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Noncanonical Links in Generalized Linear Models �
When is the E�ort Justi�ed�

Claudia Czadoy and Axel Munk
�

Abstract

Generalized linear models �GLM� allow for a wide range of statistical models for regression

data� In particular� the logistic model is usually applied for binomial observations� Canonical links

for GLM�s such as the logit link in the binomial case� are often used because in this case su�cient

statistics for the regression parameter exist which allow for simple interpretation of the results�

However� in some applications� the overall �t as measured by the p	values of goodness of �t statistics

�as the residual deviance� can be improved signi�cantly by the use of a noncanonical link� In this

case� the interpretation of the in
uence of the covariables is more complicated compared to GLM�s

with canonical link functions� It will be illustrated through simulation that the p	value associated

with the common goodness of link tests is not appropriate to quantify the changes to mean response

estimates and other quantities of interest when switching to a noncanonical link� In particular� the

rate of misspeci�cations becomes considerably large� when the inverse information value associated

with the underlying parametric link model increases� This shows that the classical tests are often too

sensitive� in particular� when the number of observations is large� The consideration of a generalized

p	value function is proposed instead� which allows the exact quanti�cation of a suitable distance to

the canonical model at a controlled error rate� Corresponding tests for validating or discriminating

the canonical model can easily performed by means of this function�

keywords� generalized linear models� goodness of link tests� logistic regression� link function� parame�

tric links� model validation and discrimination� p�value curve�

� Introduction

Generalized linear models �GLM� allow for the treatment of regression problems in which the response

can be non normally distributed� More speci�cally� the response distribution can be any distribution

in a one parameter exponential family� This includes normal� binomial� Poisson� gamma and inverse

Gaussian responses �see McCullagh � Nelder �	
�
��� In addition� a link function connecting the mean

response with the linear predictor has to be chosen� GLM�s with canonical links� such as the logit link

in binomial regression � for a de�nition of a canonical link see McCullagh � Nelder �	
�
��� guarantee

maximum information and a simple interpretation of the regression parameters� because in this case

we obtain a linear model for the natural parameter of the underlying exponential family� For example�
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the logit link gives a simple representation of the odds� which aids the interpretation of the results� In

addition� the concavity of the likelihood function guarantees uniqueness of the MLE�

Canonical links� however� do not always provide the best �t available to a given data set� In this case�

the link could be misspeci�ed� which can yield substantial bias for the regression parameter estimates

as well as for the mean response estimates �for example see Czado and Santner �	


� in the binomial

response case�� The most common approach to guard against such a misspeci�cation� is to embed

the canonical link into a wide parametric class of links F � fF ��� ��� � � �g� which includes the

canonical link as a special case when � � ��� say� Many such parametric classes of link functions for

binary regression data have been proposed in the literature� For example� Van Montford and Otten

�	
���� Copenhaver and Mielke �	
���� Aranda�Ordaz �	
�	�� Guerrero and Johnson �	
�
�� Morgan

�	
��� and Whittmore �	
��� proposed one�parameter families� while Prentice �	
���� Pregibon �	
����

Stukel �	
��� and Czado �	


� considered two�parameter families� The general case of link functions

in GLM�s was studied by Pregibon �	
��� and Czado �	


�� Czado �	

�� developed criteria on how

to choose such a family�

It should be noted� that a link misspeci�cation represents only a special systematic departure from

the model� while misspeci�cation of the variance function or scales of the covariates are other possible

systematic departures from the model� The methods for checking such departures are similar to the

ones developed for the link �see McCullagh and Nelder �	
�
�� Chapter 	
� and therefore we restrict

attention in this paper to the problem of link validation�

In the following� it is assumed that the true underlying link is a member of such a class F � To protect

against link misspeci�cation large sample tests such as the likelihood ratio and the score test are

recommended �Pregibon �	
��� 	
�
� and McCullagh and Nelder �	
�
�� Chapter 		� to assess� if a

di�erent link will lead to a signi�cant improvement in �t� Hence guarding against link misspeci�cation

becomes tantamount to the testing problem

H � � � �� versus K � � �� ��� �	�

If H cannot be rejected� the additional consideration of the p�value is accepted as a su�cient measure

for the evidence to keep the canonical model� If H is rejected� maximum likelihood estimation �MLE�

is required to estimate jointly the link parameter � and the regression parameters� Unfortunately�

this increases signi�cantly the computational e�ort to analyze the data� because a noncanonical link

model F cannot be performed in standard software packages and special software has to be written�

In addition to the special software requirement� the estimation of the link also in�ates the variance of

the regression parameters� since the link parameter � cannot be chosen orthogonal in the sense of Cox

and Reid �	
��� to the regression parameters �see Taylor �	
��� and Czado �	

���� Further� checks

for isolated departures from the model �for a general review see Davison and Tsai �	


�� have been

developed so far only for �xed link models �see Pregibon �	
�	� for logistic regression� Lee �	
��� 	
���

and Williams �	
��� for GLM�s��

Therefore� the goal of this paper is to investigate and answer the following two questions�

Q	 When is the e�ort justi�ed to switch from a canonical link to a noncanonical link in a GLM �

