)
=1

Assuming 7, to be independent gamma distributed v, ~ G(3, ), o|a—, Q has a t-distribution

with v degrees of freedom.

The distribution p(«|y, Q) can be expressed again in a penalty formulation with a penalty
matrix K, now depending on 7, too. The blocks in K have the form

min(z,z+s,T—t)

Kiprs = > FJ{Q;LIJFJ—S

j=max(0,s,1+2—t)

with Qi4; = Q/vi4;. For example, the matrix

V2 -2
—Y2 Y2+ 73 =73
=3 Y3+ —V4

Q=

—Yr—2 Yr—2+77-1 —V7r-1
—Yr—1 Yr—1+7Yr —7r

—Jr T
corresponds to a univariate first order random walk hierarchical t—formulation. Updating of
« can be done again by single or block moves. Also the model can be extended via a prior

specification for v.

The full conditionals of the hyperparameters are given by

v 1v 1 1
W~ GG reen).
(T—2)
14 % 1 1 T T 3_1
and p(v| ) o p(v) X 5) 7 exp | —ov > w| 11 NEa)
I (5) t=z+1 t=2+1



4.2 A second example: Sleep data

Carlin & Polsen (1992) present an analysis of a binary time series of length 7" = 120 minutes.
The outcome variable y; corresponds to the sleep status (REM (y; = 1) or non-REM) of a spe-
cific child. We reanalyze this data to illustrate the hierarchical ¢-formulation. The response
variable is assumed to depend on a latent “sleep status” a; via an dynamic logistic model. We
place an equally weighted hyperprior p(v) on the values {2’“, k=-1,-0.9,-0,8,...,6.9, 7.0}
and assume «; to follow a hierarchical ¢ random walk. For updating v, we used a discrete
random walk—type proposal which gave equally weight to the two neighbors of the current
value. Note that for the limit cases v = 0.5 and v = 128, this proposal becomes determinis-
tic, proposing the only neighbor. The acceptance probability has to be modified adequately

for proposed jumps to or away from these limit values.

The following analysis is based on a run of length 505000, discarding the first 5000 values
and storing every 100th thereafter. The chosen block length was 10 which resulted in an
average acceptance rate of 68.6 %. Starting values were zero for all a;’s. Since the posterior
might be multimodal the chain might stay in one part of the posterior for a long time. To
account for that we started several chains with different values for v over the whole range of
the prior: 0.5 to 128. However, all of these chains moved after not more than 1000 iterations

into the region around v = 1.

Figure 4 shows the data and estimates. Note that our model formulation gives a significant
better fit to the data then the analysis by Carlin & Polsen (1992, Figure 1, p. 583). The
resulting posterior for the hyperparameter v has its mode at v = 28793 ~ 0.81. The 90
and 95 % credible regions for v are [0.66,3.3] and [0.54, 13.0], respectively, showing strong
evidence for highly non-normal system disturbances. The estimates of the sequence {a;},
the latent sleep status, exhibit some huge abrupt jumps, e.g. around ¢t = 53 and t = 62.

Note that the posterior for some values of ¢ is highly skewed.
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Figure 4: Sleep data. Data and estimates.
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5 Discussion

Conditional prior proposals reflect the dependence of underlying parameters and therefore
provide a useful tool for highly dependent parameters in dynamic models. The resulting
algorithm is appealing since all proposals are easy to generate and all acceptance probabilities

are easy to calculate. The choice of a blocking strategy serves as a tuning device.

We also experimented with conditional prior proposals in dynamic models, where p(«) is a
product of several autoregressive prior specifications. For example, each component of «;
may correspond to a certain covariate effect (plus intercept) and independent random walk
priors are assigned to all components. Here two generalizations are possible: either updating
each component within its own blocking strategy or updating all components within one
blocking strategy. The former approach provides more flexibility in tuning the algorithm
and has been successfully implemented for duration time data. However, the latter is faster,

especially for large dimension of «; and is usually sufficient accurate.

There might also be a wide field of applications in models for non—normal spatial data. Here
intrinsic (or undirected) autoregressions replace directed autoregressions. Conditional prior
proposals can be implemented in similar lines, since intrinsic autoregressions can be written

in a penalty formulation as well, see Besag & Kooperberg (1995).
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