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Abstract

Dynamic generalized linear mixed models are proposed as a regression
tool for nonnormal longitudinal data. This framework is an interesting
combination of dynamic models, by other name state space models,
and mixed models, also known as random effect models. The main
feature is, that both time— and unit—specific parameters are allowed,
which is especially attractive if a considerable number of units is ob-
served over a longer period. Statistical inference is done by means
of Markov chain Monte Carlo techniques in a full Bayesian setting.
The algorithm is based on iterative updating using full conditionals.
Due to the hierarchical structure of the model and the extensive use
of Metropolis—Hastings steps for updating this algorithm mainly eva-
luates (log-)likelihoods in multivariate normal distributed proposals.
It is derivative—free and covers a wide range of different models, inclu-
ding dynamic and mixed models, the latter with slight modifications.
The methodology is illustrated through an analysis of artificial binary

data and multicategorical business test data.

Some key words: Bayesian inference; Generalized linear model; Heteroge-
neity; Longitudinal data; Markov chain Monte Carlo; Metropolis—Hastings

algorithm; Time—varying regression parameters.
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1 Introduction

Generalized linear models provide a powerful regression tool for the analysis
of nonnormal cross—sectional responses. To deal with nonnormal longitudi-
nal data, several extensions are proposed. Generalized linear mixed models
(Breslow & Clayton, 1993; Zeger & Karim, 1991) and dynamic generalized li-
near models (Fahrmeir, 1992a) are examples of hierarchical models, where in-
dependence assumptions are imposed conditioning on stochastic unit—specific
or time-dependent parameters. These models try to meet the requirements
of longitudinal data in different ways. While the first approach allows para-

meters to vary over units but not over time, the second does vice versa.

Consider the following situation: Longitudinal data (v, 24) (¢ =1,...,T,
i =1,...,n) is observed on n units over T' time periods. For simplicity, it
is assumed that response y; is univariate. An ordinary generalized linear
model (GLM) assumes mutual independence of the y’s. The linear predictor
nti, which connects covariates x4 with the mean h(n) of responses yy via

the response function h, is
_ T
Nt — Ztiﬂv
where the design vector z; i1s formed out of z;. The unknown regression

parameter 3 is independent of time ¢ and unit .

However, often there is heterogeneity among units arising from covariate
effects varying from one unit to another or due to unobserved (unit—specific)
covariates. Therefore unit—specific parameters, sometimes called random ef-

fects, b; ~ N(0, D) are introduced. The linear predictor is extended to
i = 2 + wiibi.

Often wy; is a subset of zy;. The parameter 3 represents the population ave-

rage effect whereas the b;’s represent the unit—specific deviations from f.



This approach is especially attractive if n is large and 7' is small.

It n is small but T is large a dynamic model is more appropriate. The

idea is to introduce time—varying parameters [3; in

Nts = th;ﬂt

The temporal variation of these parameters is described in an additional
transition model. This approach allows for trend or seasonal components
as well as for time—varying effects of covariates. However, possibly existing

heterogeneity among the units is not taken into account.

In this paper we combine these two approaches. The linear predictor is
extended to

T T
Nt = 24 B¢ + wy; by,

so both time-dependent as well as unit-specific parameters are allowed. To
include multivariate models such as cumulative or sequential models for mul-
ticategorical responses (a recent survey is given in Fahrmeir & Tutz, 1994),

a more general form

Nt = 2B + Wiib;

is considered. Here 7y is a vector of dimension ¢. Since dynamic and mixed
models are combined this framework is called a dynamic generalized linear
mixed model (DGLMM). Note that dynamic models (D = 0) as well as mi-
xed models (f3; = ) are special cases of a DGLMM.

For normal data models of this kind have been proposed already (e.g.
Hsiao, 1986), whereas corresponding work for nonnormal data is quite rudi-
mentary. This is mainly due to the fact that integrations necessary to com-
pute functionals of the posterior distribution are very difficult using standard
numerical integration techniques. Alternatively one may try to maximize the

posterior to avoid integration. In fact, the algorithms proposed in Fahrmeir



(1992a,b) compute the posterior mode and curvature in dynamic generalized
linear models. However, extensions of these methods to the model considered
here suffer from the fact that maximization of both time- and unit-specific
parameters has to be done iteratively using backfitting or Gauss—Seidel algo-
rithms. Additional estimation of hyperparameters increases computing time

enormously.