�Model Discrimination�

Q
 How large is the evidence for the canonical model indicated by a large p�value associated to a

goodness of link test for �	�� �Model Validation�

Within the classical approach� both questions are assumed to be su�ciently answered by the consi�

deration of the p�value associated to one of the above mentioned standard tests� It is the aim of this






paper to show in a �rst step� that this way of proceeding provides in general no information concerning

both of these questions Q	� Q
� Even after diagnostic tools are used in order to protect against outliers

or other isolated deviations from the model� this approach cannot be justi�ed� In a second step� we

suggest an alternative procedure� which allows inference about the precise deviation from the canonical

model�

To �x ideas� we restrict for the moment our consideration to the large class of generalized logistic links

introduced by Czado �	


�� even though any other parametric class mentioned above could have been

used� However� this class of Box�Cox transformations of the linear predictor is preferred because it

allows separate modi�cation of the right and left tail of the link function and its parametrization is

locally orthogonal �Czado �	

���� Note� that for this family � � �� � 	 always corresponds to the

canonical link� Consider now the following binomial regression data sets�

Example �� �Age of Menarche in Warsaw Girls�

Milicer and Szczotka �	
��� analyzed the occurrence of menarche as a function of age in a sample of

�
	� Warsaw girls �see Table � of Stukel �	
��� for data�� The standard analysis based on the logistic

link with age as covariate reveals lack of �t� especially in the left tail� Table 	�	 summarizes the results

giving parameter estimates and their estimated standard errors in parentheses in the �rst column�

Residual deviances� their degrees of freedom and the p�value of corresponding goodness of �t test in

parentheses are given in the second column� The likelihood ratio statistic for testing logistic link by �	��

their degree of freedom and the corresponding p�value in parentheses is provided in the third column

of the table�

Model Estimated Link � Residual Deviance Likelihood Ratio

logistic 
���� �
�� �
��

right tail ��� ������ 
���
 �

� �

� 	��	 �	� �
���

left tail 	��
 ��	��� 	���
 �

� ���� 
��� �	� �����

Table 	�	� Link Estimates� Residual Deviance and Likelihood Ratio Statistics for the Age of

Menarche Data

Therefore� following the usual way of proceeding we would decide for the noncanonical model with left

tail modi�cation� We will see in the following that this decision is only justi�ed� when the odds is the

parameter of interest�

Example �� � Bottle Deposit Data�

Neter� Wasserman � Kutner� p� �	� �	
�
� gave data on the number of bottles returned for � di�erent

levels of deposits� The results of a generalized logistic analysis are contained in Table 	�
�

Model Estimated Link � Residual Deviance Likelihood Ratio

logistic 	
�	� ��� ��
�

right tail 	��� ��
�	� ��
� ��� �	�� ��
� �	� ���
�

left tail ��� ��	
�� 	���� ��� ��
� 
�	� �	� �	���

Table 	�
� Link Estimates� Residual Deviance and Likelihood Ratio Statistics for the Bottle Deposit

Data

Here we are left in a somewhat ambiguous situation� Although the LR�test supports a right tail modi�

�cation with high evidence �p�value � ���
� the residual deviance only indicates a slight improvement

�



in �t �p�value � �	��� Therefore� one would argue that a right tail modi�cation is necessary because

the �type I� error of this decision is controlled at a rather small rate�

Although a noncanonical model is always more �exible and improves the �t when used� there are still

strong reasons why the experimenter wants to retain the canonical link� The cost of a noncanonical link

�as described above� is not justi�ed� for example� if the e�ects of using this link instead of the more

��tting� noncanonical link are small on the mean response estimates or other quantities of particular

interest� We will show� that the e�ects on the mean response estimates are about the same for both

data sets� although the e�ects are very di�erent on the estimated odds� More speci�cally� the odds are

changed up to a factor of �� for the menarche data set� while they are changed only up to a factor

of 	�� for the deposit data� Therefore� if the odds is the parameter of interest� a noncanonical link

is truly needed for the menarche data� while it is not necessary for the deposit data� One could also

be interested in other quantities as the odds which a�ects the above conclusions� The choice of such

alternative measures of discrepancy between the canonical and noncanonical model will be discussed

carefully in Section ��

We will make more precise in Section ��	� by means of a simulation study what the above examples

indicated � that the use of the classical tests may urge the experimenter to decide for the �much

more complicated� noncanonical model �discrimination in the sense of Q	�� although information for

the parameter of interest is not �scienti�cally relevant� increased� In addition� it turns out that the

problem of model validation �Q
� also cannot be answered su�ciently by using the above mentioned

large sample point hypotheses tests� Roughly speaking� this study indicates two systematic errors�

First� when the data does not provide a precise estimation of the link parameter� the classical tests will

not reject H � � � �� with large probability although the true mean response �or other parameters of

interest� is far apart from the mean response under the canonical link assumption� Contrary� when the

variation of the estimated link is small or the sample size is too large� we �nd that these tests lead with

high probability to a decision in favor of the noncanonical model � although the e�ort is not justi�ed�

i�e� the di�erence between the true mean response and that in the canonical model is negligible small�

We mention� that these problems are not caused by the particular choice of the goodness of link test

for the testing problem �	�� rather this is intrinsically related to the misleading hypotheses H in �	�

and its corresponding p�values� Whenever the null hypothesis is rejected� no information about the

discrepancy to the noncanonical model is involved � whereas acceptance of H �or even a large p�value�

does provide no evidence in favor of the canonical model�

To remedy the above described problems� we suggest in a �rst step to consider tests for hypotheses of

the form

H � � �� ��� � �l� �� � �u� versus K � � � ��� � �l� �� � �u� �
�

for speci�ed � � �l� �u� If H is rejected at some level �� the canonical link is validated with controlled

error probability � within a ��l� �u��neighborhood� In Section �� we discuss several criteria on how

to choose these bounds� This allows to quantify the deviation from the canonical model in terms of

those quantities the experimenter is particularly interested in �e�g� the odds in a binomial response

model�� De�ning the problem of link validation in terms of a Neyman Pearson test problem is always

encountered with uncertainty � whenever the hypothesis is not rejected� Therefore� following Fisher�

we suggest in a second step the consideration of a generalized p�value curve associated to the testing

problem �
�� This approach is more adapted to a decision theoretic formulation of the problem of

model assessment� In particular� the evidence of H and K can simply be graphically illustrated by

these curves� This gives the applied working statistician a simple tool at hand to visualize rapidly the

goodness of �t at controlled error rates � for both� validation and discrimination�

�



Our approach is based on the asymptotic distribution of the joint maximum likelihood estimator of

link and regression parameters� To this end� we extend in Section 
 results by Fahrmeir and Kaufmann

�	
��� and apply these to the construction of tests and p�value curves for the problem �
�� The simu�

lation results in Section ��
 of this test for validating and discriminating a logistic link show that the

signi�cance level � is maintained in small samples� which allow the proposed tests to be used for the

analysis of a link in GLM at controlled error rate�

In Section �� we return to the examples presented above and illustrate generalized p�value curves in

action�

� Generalized Linear Models with Parametric Link

��� Asymptotic Theory

Ordinary GLM�s have been extended to allow for data selected link functions from a class of parametric

functions� For the binomial response case� this is evidenced by the many parametric link families

considered in the literature� In the context of other GLM�s� this extension was �rst considered by

Pregibon �	
��� and investigated in more detail by Czado �	


� 	

���

The following model for regression data with response Yi and explanatory variables XXi � �xi�� � � �xip�

for i � 	� � � � � n will be used�

	� Random Component�

fYi� 	 � i � ng are independent and have density of the form

fyi�yi� �i� 	� � exp�
yi�i � b��i�

a�	�
� c�yi� 	�� ���

for some speci�ed functions a���� b��� and c���� The scale parameter 	 is allowed to be known or

unknown�


� Systematic Component�

The linear predictors 
i���� � �� � ��xi� � � � �� �pxip for 	 � i � n in�uence the response Yi�

Here �� � ���� � � � � �p� are unknown regression parameters�

�� Parametric Link Component�

The linear predictors 
i���� are related to the mean �i of Yi by �i � F �
i����� �� for some F ��� ��

in � � fF ��� �� � � � �g �

Attention is restricted to link families � which contain only strictly monotone continuous functions

F ��� �� indexed by a scalar link parameter �� It should be noted that in conventional GLM terminology

the link g is equal to the inverse of F � An unknown scale parameter 	 in ��� is estimated by an

appropriate moment estimator involving the Pearson 
� Statistic�

In GLM�s with parametric link as de�ned by ���� the regression parameter �� and the link parameter

� are jointly estimated by maximum likelihood� If the true link F is a member of the link family ��

the joint MLE  �� � � ���  �� of �� � ���� �� will be shown to be strongly consistent and e�cient under

regularity conditions� This asymptotic normal distribution of the joint MLE  �� � � ���  �� of �� � ���� ��

will then be used to construct a validation test H versus K as given by �
�

�



As for ordinary GLM�s� one has the relationship �i � d

d�
b���j���i � b���i�� The log likelihood l����

derived from model ��� can be written as�

l���� �
nX
i��

�
yi�i � b��i�

a�	�
� c�yi� 	�� where �i � b���i� and �i � F �
i����� ���

To derive the corresponding scores� note that �i � F �
i����� �� holds� which implies

��i
��

� Fi� �
��i
��j

� xijFi� for � � j � p� 	 � i � n� ���

where Fi� �
�

��
F �
� ��j���i� Fi� �

�

��
F �
� ��j���i and xi� � 	 for 	 � i � n� Let di �

d�i
d�i

and use ���

to express the scores as follows�

sj���� �
�

��j
l���� �

nX
i��

d�i
d�i

��i
��j

�
yi � �i
a�	�

� � a�	���
nX
i��

dixijFi��yi � �i�� ���

sp������ �
�

��
l���� �

nX
i��

d�i
d�i

��i
��

�
yi � �i
a�	�

� � a�	���
nX
i��

diFi��yi � �i�� ���

To compute the joint MLE  ��� solve simultaneously the equations obtained by equating the scores ���

to zero�

Finally� the expected Fisher information In��� for model ��� can be expressed as follows�

In���� � a�	���
�
I��� I ����
I��� I���

�
� ���

where I��� is a �p�	�x�p�	� matrix� I��� is a �p�	� vector and I��� is a real number given by

�I����rs �
nX
i��

xisxirF
�
i�di

�I����r �
nX
i��

xirFi�Fi�di � � r� s � p and I��� �
nX
i��

F �
i�di�

It is straight forward to see� that the score vector sn���� � �s������ � � � � sp������� has covariance matrix

In����� Let Hn���� denote the corresponding observed information matrix� that is the �s�t�th element of

Hn���� is given by

Hn����st �
��l����

��s�t
for s� t � 	� � � � � p� 	�

The minimal �maximal� eigenvalue of a square matrix A will be written as �min�A���max�A��� Let

