
Pruscha:

Residual and forecast methods in time series models
with covariates

Sonderforschungsbereich 386, Paper 33 (1996)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12162481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/


RESIDUAL AND FORECAST METHODS
IN TIME SERIES MODELS WITH

COVARIATES

BY HELMUT PRUSCHA

Mathematical Institute� University of Munich� Theresienstr� ��
D������ Munich� Germany

SUMMARY

We are dealing with time series which are measured on an arbitrary scale� e�g�
on a categorical or ordinal scale� and which are recorded together with time
varying covariates� The conditional expectations are modelled as a regres�
sion model� its parameters are estimated via likelihood� or quasi�likelihood�
approach� Our main concern are diagnostic methods and forecasting proce�
dures for such time series models� Diagnostics are based on 	partial
 resid�
ual measures as well as on 	partial
 residual variables� l�step predictors are
gained by an approximation formula for conditional expectations� The vari�
ous methods proposed are illustrated by two di�erent data sets�

Some key words
 Categorical time series� Conditional regression models�
Forecast methods� Ordinal responses� Partial residuals�

� INTRODUCTION

We are concerned with time series data 	Zt� Yt
� t � �� where Yt is a response
variable measured on a scale which is not necessarily metrical� and Zt is a
vector of covariates� The evolution of the Yt�process is assumed to be driven
by its own history as well as by the covariate process Zt� The conditional
expectation of Yt is modelled in the form h	�t
� where h is a suitable re�
sponse function and �t a regression term containing the actual covariates Zt

as well as former observations 	sec� � and �
� Such models were already
investigated by Kaufmann 	����
� Zeger and Qaqish 	����
� Pruscha 	����
�

�



Lee 	����� ����
� Their statistical analysis is based on 	quasi�
 likelihood
methods 	sec� �
� The main concern of the present paper is to carry over
two classic time series topics to these more general models� The �rst is the
partial residual analysis 	sec� �
 which can be used to assess the relevance of
subsets of covariates as well as to remove the in�uence of covariate subsets
	see Fuller� ����� sec� ��� for the latter
� Our methods are inspired by linear
model theory and can be found in the special case of a binary logistic model in
Landwehr et al 	����
 and of a cumulative logistic model in Pruscha 	����
�
The second topic deals with forecasting future outcomes YT��� YT��� � � �� if
the process has been observed up to time T� Here� some recent work on the
cumulative model 	Pruscha� ����
 is continued and generalized
 We will ar�
rive at forecast formulas covering the well�known recursive equations of Box
and Jenkins 	����
 as well as the l�step transition laws for �nite Markov
chains 	sec� �
�

In the following we assume that the response variable is m�dimensional�

Yt � 	Yt��� � � � � Yt�m

T �

and that the covariates Zt form an r�dimensional vector process� Formally
the continuous case� where the Yt�j are metrically scaled� is also covered�
Most emphasis� however� lies on the discrete case� where Yt is e�g� Mm	�� �t

distributed� i�e� multinomially distributed with parameters � and �t�

�t � 	�t��� � � � � �t�m

T� �t�j � ��

mX
j��

�t�j � ��

Within this case special attention is given to an ordinally scaled Yt� where it
is useful to introduce cumulative probabilities

�t�j� � �t�� � � � �� �t�j �

Throughout we will use subscripts in parenthesis to indicate an increasing
order�

�



� MODELLING

The collection of variables� observed earlier than Yt� is denoted by

Ht � 	Z�� Y�� � � � � Zt��� Yt��� Zt
 �

The m�dimensional conditional expectation vector

�t � E	YtjHt


is modelled in the form

�t � h	�t
� t � �� �� � � � � 	�


where h 
 IRm � IRm is an appropriate response function and �t � 	�t��� � � � � �t�m
T

the linear regression term of the model� This term is written as

�t � Xt	 � 	�


where 	 � IRp comprises the unknown parameters and the entries of the
m� p �matrix Xt are functions of Ht�

Typically� the dependence on the last response Yt�� �or on the last responses
Yt��� � � � � Yt�k� and on the present covariates Zt are separated in 	�
� leading
to