In contrast, the MCMC algorithm proposed here is surprisingly simple,
covering a wide range of models with only minor changes and leading to suf-
ficient exact results in a reasonable amount of time. It allows not only for
posterior mean and covariance estimation but also for estimating the poste-
rior density itself, computing simultaneously credible regions (Besag, Green,
Higdon & Mengersen, 1995) and for selecting models based on Bayes factors
(Raftery, 1995).

Like in Zeger & Karim (1991) and in Carlin, Polsen & Stoffer (1992) a
Bayesian approach is adopted, treating all unknown parameters and hyper-
parameters as random with appropriate prior specification. The algorithm is
based on iterative updating using full conditionals. The main difference to
the well known Gibbs sampling algorithm proposed in a related context in
the references above is the use of a Metropolis—Hastings step for updating,
sometimes called ”Metropolis within Gibbs”. For a recent survey of MCMC
methods see Tierney (1994), Besag, Green, Higdon & Mengersen (1995) or
Smith & Roberts (1993).

Finally the transition model needs some further comments. We use a

vector autoregressive model

B = —ZFlﬁt—z—l-ut, ur ~ N0,Q) (t=z+1,...,7).

=1
Iy, ..., F, are called transition matrices and are assumed to be known, ()

has to be regular. This is roughly equivalent to the state space approach in
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Fahrmeir (1992a), where ) is allowed to be singular. For more details on

similarities and differences of both transition models see Knorr-Held (1995).

This article is organized as follows: Section 2 introduces dynamic gene-
ralized linear mixed models in a Bayesian formulation. The algorithm for
simulating the (numerically intractable) posterior distribution is presented
in Section 3. This section also gives a brief discussion of the available point
and interval estimates using samples from the posterior. Section 4 illustrates
the methodology through an analysis of artificial binary response data and an
application to multicategorical business test data. Here several multivariate
versions of DGLMM’s with restrictions on the parameters are discussed. We

summarize our findings and outline some further generalizations in Section

3.

2 Dynamic Generalized Linear Mixed Mo-

dels

Let (yu,24) (t = 1,...,7, 7 = 1,...,n) denote the observation of unit ¢
at time ¢, where x4 = (241, .. .,:Jctm)T is the vector of covariates and y;; =

(Yeits - - - > Yrig) T is the ¢ dimensional response vector. A DGLMM is based on

an observation model for the s,
a (random effect) model for the b,’s,

and a transition model for 3,’s.

The observation model consists of a distributional assumption for y;; and

a structural assumption for the mean of y;; given parameters [3; and b;:
E(ysi| B, by xei) = h(Z4 Br + Wiibi),

where h : IR? — IR? is a so—called response function, Z;; is a ¢ X p—matrix

and Wy; 1s a ¢ X r—matrix, both formed out of xy.



The unit-specific effects b; of dimension r are assumed to follow a Gaus-

sian distribution

b~ N(0,D) (i=1,...,n)

with mean zero and covariance matrix D.

The parameters 3; of dimension p are supposed to vary over time. The
simplest model is a random walk of first order but to include important
models like a local linear trend model or a seasonal component, a general

multivariate autoregressive structure
B = _ZFlﬂt—l-l'utv ue~ N(0,Q) (t=z+1,....T)
=1

is proposed. Using the lag operator L(3;) = ;-1 and defining a matrix
polynomial , F\(L) =1+ FiL + ...+ F.L?, it may be written shorter as

F(L)B: = vy, up ~ N(0,Q).

Diffuse priors on the initial values 3; o const (f = 1,...,z) complete the
specification. Note that this model definition is only reasonable, if all com-
ponents of 3; have the same lag z. If different components have different
lags, some formal problems arise for the initial values. In this situation it
is useful to split up 3; in independent components and let every component
follow a specific autoregressive model. However, these changes are obvious

and omitted here to avoid a non—transparent setting.

A prior specification for the hyperparameters () and D completes our mo-
del. For D we choose a conjugate prior, the inverted Wishart distribution.
The same is possible for (), but often the components of u; are assumed to
be independent, so () is diagonal. Therefore inverse gamma priors, the uni-

variate conjugate analogues, are assumed for the diagonal entries of ().



The definition of this model is in spirit of a hierarchical model, where

conditional independence is assumed among the following random variables:

yn|ﬂt, b;, D, Q) (t 1....
wlQ  (t=z+1,...,T),
b|D  (t=1,...,n),

D and Q).

Note that until now covariates are assumed to be non-stochastic. To include
past observations as covariates or other stochastic covariates these indepen-

dence assumptions have to be modified appropriately.