�� � ����� ��� denote the true parameter values� For brevity� we will write In and sn for In����� and

sn������ respectively� The following regularity conditions are needed�

R� �min�In��	 as n�	�

R� There is a neighborhood N 
 B of ��� such that a�s

�min�Hn����� � c��maxIn�
�

�
�	� �� � N� n � n�

with some constants c� � � � and a random number n��

�



R� Assume fxn� n � 	g 
 K compact and F �xtn��� �� twice di�erentiable with respect to �� and � and

bounded for fxn� n � 	g 
 K for �xed �� and ��

R� n


min�In�
is uniformly bounded �n � 	�

The following results are straight forward modi�cations of results for ordinary links previously ob�

tained by Fahrmeir � Kaufmann �	
���� Observe� that additional estimation of the link parameter

requires slightly stronger assumptions on the link function F ��� ��� Here F �
� �� has to be also twice

di�erentiable with regard to the link parameter ��

Theorem �	� Under �R�� und �R�� with � � �� there is a sequence  ��n of random variables and a

random number n� with

�i� P �sn� ��n� � �� for all n � n�� � 	 �asymptotic existence��

�ii�  ��n � ��� a�s� �strong consistency�

We are now in the position to give the asymptotic result�

Theorem �	� Under �R��� �R�� and �R	�� there is a sequence  ��n such that P �sn� ��n� � ��� � 	 as

n�	 and

I
�

�

n �
 ��n � ����

D
�� Np������ I� as n�	�

where Nm���!� denotes an m
dimensional normal distribution with mean vector � and variance


covariance matrix !�

Sketches of the proofs of these theorems are contained in the appendix� They are extensions of results of

Fahrmeir and Kaufmann �	
���� The binary case with parametric link has been previously considered

by Czado �	
�
��

��� Asymptotic Link Validation Tests in Generalized Linear Models

Using the results of Section 
�	� we are now able to construct an asymptotic link validation test for

GLM�s�

Theorem �	� Under the assumptions of Theorem ��� for the validation problem H versus K in ���

a consistent asymptotic level � test is given by the rejection region

C �

�
 �n �

�����"
�

 �n � �� � �u

 �n��� ��

�
� "

�
��  �n � ��� � �l

 �n��� ��

������ � �

�
���

where  ��n denotes any consistent estimate of ��n��� ��� which is the �p�	� p�	�
th element of the inverse

of the Fisher information matrix In�����

The critical region of a test at level 	� � for the discrimination problem K versus H is given by the

complement Cc�

�



Proof	 Fix  ��� C can be rewritten as

C ��
n
 �n �  �n � ��C�C�

o
where C � � is uniquely determined by

 P �C�  �n� �l� �u� �� "

	
C � �� � �u

 �n



� "

	
��C � ���� �l

 �n



� �� �
�

Here we have used that the family of normal distributions parametrized by the mean and �xed variance

 ��n is a one�parametric exponential family and hence totally positive of order � �cf� Lehmann �	
����

Th��� p�	�	�� Note further� that condition �
�� of Lehmann �	
��� p�	�
� reduces to �
� because of the

symmetry of the distribution of  �n � �� � ��u � �l��
� From Theorem 
�
 we draw that

L
n
�  �n � �����n ��� ��

o
�� N ��� 	� as n�	�

Applying Slutzky�s Theorem proves that the test is asymptotic size �� Consistency is similar�

As an estimator of ��n��� �� we can use  ��n �� ��n�
 ��  �� where �  ��  �� denotes the joint MLE of ��� ���

The function  P in �
� plays a central role for the assessment of a logistic model and will be denoted

in the following as �asymptotic� generalized p�value function associated to the validation and discrimi�

nation problem �H versus K and converse� in �
�� Observe� that given a �xed sample of observations
 P �  �n�  �n� �l� �u� can be regarded as a two � dimensional surface� where the level sets � �  P give the

asymptotic minimal bounds �l and �u for which H can be rejected at level � as well as the maximal

bounds for which K can be rejected by the discrimination test at level 	 � �� In particular� when

�l � �u � ��� 	�  P denotes the #classical� p�value of the maximum likelihood test for K against H �  P

and its complement can be �asymptotically� regarded as a precise measure of the evidence of neigh�

borhoods ��l� �u� in contrast to the classical �two�sided� p�value associated to �	�� For an illustration

of  P we defer to the examples discussed in Section ��

� Determining the Tolerance Bound

Crucial for the speci�cation of the hypotheses H and K in �
� are the values of the tolerance constants

�l � � and �u � �� We will discuss several choices depending on the quantities one is interested in

estimating� For this let  ���� denote the MLE of �� when a �xed link parameter � of an arbitrary

parametric link family F � fF ��� ��� � � �g is used and 
i� ����� denotes the corresponding i�th linear

predictor� As a reasonable measure of discrepancy from the canonical model the maximal change in

the mean response estimates when switching from the canonical link �� to the link � could be used�

This can be estimated by

$m��� � max
i�������n

jF �
i� ������ ��� F �
i� ������� ���j�

Note� that in the case of binomial responses $m weights di�erences in the tail the same as di�erences

in the middle of the success probabilities� Often� however� we are only interested in the relative �and

not absolute� changes to the mean response estimates� Therefore� consideration of the maximal change

in the odds might be useful when the experimenter has di�culties assessing the importance of changes

in mean responses� This is estimated by

$o��� � max
i�������n

�
oi��� if F �
i� ������ ��� F �
i� ������� ���
�

oi���
otherwise

� �	��

�



where

oi��� �

�
F �
i� ������ ��

	� F �
i� ������ ��

�
�

�
F �
i� ������� ���

	� F �
i� ������� ���

�
�

Note that deviations from the logistic odds are measured from both directions in �	���

Particularly� in the binomial case we can even compare the maximal absolute di�erence between all

possible success probabilities under a logistic model and a model with link parameter �� given by

$p��� � sup��RjF �
� ��� F �
� ���j� �		�

Note that� for binomial responses the supremum in �		� is �nite� This criterion might be particularly

appealing for the applied statistician because it has not to be estimated as $o and $m�

Once decided for a criterion as $m����$o��� or $p���� we can determine the corresponding tolerance

bound $�� for which the canonical model is assumed as su�ciently approximated by the noncanonical

model� Testing %H � $������ � $� �or %K � $������ � $�� is now tantamount to the testing problem �
�

and its converse� where the constants �l� �u have to be determined numerically as $��
��� �$��� Observe�

that this leads always to two unique values ��
l � ��

u� such that ��
l � �� � ��

u because each criterion

$������ is a strictly unimodal function with unique minimum at ��� The determination of the bounds