�t�j � 
j � �THt���j � �T�	Yt��
j � 
TZt � 	�


Here� for each j � �� � � � �m� 
j is an intercept term�Ht���j is an s�� �vector�
the components of which being functions of Ht��� and �	y
j is a q�� �vector
expressing the dependence on the last response y � Yt�� �the term �T�	Yt��

can be expanded to �T�	Yt��� � � � � Yt�k
 or to

Pk
i�� �

T
i �	Yt�i
�� For model 	�


� 	�
� the vector 	 � IRp� where

	T � 	
T� �T� �T� 
T
� 
 � IRm� � � IRs� � � IRq� 
 � IRr�

is the unknown parameter vector of dimension p � m�s�q�r� andH���	Y�

must be given in advance�

�



� EXAMPLES

Let us consider examples� some of them already existing in the literature�

�� Yt multinomially distributed

Let� conditionally on Ht� the variable Yt be Mm	�� pt
 � distributed� In this
case pt � �t � We have m � � alternatives� the last one being Yt�m�� �
�� 	Yt�� � � � �� Yt�m
� occurring with probability

pt�m�� � � � 	pt�� � � � �� pt�m
 �

A suitable response function is� e�g�� hj	�
 � exp	�j
�	� �
Pm

k�� exp	�k


which leads to a multivariate logistic regression model� Together with the
general form 	�
 of the regression term multinomial models were analysed
by Kaufmann 	����
� Let us mention two speci�cations of �	y
 occurring in
	�
� In the �rst� so�called lagged variable dummies are used� i�e� we put

	i
 q � m��	y
j � y for all j�

In the second � an 	m� �
 � 	m� �
 �transition matrix P 	�� �
 is employed�
Letting ym�� � � � 	y� � � � �� ym
 and w �

Pm��
j�� jyj� we put

	ii
 q � m� ���	y
ij � P 	i� j
� if w � i ��	y
ij � � else��

such that �T�	y
j � �wP 	w� j
� see Goettlein and Pruscha 	����
 for an
application� Assuming case 	ii
 and h � id� 
 � � � 
 � �� � � �� model 	�

� 	�
 describes a simple Markov chain with known transition matrix P 	�� �
� A
Markov chain with unknown transition matrix can be obtained from 	�
�	�
�
if one allows �Tj �	y
j instead of �

T�	y
j and takes case 	i
 above� but with
q � m� � instead of q � m�

�� Ordinally scaled response

Let Yt as in �� and de�ne the J � f�� �� � � � �m� �g �valued ordinal variable

�



Wt �
m��X
j��

jYt�j � 	�


IntroducingH�j�	�
 � h�	�
�� � ��hj	�
 � we have from 	�
 for j � �� � � � �m��

pt�j� � pr	Wt � jjHt
 � H�j�	�t
 � 	�


If F denotes a 	cumulative
 distribution function we de�ne a cumulative
regression model 	Mc Cullagh� ����
 by setting

H�j�	�t
 � F 	�t�j�
 � 	�


Putting s � � and Ht�� � pt�� in 	�
� the regression term �t can be written
in the speci�c form

�t�j� � 
�j� � �pt���j� � �T�	Yt��
�j� � 
TZt � 	�


Note that model 	�
 � 	�
 has an inherent recursive structure and a side
condition on the parameters to ensure �t�j� � �t�j��� � �� Besides the speci�
�cations 	i
 and 	ii
 above we can here also choose

	iii
 q � �� �	Yt��
j � Wt�� for all j �

i�e� we can employ the lagged ordinal variables� Model 	�
 can easily ex�
tended to a higher order
 instead of �pt�� and �T�	Yt��
 sums of the form

s�X
i��

�ipt�i and
q�X
i��

�Ti �	Yt�i


can be used�

�� Metrically scaled responses

If the response vector Yt � 	Yt��� � � � � Yt�m
T consists of metrically scaled vari�
ables Yt�j� the regression term �t can be put as

�



�t � 
 �
s�X
i��

�i�t�i �
q�X
i��

�iYt�i � �

TZt � 	�


with � � 	�� � � � � �
T � IRm and �i� �i scalars or m�m �matrices� see Zeger
and Qaqish 	����
 and Li 	����
� Here we often have a function h� 
 IR� IR�
e�g� h� � exp� such that

h	�
 � 	h�	��
� � � � � h�	�m


T � 	�


� �QUASI�� LIKELIHOOD

For the following we will assume that the evolution of the process Zt t � ��
is not in�uenced by the process Yt � t � �� precisely

pr	Zt�� � � jHt� Yt
 � pr	Zt�� � � jZ�� � � � � Zt
 � 	��


Then a full likelihood approach is possible if 	conditional
 densities
ft	y� 	t
� y � IRm� of the conditional distributions pr	Yt � � jHt
 are available�
as in Ex� � and � above�

�� First� let us assume that the density ft belongs to an m�parametric expo�
nential family� i�e�

ft	y� 	t
 � exp fyT	t � b		t
ggt	y
� 	��


Then we obtain �t		t
 � b�		t
� and� via 	�
� 	t � u	�t
� with u � 	b�
�� 	 h
and �t � Xt	� Based on an observation 	Z�� Y�� � � � � Zn� Yn
� the log�likelihood
function ln		
� the p � � �score vector Un		
 � 	d�d	
ln		
 and the p � p
�Hessian matrix Wn		
 � 	d��d	d	T
ln		
 are given by

ln		
 �
nX
t��

fY T
t 	t � b		t
g� 	t � u	�t
� �t � Xt	�

�



Un		
 �
nX
t��

XT
t Dt		
�

��
t 		
	Yt � �t		

 	��


Wn		
 � Rn		
�
nX
t��

XT
t Dt		
�

��
t 		
D

T
t 		
Xt�

where we have set Dt		
 � 	d�d�
hT	�t
��t		
 � 	d��d	d	T
b		t
� 	t �
u	�t
� Rn		
 as in Fahrmeir and Tutz 	����� App� A�
� and where we have
neglected additive terms of ln		
 not depending on 	� In the case of an
Mm	�� pt
�distribution� where pt � �t� Kaufmann 	����
 gave conditions un�
der which there exists a consistent m�l� estimate �	n for 	� which is asymptot�
ically normally distributed in the sense that the distributional convergence

���n 	�	n � 	
� Np	�� V
��		

 	��


takes place for n�
� where

�V 		
 � pr�� lim �TnWn	�	n
�n�

if the latter limit exists for a sequence �n � �n		
� n � �� of invertible norm�
ing matrices tending towards ��

�� Secondly� let us assume an ordinally scaled response variable Wt as
in Ex� ��� � Then pt�j		
 � pr�	Wt � jjHt
 and we can write

ln		
 �
nX
t��

log pt�wt
		
�

Un		
 �
nX
t��

ut�wt
		
� ut�j		
 � 	d�d	
pt�j		
�pt�j		
�

and Wn		
 similarly� Assuming the model 	�
�	�
 we can make use of re�
currence relations of pt		
 and its derivatives 	instead of exploiting the ex�
ponential family structure of the Mm	�� pt
�distribution
� Using a distance�
diminishing theory for certain iterative function systems 	Norman� ����
�
	��
 can be proved under the assumptions that jsup�F �	�
 �j � � and that

�



Zt� t � �� forms a Markov process 	of some order
 with compact state space
and with Lipschitz�bounded transition kernels 	Pruscha� ����
�

�� Now we assume that� contrary to �� and ��� a 	conditional
 density
for pr	Yt � � jHt
 cannot be given� but that 	conditional
 �rst and second
moments

�t		
 � E�	Yt j Ht
 � h	�t
� cov�	Yt j Ht
 � �t	�t
� �t � Xt	�

can be speci�ed� One still use Un		
 � � as estimation equation with Un		

as in 	��
� If the response variables Yt� t � �� �� � � � are m�dimensional and
independent� we are in the case of longitudinal data and the asymptotic
covariance in 	��
 is of the form V ��		
S		
V ��		
� where

S		
 � pr��lim �Tn f
nX
t��

XT
t Dt	�	n
 �

��
t 	�	n
 cov	Yt
 �

��
t 	�	n
D

T
t 	�	n
Xtg �n �

see Liang and Zeger 	����
�

	 RESIDUAL ANALYSIS

��� Linear model residuals

The following derivation of global and partial residuals is inspired by linear
model theory� In a linear regression model of the form

Yt � �t � et� �t � Xt	� t � �� �� � � � �

global residuals are de�ned by

�et � Yt �Xt
�	� 	��


�	 l�s� estimator for 	� Partial residuals from regression on X�� where

�



Xt � 	Xt��Xt�
 and 	T � 		T� � 	
T
� 


are partitions� are given by

�e�par�t � Yt �Xt�
�	� � �et �Xt�

�	�� 	��


Note that �e
�par�
t can be gained from the �true partial residual� e

�par�
t �

 t	Yt
 � Yt�Xt�	� by plugging in the estimator �	� for 	�� Let the et!s now
N	�� ��
 �distributed� i�e� let pr	Yt � y
 � "�t���	y
� with "���� being the