3 Simulating the Posterior

In this section a general algorithm is proposed for analyzing dynamic gene-
ralized linear mixed models. The MCMC sampling scheme is not affected
by changes in the transition model, different distributional assumptions for
the responses or different response functions. It is derivative—free and con-
sists mainly of generating multivariate normal variates and evaluating (log-)
likelihoods. However, due to this model flexibility, there may exist more
efficient MCMC procedures for special versions of DGLMM’s. For exam-
ple, convergence of the simulated Markov chain may be better, if updating
B =(p,...,0r)is done componentwise rather than cross—sectional wise, but
implementation is much more difficult. The reader should keep in mind that
the major goal of this section is to present a unifying tool, which works in

our limited experience pretty well for several kinds of models.

The sampling scheme is based on iterative updating using full conditio-
nals. Full conditional densities are shortly denoted by p(3:| ), p(b;| ) and

so on. Due to the hierarchical structure of the model, the full conditionals



to be considered are

P(Be|Bsz: 0,Q. Dyy) ~ p(Be| Bz b,Q,y) (t=1,....T),

p(bilbjzi, B,Q. Dyy) ~ p(bi]B, D.y) (i=1,....n),
p(Q[B,6,D.y) ~ p(Q|B) and finally
p(D[B,6,Q,y) ~ p(D|b),

where b, 3 and y stands for all 6;’s, all 8;’s and all y;’s, respectively. A
Metropolis—Hastings (M—H) step is used for updating the ;’s and the b,’s,
whereas samples from p(Q)| ) and p(D| ) are generated using a Gibbs step.
The algorithm is a hybrid procedure as introduced in Tierney (1994) and
further discussed in the context of updating full conditionals in Besag, Green,

Higdon & Mengersen (1995).

3.1 Updating using full conditionals

Let us start with the full conditional of parameter 3;. Applying Bayes’s

theorem we notice that
515 O< Hp yn|5t, 5t|5s;ﬁt, )

Because the conditional distribution p(3;|8sz:, Q) is Gaussian, the full con-

ditional can be written as
51& x Hp ytz|5ta 516,/%7 )

Here (4 i1, Xt) = @(5:) denotes the density function of the normal distri-
bution N(u¢, ¥4) with mean g and covariance matrix ¥;. These parameters
depend on the current values of () and of neighboring parameters 3,.;. Dif-
ferent transition models result in different formulae for p; and ¥;. Here we

give two examples: A random walk of first order 3 = 3;_1 + u; leads to

N(Bi4+1,Q) (t=1)
N(pe, ) = ¢ N(3Bica 4+ 3641, Q/2) (1=2,...,T—1) .
N(ﬂt—lv Q) (t = T)



A seasonal model fB;_, + ... + B = uy results in ¥, = @Q/(z + 1) and
pr=— (B +28isi1 + .o F 201+ 2P + o+ 28041 + Beye) [(2 4+ 1)
fort =z+1,...,T — z with slight modifications otherwise. In general the

formulae are
min(z,T—t)

st= Y FoT'

j=max(0,1+z—t)
and
min(z,T—t) z
w=-sd U3 e (3w
j=max(0,1+z—t) 1=0,1#]

for t=1, ..., T. A proof is given in Knorr—Held (1995).

The M-H update step uses ¢(/3;) as proposal density and evaluates the
likelihood at time ¢

Pyl Be, b;) = Hp(ynlﬂt, by).

We call 37 ~ N(u, X)) a conditional independence proposal, since it does
not depend on the current value of 5; but it does depend on current values
of neighboring 3,4+ and of (). This proposal density has some advantages.
First the M—H acceptance probability

o = min {, 2 DD
CIREES

simplifies to the ratio of p(y,|3:,b;), evaluated at the current value g7 (O

stands for ”current value”) and at the proposed new value ;. Secondly the
algorithm shows good performance with an acceptance rate ranging from 0.3
to 0.9 for lots of different data and models. There is no need to tune the
algorithm (choosing a different proposal) and the lack of a tuning parameter

here is some kind of relief.

Updating (; consists of two steps:

1. Sample 387 ~ N (g, 34)



2. Accept 4 with probability

a = min {1 p(yt|6:7 bl) }
"p(ye| B b))

otherwise leave (3; unchanged.