�l� �u can now be expressed in terms of one of the suggested measures of discrepancy $��� in accordance

with the particular model and the speci�c question the experimenter has in mind� This allows to reduce

the two dimensional surface  P to a one � dimensional curve which only depends on $��� by the relation
 P ��� ��$�� ��  P ��� �� ��

l � �
�
u�� For illustration in the case of generalized logistic regression we displayed

some values for the criterion $p in Table ��	�

� Simulation Results

��� Small Sample Behavior of Goodness of Fit Point Hypothesis Tests in a Logistic

Model

To investigate the small sample behavior of the residual deviance as goodness of �t statistics and

the likelihood ratio statistics for testing a logistic link� we consider a family of generalized logistic

distributions fF ��� ��� � � 
g �Czado �	


�� with heavier right tail �� � 	� and lighter right tail

�� � 	� than the logistic distribution �� � 	�� These links have low variance in�ation �Taylor �	
����

due to the fact that the parametrization is orthogonal in a neighborhood around � � �� In addition�

they are location and scale invariant �cf� Czado �	

���� In particular� the distribution functions F ��� ��

are given by

F �
� �� �
exp�h�
� ���

	 � exp�h�
� ���
�

where

h�
� �� �

�
��������

�
if 
 � �


 otherwise
�

A modi�cation of the left tail or both tails is also possible�

Figure ��	 gives the absolute di�erence in probability between the logistic and the generalized logistic

distribution as a function of 
 and �� It can be seen that for � � 	 �lighter right tail� this di�erence






is signi�cantly large in a much smaller range of 
 values compared to the case of � � 	 �heavier right

tail�� This allows us to classify four areas of varying degree of information about the link parameter ��

In the case of a heavier right tail �� � 	� compared to the logistic link �� � 	� and a large range for

the linear predictors 
i it will be easy to discriminate against the logistic link� while the opposite will

be true in the case when there is small range for the linear predictors� For the lighter right tail case

�� � 	�� the degree of information for discriminating against the logistic link will be medium in both

cases of a large or small range for the linear predictors 
i�

The maximal distance $p��� between the generalized logistic link and the logistic link as a function of

the link parameter � is given in Figure ��
� Table ��	 gives for some special $� values the corresponding

interval ��l� �u� to insure that $p��� � $� for all � � ��l� �u��

$� �l �u

�
 ��
� ��	�

�	� ��
 
���

�	� ��� 	���

���� ��
 	���

��� ��� 	��


��
� ��
 	�	


��	 �
� 	���

Table ��	� Choice of the link parameter � to achieve a maximal absolute di�erence

of $� between the generalized logistic cdf and logistic cdf

Data from the following generalized logistic model with single covariate was generated�

Yi � binomial�n� pi� for i � 	� � � � � 		 with pi � F ��� � ��xi� ���

where F �
� �� is given by ���	� and �� � 	� To investigate equally and unequally spaced covariate

values two choices for xx � �x�� � � � � x��� were considered� xx equally spaced between �� and � and xx a

standard normal random sample of size 		� The following values for the regression slope parameter

�� were chosen� �� � ��� 	� 
� This allows models with nearly symmetric true probabilities around ��

��� � 	�� extreme probabilities ��� � 
� and more central probabilities ��� � ���� Figure ��� plots the

true probabilities when � � ���
� 	� 
�� for the di�erent �� and xx values� Note that the equally spaced

covariate case will induce a large range for the linear predictors� while the unequally spaced covariate

case will induce a small one� Therefore� we suggest to classify the cases � � 	 and equally spaced

covariates �� � 	 and unequally spaced covariates� as areas with high �low� power to discriminate

against the logistic link� The other areas �� � 	 and both cases of covariate con�guration� have

medium discrimination power� This will be supported by the following simulation results� Finally� we

investigated two binomial sample sizes of n � 
� and n � ���

To demonstrate the inappropriateness of using a large p�value of the ordinary goodness of �t statistics

as an indicator of a good �tting model� we simultaneously calculated the p�values of the likelihood

ratio test of testing � � 	 as well as the residual deviance test assuming a logistic model based on

��� replications� Values for the link parameter � were chosen between ��
 and 
�� to allow up to 	�&

percent of absolute di�erence in the probabilities between the logistic and generalized logistic model�

It has been checked� that this maximal di�erence does occur in the range of true probabilities assumed

for the simulation design� We recorded the percentage of cases� where the p�value of the likelihood

ratio test statistic was larger than �
 and ��� respectively �see Figure ��� and ���� and the percentage

	�



where the p�value of the residual deviance statistic was larger than �� and ���� respectively �see Figure

��� and ���� based on ��� replications� Di�erent p�value bounds for the likelihood ratio statistic and

the residual deviance were chosen� since the likelihood ratio test is primarily used as a test to detect

deviation from the canonical link� while the residual deviance test is used as a goodness of �t test

where it is common practice to assume a higher p�value as indication of a good �tting model�

We will now discuss the conclusions from the above plots according to the degree of information

available for the discrimination from the logistic link� Recall that � � 	 and equally spaced covariates

contain high� � � 	 and unequally spaced covariates contain low and � � 	 contain medium information

about the link�

If one considers �as it is common practice� a a p�value larger than �
 for the likelihood ratio test as

indication of a good �tting model� the test will be unable to detect the large maximal di�erence of

	�& �	�&� in probability up to 	
��& ����&� in the area of high� up to 
��
& �
���&� in the area

of medium and up to ����& �����&� in the area of low discrimination power when n � 
� �n � ����

The percentages are roughly halved when the proportion of cases for the likelihood ratio test statistics

with a p�value greater than �� are considered� Here� up to ���& �
��&� in the area of high� up to 	
&

�	��
&� in the area of medium and 
��	&�
���&� in the area of low discrimination information of the

tests are unable to detect a di�erence in 	�& �	�&� probabilities when n � 
��n � ���� This shows

that the likelihood ratio test is performing very poorly in areas of medium and low discrimination

power� since it accepts the canonical link a large number of times� when in fact the true probabilities

di�er substantially like by 	��	�& from the canonical link probabilities�

We now turn to the performance of the residual deviance test as a goodness of �t test� If one relies

only on a residual deviance goodness of �t statistic as measure of goodness assuming a p�value of larger

than ��� say� as an indication of a good �tting model� one can see that this test is especially unable to

detect link misspeci�cation when � � 	� i�e� in the area of medium discrimination power� In particular�

we observe that up to ���& ����&� in the area of high� up to ���
& �����&� in the area of medium

and �	��& ����
&� in the area of low information of the residual deviance test are unable to detect a

maximal absolute di�erence of 	�& �	�&� in probabilities when n � 
� �n � ��� assuming a p�value

of �� as indication of a good �tting model� Again� these percentages are roughly halved when a p�value

of ��� is assumed as su�cient evidence for the canonical model�

In a second step� we determined the sensitivity of these two tests� i�e we are interested in the number of

times the test would reject the canonical model� when in reality there is at most a negligible deviation

from the canonical model� For this� we assumed a maximal absolute di�erence of �& in probabilities

as a negligible deviation from the logistic model� It turns out� that the residual deviance test has less

sensitivity against small deviations from the canonical model than the likelihood ratio test� Both tests�

however� are too sensitive in areas of high discrimination power and when the sample size is large

�n � ���� In particular for the likelihood ratio test� we observe that for n � 
� �n � ��� up to 
���&

���&� in the area of high� up to 	�& �
��
&� in the area of medium and up to 
�
& �	�&� in the area

of low discrimination power to reject the logistic model at � � ��� when the true underlying model

only deviates by at most �& in the probabilities from the logistic model� For the residual deviance

test� the same percentages are 		��& �
��
&� in the area of high� ���& ��&� in the area of medium

and ���& ���
&� in the area of low discrimination power when n � 
� �n � ����

To summarize� these results clearly demonstrate� that on the one hand there is no guide on how large

a p�value has to be� before it gives su�cient indication for a good �tting model� In any case� they

have to be much larger than signi�cance levels for rejecting the point null hypothesis� In particular�

the residual deviance test turns out to be very poor in detecting a large deviation from the canonical

model� In addition� prediction for some covariate values within the range of observed covariate values

		



will be completely unreliable� Therefore� ordinary goodness of �t tests such as the residual deviance

test or even the likelihood ratio test for testing logistic link within the class of generalized logistic links

should only be used very carefully to validate the logistic regression model� Large p�values turn out

to be misleading� On the other hand� for certain �unknown� parameter con�gurations which provide

high information about the link� both tests are too sensitive to the occurrence of deviations from the

logistic model� which are too small to be of importance to the data analyst�

The Pearson 
� statistic assuming a logistic model has been also investigated� We obtained similar

results for other GLM�s which are not displayed by the ease of brevity�

��� Small Sample Properties of the Validation Test when Verifying the Logistic

Model

We now investigate the small sample behavior of the proposed validation test for the special case of

binomial responses� The same simulation setup as in the previous section has been used� Consistent with

the previous section� we consider maximal absolute di�erences of 	�& in probabilities from the logistic

model as large deviation� while a maximal absolute di�erence of ��	�& are tolerable deviations from the

link� Therefore� we investigated the performance of the asymptotic link validation test� when we allow

a maximum absolute di�erence of 	�& ��&� in probabilities corresponding to $� � �	 �$� � �����

This corresponds to the validation testing problem H � � �� ����� 	���� versus K � � � ����� 	����

�H � � �� ����� 	��
� versus K � � � ����� 	��
�� when $� � �	 �$� � ���� � Here� �� � 	 is equivalent

to the logistic link� From the �ndings in the last section� we expect the power of the asymptotic link

validation test to be larger for the equally spaced covariate case compared to the unequally spaced

case and when the true link has a heavier right tail �� � 	� compared to a lighter right tail �� � 	��

Again two binomial sample sizes of n�
� �solid line� and n��� �dotted line� were considered� Asym�

ptotic validation tests of H � � �� ����� 	���� versus K � � � ����� 	���� � H � � �� ����� 	��
� versus

K � � � ����� 	��
�� when $� � �	 �$� � ���� at level � � �	 were performed on ��� binomial data

sets with � � ��
� ���� ���� 	� 	��
� 	���� 
�� �� � ���� ���� ��
� 	� 	�	
� 	��
� 	���� and the observed power

is given in Figure ��� �Figure ��
� for all cases considered� Cases where the maximization routine

failed to converge were deleted from the simulation� This occurred in about 	& of all cases when

� � ���� ���� 	� 	��
 and up to �& for � � ��
� 	���� 
���

In all cases considered� the validation test allowing for 	�&maximum absolute di�erence in probabilities

maintains its signi�cance level � of �	� with being more conservative on the left hand side of the

alternative K �� � ���� and more liberal on the right hand side �� � 	����� A possible explanation for

this is the smaller area of large di�erence between the link parameters for � � 	 compared to � � 	�

For the same reason� the power of the test is higher by about ��& for the equally spaced covariate

case� The power of the test increases by about ��& as sample size changes from n � 
� to n � ���

As to be expected� the validation test allowing only for a maximum absolute di�erence of �& in

probabilities has lower observed power than the test allowing for a maximum absolute di�erence of

	�& in probabilities �see Figure ��
�� The reduction in power is large especially when n � 
� and for

unequally spaced covariates� Even for a sample size of n � �� the maximal power is ��� indicating that

larger sample sizes than �� are required� However� the test maintains equally well its signi�cance level

of � � �	 at both end points of the alternative �� � ��� and � � 	��
��

In summary� the validation test maintains its signi�cance level� The power of the test depends on

whether data is collected in areas of large di�erence between the logistic link and the generalized

logistic link� For a validation neighborhood of 	�& in probabilities a sample size of n � 
� is su�cient

for a maximal power of �� in the case when the data can determine the areas of the large di�erence while

	




a sample size of n � �� is needed for data which is sparse in areas of large di�erence� For the smaller

validation neighborhood of �& in probabilities� sample sizes larger than n � �� are required� Hence� the

proposed classi�cation of regions of the parameter space into di�erent zones of discrimination power

is an excellent indicator for the actual power of the validation and discrimination test�

� Examples

��� Age of Menarche in Warsaw Girls �Revisited�

For this data set� changes to the estimated success probabilities �see �		�� as well as to the estimated

odds �see �	��� have been investigated� First� for a range of $� values the corresponding �l and �u

values have been determined for both criteria� The corresponding generalized p�value functions �as

de�ned in Section 
�
� are given in Figure ��	� These functions were calculated as functions of the

particular criterion $����

They show� that using a left tail modi�cation of the link will result in a maximal absolute di�erence

of �& in estimated success probabilities at � � �	 compared to a logistic analysis� A logistic analysis

can be validated at � � �	� if one is willing to tolerate a change of �& in estimated probabilities�

Since this data set contains extreme observed probabilities� it will be expected that the e�ects on the

estimated maximal odds will be large� which is supported by Figure ��	� In particular� a maximal

change of the estimated odds by � can be detected� but the logistic link can only be validated when

accepting maximal change by �� on the estimated odds� Given these results� it seems to be reasonable

that a noncanonical link model is necessary if the interest is focused on the odds� This is in accordance

to the analysis made by the standard tests in the introduction� However� if we are only interested in

the maximal probability di�erence� a modi�cation of the model seems to be unnecessary� because a

maximal probability di�erence under a left tail modi�cation of � ���� and � ���� using a right tail

modi�cation can be validated at �	�

��� Bottle Deposit Data �Revisited�

Remember� that the standard likelihood ratio test gives strong indication for a noncanonical link model�

As for the menarche data changes to the estimated mean responses as well as to the estimated odds are

considered and the results are plotted in Figure ��
� It shows� that a right tail modi�cation will result

in a maximal di�erence of �& in estimated success probabilities compared to a logistic link analysis�

This analysis can be validated at � � �	� if one tolerates a change of 	�& in probabilities� The maximal

change on estimated odds is much less compared to the menarche data set� Here the logistic link can

be validated in the neighborhood of a maximal change on the estimated odds of 	��� at � � �	� If

the emphasis is on estimating odds� this change is certainly tolerable� Therefore� if the parameter of

interest is the odds� it is certainly justi�ed to maintain a logistic link despite the observed signi�cant

improvement in �t by the classical goodness of �t statistics� when a right tail modi�cation is used�

This example illustrates the too large sensitivity of the classical tests� when the sample size is large

and the estimated variability in the link is small�

��� Toxicity of Insecticides to Flour Beetles

The following example shows that care has to be taken in the presence of isolated departures from the

canonical model�

	�



Collett �	

	� p� 	��� reports the results of an insecticidal trial on �our beetles which were sprayed

in batches of about �� insects with three di�erent insecticides �DDT� ��BHC� and DDT � ��BHC� at

varying deposits of spray� An initial analysis shows that a logistic model which �ts parallel lines to the

three di�erent insecticides can be used as a basis for comparing the insecticides� Collett �	

	� p� 	�
�

gave arguments that this data set contains an outlier�

Right and left tail modi�cations to the link were investigated and link parameter estimates with their

estimated standard error in parentheses� the residual deviance and the likelihood ratio statistics are

reported in Table ��	� for the complete data and the data with the outlier removed� This shows that the

in�ated residual deviance for the logistic model is entirely due to the presence of the outlier� However�

in both cases there is no signi�cant evidence that the link is misspeci�ed� This shows that residual

deviance statistics is very sensitive to isolated departures from the model� while the likelihood ratio

statistics for testing logistic link is not in this example�

Complete Data Outlier removed

Model Link Residual Likelihood Estimate Residual Likelihood

Estimate Deviance Ratio Estimate Deviance Ratio

logistic 
	�
� �	�� ���� 	���� �	�� ��
�

right tail 	�
� ��
�� 
	��� �	�� ���� ��� �	� ��	� 	�	
 ��
�� 	���� �	
� �
�� �

 �	� ��
�

left tail 	��� ����� 
	��� �	�� ���� 	�	 �	� ���� 	�	� ����� 	���� �	
� �
�� �	
 �	� ����

Table ��	� Link Estimates� Residual Deviances and Likelihood Ratio Statistics for the Flour Beetle