N	�� ��
 �distribution function� Then e
�par�
t �  t	Yt
 can be gained from

pr	 t	Yt
 � y
 � "��
t
���	y
� ��t � �t �Xt�	� � Xt�	�� 	��


In more general models like ours two di�erent 	partial
 residual methods can
be established 	falling together in the normal linear case above

a
 residual measures for diagnostic purposes which will be de�ned in anal�
ogy with 	��

b
 residual variables� which have values on the same scale as the Yt�data
and which can be submitted to further time series analysis� They will be
gained in analogy with 	��
�

��� Partial residual measures

On the basis of the general model 	�
�	�
 we build the global GLM�residuals
	cf� Fahrmeir and Tutz� ����� p� ��


�et � D�T
t 	�	
 	Yt � �t	�	

� 	��


with Dt as in ���� Using 	��
 we de�ne partial residuals from regression on
X� as in 	��
 by

�e�par�t � �et �Xt�
�	�� 	��


�



Often it is desirable to summarize the m�components �e�par�t�j of 	��
 into a
one�dimensional measure� In the following two examples we will weight the
components �et�j of 	��
 by the diagonal elements dt�j	�	
 � �dt�j of Dt	�	
�
i�e� we will build

#et �
mX
j��

�dt�j �et�j �
mX
j��

�dt�j� 	��


Then� de�ning #Xt� in analogy�

#e�par�t � #et � #Xt�
�	� 	��


is a one�dimensional partial residual measure�

Ex� �� If we have a response function h of the form 	�
� then �dt�j � h��	��t�j
�
and we obtain from 	��
 and 	��


#et �
mX
j��

	Yt�j � �t�j	�	

 �
mX
j��

�dt�j �

which is a kind of average of the residual components�

Ex� �� In the case of an ordinal response with response function h of the
form 	�
� i�e� hj	�
 � F 	��j�
 � F 	��j���
� we have �dt�j � F �	��t�j�
 � and
D�T

t 		
 is a lower triangular matrix with j�th row

	��F �	�t�j�
� � � � � ��F
�	�t�j�
� �� � � � � �
 �

Hence the j�th component of 	��
 turns out to be

�et�j � 	�� �dt�j

jX

k��

	Yt�k � pt�k	�	

�

and 	��
 takes the form

��



#et � � 	��
X
j

�dt�j
 	Wt �mt	�	

� 	��


with the f�� � � � �m� �g �valued ordinal variable Wt �
Pm��

j�� jYt�j as in 	�


and with the mean category mt �
Pm��

j�� jpt�j 	see Pruscha� ����� sec ���
�
Note that Wt �mt is a really ordinal residual�

Partial residual measures like 	��
� 	��
 are usually plotted over the regres�
sion term Xt�

�	� or #Xt�
�	� to assess the signi�cance of the regressor set X��

��� Partial residual variables

We restrict ourselves to univariate response variables with 	up to parameter
	 
 known distribution function� Putting

�t � Xt	� ��t � �t �Xt�	� � Xt�	��

we will call �Y �

t �  t	Yt� �	
 partial residual variable 	from regression on X�
�
if we have for Y �

t �  t	Yt� 	
� in analogy with 	��
�

prt	Y
�

t � y� �t
 � prt	Yt � y� ��t 
� for all y � IR� 	��


where prt	�
 � pr	� j Ht
� and prt	� � �
 means that prt	�
 is evaluated under
regression term �� � � �t or � � ��t � Further we require

prt	Yt � Y �

t � �t
 � �� if ��t � �t � 	��


We will use the notation Ft	y� �
 � prt	Yt � y� �
 and will distinguish the
cases where Ft is continuous in y � IR or not�

a
 Let Ft	y� �
� y � IR � continuous for each � � Put F��	x� �
 �
inffy 
 F 	y� �
 � xg and de�ne Y �

t �  t	Yt� 	
 via

��



 t	y� 	
 � F��
t 	Ft	y� �t
� �

�

t 
 �

Then� since Ft	Yt� �t
 is U ��� ���distributed under prt	� � �t
� one gets

prt	Y
�

t � y� �t
 � prt	Ft	Yt� �t
 � Ft	y� �
�

t 
� �t


� Ft	y� �
�

t 
 �

that is 	��
� Further� relation 	��
 is ful�lled� since F��
t 	Ft	Yt� �t
� �t
 � Yt

occurs with prt	� � �t
�probability zero� In the example F 	y� �
 � "����	y
�
we have

 t	y� 	
 � "��
��
t
���	"�t���	y

 � y �Xt�	��

such that  t	y� �	
 as in 	��
 above�

b
 Let Yt � J � f�� �� � � � �m� �g ordinally scaled 	formerly denoted by
Wt� for a purely categorical response� partial residual variables don!t seem
to be meaningful
� Then we have Ft	j� �
 � prt	Yt � j� �
� j � J� and 	��

cannot be satis�ed with a function  t 
 J � J � Instead� we will de�ne
transition probabilities  t	kjj
� Pk�J  t	kjj
 � �� such that

Y �

t � k is selected with probability  t	kjj
� if
Yt � j is the observed category

	��


Let pr�t denote the 	conditional
 probability law governing the observed
process as well as the random experiment 	��
� Then� making use of the
model equation prt	Yt � j
 � hj	�t
 � we have

pr�t 	Yt � j� Y �

t � k
 � hj	�t
  t	kjj
 �

��



Putting  t	j� k
 � hj	�t
 t	kjj
 � we have to de�ne  t in such a way that

P
k�J  t	j� k
 � hj	�t
P
j�J  t	j� k
 � hk	��t 
�

	��


for the second equation see 	��
� and that� with respect to 	��
�

X
j�J

 t	j� j
 � �� if �t � ��t � 	��


To this end� let H�j�	�
 � h�	�
 � � � � � hj	�
 as in ���� H��� � �� and
introduce for j� k � J the intervals

It	j� k
 � 	H�k���	�
�

t 
� H�k�	�
�

t 
� � 	H�j���	�t
� H�j�	�t
��

Then we de�ne  t	j� k
 as the length of It	j� k
 � i�e�

 t	j� k
 � jIt	j� k
j � 	��


Since
P

k jIt	j� k
j � H�j�	�t
�H�j���	�t
 and
P

j jIt	j� k
j � H�k�	�
�

t 
�
H�k���	�

�

t 
� equations 	��
 are ful�lled� Since jIt	j� j
j � H�j�	�t
 �
H�j���	�t
 � if �t � ��t � 	��
 is also satis�ed�

Partial residual variables Y �

t are constructed with the intension to remove
the in�uence of the regressor set X� on the response variable� A typical
application is the removal of a trend in a time series�


 FORECASTING METHODS

��� General method

Based on the model 	�
�	�
 � i�e� �t � E	Yt j Ht
 � h	�t
� �t � Xt	� and
given an observation up to time T � i�e�

��



FT � 	Z�� Y�� � � � � ZT � YT 
 � 	HT � YT 
�

we de�ne the l�step predictor for �T�l by

��T 	l
 � E	�T�l j FT 
� l � � � 	��


In the following we will write

ET 	�
 � E	� j FT 
� varT	�
 � ET 	 � � ET 	�

��

and we will use a similar de�nition for the conditional covariance matrix
covT 	�
 � Due to FT � HT�l we also have

��T 	l
 � ET 	YT�l
�

We will compute ��T 	l
 by the approximation $�T 	l
 � BT 	l
� where $�T 	l
 is
gained by interchanging conditional expectation and response function h �
i�e� by

$�T 	l
 � h	��T 	l

� ��T 	l
 � ET 	�T�l
 � 	��


and BT 	l
 is a correction term� to be developped below� The l�step predic�
tor ��T 	l
 is� contrary to ��T 	l
� computable for many models� especially for
models with a recursive structure� For the derivation of such computation
formulas we will distinguish between a continuous and a discrete response�
In any case we have to assume that l�step predictors

�ZT 	l
 � ET 	ZT�l


are available for the covariate process Zt� t � �� This is the case� e�g�� if
Zt forms an r�dimensional autoregressive process of some �xed order� see
Brockwell and Davies 	����� sec� ����
�

��



��� Recursive forecast formulas

a
 Continuous response� For the m�variate model 	�
� with s� � q�� one
starts with

��T 	�
 � 
�
q�X
i��

�i�T���i �
q�X
i��

�iYT���i � �

T �ZT 	�
 	��


and has� with ��T 	�
 � h	��T 	�

 �BT 	�
� the ��step predictor

��T 	�
 � 
 �
q�X
i��

�i�T���i �
q�X
i��

�iYT���i � 	�� � ��
��T 	�
 � �

T �ZT 	�


and so on� until for l � q�

��T 	l
 � 
�
q�X
i��

	�i � �i
��T 	l � i
 � �
T �ZT 	l
� 	��


The classical Box and Jenkins 	����� p� ���f
 forecast formulas are contained
as a special case� Indeed� one has to write 	� � �
� � �	Y � �
 instead of
��� �Y � and has to interpret �t� Yt � �t as their zt and at� respectively� see
also Lee 	����� p� ���
�

b
 Discrete response� We will use the extended version of model 	�
� i�e�

�t � 
 �
q�X
i��

�ipt�i �
q�X
i��

�Ti �	Yt�i
 � �

TZt � 	��


While ��T 	�
 is similar to 	��
� we have� with the probability vector �pT 	�
 �
h	��T 	�

 �BT 	�
� the ��step predictor

��T 	�
 � 
�
q�X
i��

�ipT���i�
q�X
i��

�Ti �	YT���i
� ���pT 	�
��T�
��T 	�
� �


T �ZT 	�
�

where ��T 	�
 �
Pm��

j�� �pT�j	�
�	ej
� em�� � � � IRm� Finally� for l � q� and

with ��T 	k
 �
Pm��

j�� �pT�j	k
�	ej
 �

��



��t	l
 � 
�
q�X
i��

�i�pT 	l� i
 �
q�X
i��

�Ti
��T 	l� i
 � �
T �ZT 	l
 � 	��


In the special case of a simple Markov chain as in ��� we obtain �pT�j	l
 �
P l	i� j
� if WT � Pm��

k�� kYT�k � i� with P l the l�th power of the known or
estimated transition matrix�

��� Correction term

To give an estimate �BT 	l
 of the bias

BT 	l
 � ��T 	l
� $�T 	l


produced by the approximation ET 	h	�T�l

 
 h	ET 	�T�l

 � we start with
expanding h	�T�l
 and h	��T 	l

 at ��T 	l��
� ��T 	�
 � �T � up to the order ��
To do this� we write h instead of hj for some �xed j� assume twice continuous
di�erentiability of h and introduce the abbreviations

�� � ��T 	l� �
� xT 	l
 � �T�l � ��� �xT 	l
 � ��T 	l
� ���

Then� with remainder terms RT 	l
 etc��

h	�T�l
 � h	��
 � xTT 	l
 h
�	��
 �

�

�
xTT 	l
 h

��	��
 xT 	l
 �RT 	l
 	��


h	��T 	l

 � h	��
 � �xTT 	l
 h
�	��
 �

�

�
�xTT 	l
 h

��	��
 �xT 	l
 � �RT 	l
� 	��


Applying conditional expectation to 	��
 we obtain

ET 	h	�T�l

 � h	��
 � �xTT 	l
 h
�	��
 �

�

�
ETfxTT 	l
 h��	��
 xT 	l
g� #RT 	l
� 	��


��



Subtracting 	��
 from 	��
� neglecting remainder terms and introducing the
omitted subscript j again� we arrive at

�BT�j	l
 �
�
� ETf�TT�l h��j 	��
 �T�lg � �

� ��
T
T 	l
 h

��

j 	��
 ��T 	l


� �
�
ETf	�T�l � ��T 	l

T h��j 	��
 	�T�l � ��T 	l

g�

Denoting the eigenvalues of the m�m �matrix h��j 	��
 by �
�k�
j � k � �� � � � �m�

and writing

h��j 	��
 � AT
j 	��
 Diag	�

�k�
j 
 Aj	��
�

we �nally obtain for j � �� � � � �m

�BT�j	l
 �
�

�

mX
k��

�
�k�
j A

�k�T
j 	��
 covT 	�T�l
 A

�k�
j 	��
� �� � ��T 	l � �
 	��


where A�k�T
j stands for the k�th row of the m�m �matrix Aj and covT 	�
 for

the conditional covariance matrix of ��

For categorical responses� we have to de�ne �BT�m�� � �Pm
j��

�BT�j and 	pos�

sibily
 have to recalculate the �BT�j	l
� j � �� � � � �m� �� in such a way that

the $pT�j	l
 � �BT�j	l
� j � �� � � � �m� �� form a probability vector�

To use correction term 	��
 estimates for covT 	�T�l
 must be available�
Noting that covT 	�T�l
 � covT 	�T�l � �T 
 � one is led to build empirical
variances%covariances of the vectors �t�l � �t� t � �� � � � � T � l�
Equation 	��
 will now be specialized in two examples�

Ex��� For a response function h of the form 	�
 one obtains

�BT�j	l
 �
�

�
h���	��T�j	l � �

 varT	�T�l�j
 �

Ex��� In the case of an ordinal response with response function h as in 	�
�
	�
 we obtain for the bias BT �j�	l
 � �pT �j�	l
� $pT �j�	l
 the estimate