Data

In Figure ��� the p�value curves for assessing the maximal change to the estimated success probabilities

for the complete data and the data with the outlier removed are given� No signi�cant change compared

to a logistic analysis can be shown for either data� The logistic link can be validated at � � �	 in a

neighborhood of a �& maximal change to the success probabilities when the outlier is removed� This

relatively large neighborhood can be explained by the only medium size of the binomial trials ni� Since

the observed probability of the outlier is 	
��� which is less than ��� the e�ect can be seen in the left

tail of the link distribution� Here� the link can only be validated in a neighborhood of 	���& maximal

change to the probabilities when the outlier is left in the data� While the likelihood ratio statistics gives

the impression that the logistic link is a perfect link for this data set� the asymptotic link validation

test shows some uncertainty with regard to validating the logistic link due to the sparse information

about the link contained in the data�

The changes to the estimated odds are given in Figure ���� Again the magnitude of the changes are

reduced after the outlier is removed� Since more extreme probabilities are observed in the right tail

than in the left tail� the changes to the odds are larger for a right tail modi�cation than for a left tail

one�

These last results show that isolated departures from the model such as the presence of outliers do

certainly in�uence the performance the link validation test� It is to be expected that missing covariates

and overdispersion in the data also in�uence the validation test� Therefore the link validation test should

only be applied after diagnostic tools for the detection of a mean misspeci�cation such as developed by

Landwehr� Pregibon and Shoemaker �	
���� Pregibon �	
�	�� Williams �	
��� and O�Hara Hines and

Carter �	

�� have been used� For the presence of overdispersion� score point hypothesis tests developed

by Dean �	


� and Smith and Heitjan �	

�� can be applied� Appropriate interval hypothesis tests�

however� would be preferable over these score tests in the case of failing to reject the hypothesis of no

overdispersion� The development of such tests is the subject of current research�

	�
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Appendix

Fahrmeir and Kaufmann �	
��� proved the asymptotic results for ordinary GLM�s� i�e for GLM�s with

�xed link� Their results need now to be extended to cover the case where a link parameter � has to be

estimated as well�

Sketch of proof for Theorem �	� �

The proof of Theorem 
 �p� ��
� of Fahrmeir and Kaufmann �	
��� for noncanonical links �see Section

��	� can be followed using a Taylor expansion of the log likelihood l���� around ����

Sketch of proof for Theorem �	��

First� an analogue of Lemma 
 �Fahrmeir and Kaufmann �	
���� p� ��	� will be derived�

Lemma �	� Under �R�� and �R��� Insn
D
� Np������ I� as n�	�

Proof of Lemma ��	�

As in Fahrmeir and Kaufmann �	
���� the proof uses the central limit theorem for triangular arrays

and establishes the validity of the Lindeberg condition� For this� de�ne the triangular array

Zni � �tI�
�

�

n ss�yi� xi� ����

where ss�yi� xi� ���� is the vector of individual score contributions� i�e� given by�

ss�yi� xi� ���� � a�	����dixi�Fi��yi � �i�� � � � � dixipFi��yi � �i�� diFi��yi � �i��

	�



De�ne �ni � �tI
��

�

n L�xti���� ���� where

L�xti���� ��� � a�	����dixi�Fi�� � � � � dixipFi�� diFi���

Note that this vector above is bounded when fxn� n � 	g by condition �R��� since di is a continuous

function of F �xti���� ���� We can now express Zni as

Zni � �ni�Yi � F �xti���� �����

Under �R	� and �R��� we have with the Cauchy�Schwarz inequality

maxi�n�
�
ni � jjL�xti���� ���jj

��minI
��
n � k�minI

��
n � � as n�	�

Then we argue as in Fahrmeir and Kaufmann �	
���p���� for compact regressors that the Lindeberg

condition is satis�ed�

We continue now with the sketch of proof for Theorem 
�	�

Using Lemma ��	 and the following condition

R� For every � � �

max��Nn�	�jjVn����� I jj � � in probability

where Vn���� � I
� �

�

n Hn����I
� t

�

n and Nn��� is de�ned as Nn��� � f�� � jjI
t
�

n ��� � ����jj � �g�

we proceed as for the proof of Theorem � in Fahrmeir and Kaufmann �	
���� Finally� it remains to

show that �R	���R�� and �R�� are su�cient for �R��� For this� we argue as in the proof of Theorem �

�Fahrmeir and Kaufmann� p����� considering the same partition of matrices as for In���� to adjust for

the additional estimation of the link parameter ��

	�
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Figure 	��� True link functions used in the simulation �� � 	 �solid line�� � � ��
 �dotted line�� � � 
��

�broken line��
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Figure 	�	� Percentage of likelihood ratio tests of H � � � 	 versus K � � �� 	 which result in a p�value
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Figure 	��� Percentage of likelihood ratio tests of H � � � 	 versus K � � �� 	 which result in a p�value
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Figure 	�
� Percentage of residual deviance tests assuming a logistic model which result in a

p�value � ��
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Figure 	��� Percentage of residual deviance tests assuming a logistic model which result in a

p�value � ���
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Figure 	��� Observed power of the link validation test for H � $p��� � �	 versus K � $p��� � �	 at

signi�cance level � � �	
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Figure 	��� Observed power of the link validation test for H � $p��� � ��� versus K � $p��� � ��� at
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Figure ���� P �value curves for assessing the maximal change to estimated success probabilities and

odds for the Age to Menarche Data


�



max. prob. change

pv
al

ue

0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

right tail modified

max. prob. change

pv
al

ue

0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

left tail modified

max. odds change

pv
al

ue

1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

right tail modified

max. odds change

pv
al

ue

1.05 1.10 1.15 1.20 1.25 1.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

left tail modified

Figure ���� P �value curves for assessing the maximal change to estimated sucesss probabilities and

odds for the Bottle Deposit Data
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Figure ���� P �value curves for assessing the maximal change to estimated success probabilities for the

complete and outlier removed Flour Beetle Data
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Figure ��	� P �value curves for assessing the maximal change to estimated odds for the complete and
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