��



�BT �j�	l
 �
�

�
F ��	��T �j�	l � �

 varT 	�T�l�j�
 � 	��


Here� we are also interested in the mean category

mt �
m��X
j��

jpt�j �
mX
j��

	�� pt�j�


and its l�step prediction

�mT 	l
 �
mX
j��

	�� �pT �j�	l

 �

For the bias BT�m	l
 � �mT 	l
� $mT 	l
 we obtain from 	��
 the estimate

�BT�m	l
 � ��
�

mX
j��

F ��	��T �j�	l � �

 varT 	�T�l�j�
 � 	��


��� Monte Carlo solution

Let us now assume that we are in the 	most informative
 situation� where the
conditional probability laws pr	Yt � � j Ht
 and pr	Zt�� � � j Z�� � � � � Zt

are explicitely given 	see condition 	��
 above
 and where estimates of all
model parameters are available� Then one can gain the following computer�
intensive solution �T 	l
 for the l�step predictor ��T 	l
 � ET 	�T�l
� Given
the observation 	Z�� Y�� � � � � ZT � YT 
 the succeeding outcomes are simulated
M times by the Monte�Carlo method� From

Z
�i�
T��� Y

�i�
T��� � � � � Z

�i�
T�l� Y

�i�
T�l� i � �� � � � �M� 	��


one builds �
�i�
T�l� i � �� � � � �M� and the average

�T 	l
 �
�

M

MX
i��

�
�i�
T�l� �

�i�
T�l � h	��i�T�l
 �

��



as the Monte�Carlo solution for ��T 	l
� The mean squared error

VT��	l
 � ET 	&T��	l
 &
T
T��	l

 � covT 	�T�l
�

where &T��	l
 � �T�l � ��T 	l
� can be estimated from 	��
 by

�VT��	l
 �
�

M � �
MX
i��

	&
�i�
T��	l
 &

�i�T
T�� 	l

�

where &�i�
T��	l
 � �

�i�
T�l � �T 	l
�

Up to now there seems to exist no approach to estimate �VT��	l
 and related
mean squared errors outside the Monte�Carlo method�

� Applications

��� Data sets

We will use two di�erent data sets for illustrating the various methods pro�
posed above�
The �rst is a longitudinal data set on damages in beech� oak and pine trees�
gathered by Dr� A� Goettlein� University of Bayreuth� during the last years in
a forest district of the Spessart 	Bavaria
� The longitudinal structure of the
data is determined by the observation period of �� years 	���� � ����
 and by
N sites 	N � ��%��%�� sites with beech%oak%pine trees
� The response vari�
able Wt measures the percentage of leaves%needles lost on an ordinal scale
of m���� categories� For each site and each year t a vector Zt of r���
covariates were recorded concerning the trees 	age� canopy
� the site 	gradi�
ent� height� exposition
� the soil 	moisture� pH�values
 and the climate� see
Goettlein and Pruscha 	����
 and 	����
 for detailed information� The pa�
rameters of the cumulative logistic regression model 	�
�	�
 were estimated
by the m�l� method for each tree species separately� Concerning the �� func�
tion we made the special choice of lagged ordinal variables� see case 	iii
 in
���� Further we put � � �� The covariate process Zt is assumed� as far as

��



forecasting methods are employed� to be driven by an AR	�
�equation�
The second data set concerns the aftershock series of the Friuli earthquake
	May�Sept� ����
� which were placed at my disposal by Dr� H� Gebrande�
University of Munich� The response variable Wt gives the number of shocks
at day t� for t � �� � � � � ��� 	corresponding to the period from ��th May to
��th Sept�
� the covariates Zt are the magnitude ML of the shocks 	daily
averages
 and � in connection with trend analyses � the terms t����� t�����
The cumulative logistic model 	�
�	�
 was applied� with the m���� cat�
egories �� � � � � � 	i�e�� instead w we took min	��w
 as response value
� and
with a preselected ��matrix� The �rst two� middle two and last two rows of
the corresponding transition matrix P 	�� �
� see case 	ii
 in ���� was chosen as
	�� �

�
� �

�
��

�
� � �� �
� 	��

�
��

�
� �

�
��

�
� � �
 and 	�� ��

�
� �

�
� �

�
� �

�
�
� respectively 	actually� the

F���transformed cumulative probability vectors entered regression equation
	�

�

��� Partial residuals

For the forest damage data we want to plot one�dimensional partial resid�
ual measures 	��
 over the regression term Xt�

�	�� where #et is calculated on
the basis of a cumulative logistic model via formula 	��
� For the oak and
pine tree� the partial residual plot for the regressor set X� � topography
� 	height� gradient� upper%lower part of slope
 shows a clear upward trend
	Fig� �
 and gives evidence for the signi�cance of this covariates in the model
equation� This is di�erent with the beech tree� where the plot gives no hint
to a relevance of the topography 	in agreement with related test results� see
Goettlein and Pruscha� ����
� The partial residual plot for X�t �Wt��� the
lagged ordinal response variable 	Fig� �
� reveals the strong dependence of
the damage value Wt on the value Wt�� of the last year�

The method ��� b
 of building ordinally scaled partial residual variables 	from
regression on X�
 is demonstrated for the Friuli earthquake data� The time�
series plot of the number of shocks per day shows a decreasing tendency
	see Fig� �a
� A trend function a	t
 � 
�t

���� � 
�t
���� was incorporated

into the regression term �t� and �a	t
 was plotted in the form trend	t
 �
c� � c��a	t
� with appropriate scaling rates c�� c�� Letting in the cumulative

��



model with � categories� as described above� X�t � 	t����� t����
 and X�t �
	pt����	Yt��
�MLt
� we can calculate partial residual variables �Y �

t according
to 	��
 and 	��
� The time�series plot of the �Y �

t �values no longer reveals
an obvious trend 	Fig� �b
� in agreement with the test result that a trend
component would no longer be a signi�cant part of the regression term�

��� Forecasting

Fixing the observations of the Spessart data within the period ��������� as
known� we try to forecast the damage values for the years ���������� That
is� we put T���� and we are interested in the l�step predictors �mT 	l
� l �
�� � � � � �� of the mean damage category mt �

Pm��
j�� jpt�j� for each of the three

tree species separately� The calculations of Fig� � were performed for each
site i � �� � � � � N � followed by an average over the N sites of the species� On
the basis of the cumulative logistic regression model with regression term
�t�j� � 
�j� � �Wt�� � 
TZt� the l�step prediction �mT 	l
 was computed by

$mT 	l
 � �BT�m	l
� with �BT�m	l
 as in 	��
 and with

$mT 	l
 �
mX
j��

	�� $pT �j�	l

� $pT �j�	l
 � F 	��T �j�	l



��T �j�	l
 � 
�j� � �
m��X
k��

k�pT�k	l � �
 � 
T �ZT 	l
�

The correction terms �BT�m	l
 were calculated in two di�erent ways
 The term
varT	�T�l
 in 	��
 was estimated by empirical variances� as indicated in ����

and by the Monte�Carlo method ���� denoted by �B
�A�
T 	l
 and �B

�M�
T 	l
� respec�

tively�

To come close to the correct forecast E	mT�ljFT 
� the forthcoming paths
	��
 were simulated M���� times� assuming gaussian errors in the AR	�
�
law of the covariate process� As in ��� averages pT �j�	l
 were built as well as
mT 	l
 �

Pm
j��	� � pT �j�	l

� together with the ��' con�dence limits

��



mT 	l
�
q
�VT�m	l
 ������

p
N�

where �VT�m	l
 was calculated for each of the N sites as indicated in ��� and
then averaged�
The approximations $mT 	l
� l � �� � � � � � run within these con�dence limits
mT 	l
 � s� see Fig� �� the corrected forecasts $mT 	l
 � �BT�m	l
 comes close
to mT 	l
 and hence close to the correct forecast of mT�l� In the case of the

beech tree the correction term �B�A�
T performs bad in the period ����������
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Figure �
 Partial residuals for the regressor set topography plotted over
the regressor term beta�topography� for each of the three tree species� A
smoothing curve was �tted to the scatterplot�
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Figure �
 Partial residuals for the regressor Wt��� the lagged 	ordinally
scaled
 damage category� plotted over the values of Wt��� for oak and pine
trees� A smoothing curve was �tted to the scatterplot�
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Figure �
 a
 	top
 Number Yt of shocks per day plotted over the aftershock
period of ��� consecutive days� together with a trend function� b
 	bottom

Ordinally scaled partial residual variable Y �

t from trend� plotted over the ���
consecutive days�
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Figure �
 Forecasted forest damages for the years ���� � ����� for each of the
three tree species� The approximation $mT 	l
 �A� is plotted� together with the

corrections $mT 	l
� �B
�A�
T 	l
 and $mT 	l
� �B

�M�
T 	l
 �A�BA and A�BM � and

with the Monte�Carlo solution mT 	l
 �M �� At the beginning and the end of
the beech curves� a con�dence intervalM � s is indicated by vertical bars� in
the case of the oak and pine curves these bars would overlap the whole plot
area 	s 
 ���� and s 
 ����� resp�
 and are therefore omitted�
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