In contrast to this very simple M—H update step a Gibbs step is much more
demanding. For example, the use of ©(/3;) as an envelope function in a rejec-
tion step as proposed in Carlin, Polsen & Stoffer (1992) in a related context
often is unattractive due to very high rejection probabilities for nearly all
kinds of models and data structures. It may work for time series (n = 1),
but also in this case updating by M—H is much more effective. More sophisti-
cated envelope functions often need the knowledge of the mean and curvature
of the full conditional (see Zeger & Karim, 1991) or are applicable only to
univariate densities as in the case of adaptive rejection sampling and its ge-
neralizations (Gilks & Wild, 1992; Gilks, 1992; Gilks, Best & Tan, 1994).
Compared to these problems arising by use of a Gibbs step, the proposed
M-H update step is astonishingly simple without any requirements on the

full conditionals like log—concavity etc.

These considerations are completely transferable to the following case of
updating the b;’s. Again, a M—H step is more effective and less demanding as
a Gibbs step, proposed in Zeger & Karim (1991). Applying Bayes’s theorem

the full conditional of parameter b; can be written as

T

p(bil ) o< [ [ p(wiil B, b (b0, D).

=1
In the following the likelihood of unit ¢ is denoted by

T

p(yilBe be) = [ [ p(wail B2, b1

=1
Although this full conditional is very similar to p(3;| ), an independence

proposal bF ~ N(0, D) often has low acceptance rate, thus performance is
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poor. The main reason for that is, that p(b;] ) may differ substantially from
©(b;;0, D), especially for large T'. Therefore we use a random walk proposal
br ~ N(b7, E), which usually performs better in such situations (Tierney,

1994).

Updating the b;’s proceeds as follows:
1. Sample bf ~ N(b7, E)

2. Accept b with probability

o = min {1, BB Dli5:0.0) |
Dyl 30000, D) |

otherwise leave b; unchanged.

Note that « is not affected by the choice of E. Therefore £ can be used as
a tuning parameter to control the acceptance rate. We had good experience

with £ = D/2.

Sometimes restrictions are imposed on components of 3;, b; or both. In a
dynamic cumulative model without random effects, for example, those com-
ponents of 3;, representing the thresholds 4, ..., 0, have to fulfill the order
restriction 0y < 0 < ... < 0. Such constraints are easily incorporated in
the sampling scheme given above by disregarding those proposals 3; or b,

that do not obey the restriction.

Sampling from p(Q| ) and from p(D| ) is straightforward due to con-
jugate settings. Assuming an inverted Wishart prior D ~ [W,((, B), the full

conditional is given by
" -1
D] ~IW, [¢+n, (B—l + Zbﬂa?)
=1

Similar results hold for ). If () is assumed to be diagonal and all components

of 3; have the same lag z, an inverse gamma prior ();; ~ [G(a,b) results in

11



the full conditional

T —1
Qiil ~1G|a+(T'—2)/2, (1/b+ > ufj>

t=z+1

3.2 Visiting Schedule

Some considerations have to be made concerning the order in which para-
meters and hyperparameters are updated. It is a natural choice to visit the
blocks [f1,. .., B, [b1, ..., ba], [Q11,- .., @) and [D] in a deterministic or-
der. To avoid an artificial "drift” as discussed in Besag, Green, Higdon &
Mengersen (1995) the components of the first block are visited in random
order. Implementation is easy using the ranks of 7" uniformly distributed
random variates. The second and the third block are so—called coding sets
(Besag, 1974; Besag, Green, Higdon & Mengersen, 1995), thus deterministic
updating within the blocks is the obvious choice. Of course computation

time can be improved considerably using a parallel implementation.

Concerning the speed of convergence it is helpful to start the iterations
without the b;’s (that is b; = 0) for let say half of the burn in. Then after
the ;’s reached the population average, the b,’s are added to the sampling

scheme.

3.3 Estimation Based on Posterior Samples

From a computational point of view, parameter estimates may be divided into
two groups, those, which can be evaluated recursively and those for which
the whole sample has to be stored. This distinction is especially important in
multi—parameter models like the one considered here, since storing all samples
often requires an enormous storage size. Therefore recursively evaluated
estimates, such as the mean and the variance, should be the standard output
of the algorithm, although they might give just a crude characterization of

the posterior. The statistician has to decide, which parameters require more

12



sophisticated estimation procedures ranging from several quantile estimates
over simultaneous credible regions up to (marginal) density estimation itself.
Then the samples from the parameter of particular interest should be stored

to make the evaluation of those estimates possible.

4 Applications

4.1 Artificial data

We generated binary response data Y;; ~ B(1, ;) according to the logistic
model

logit(7my) = (1, 24) * B + by

The b;’s were generated from a standard normal distribution, the group in-
dicator x; = z; was set to 1 for half of the n = 50 units and zero for the
remainders. The 3,’s were generated following a random walk of first order
with initial value 3; = (0,1)T, Q = diag(0.05,0.05) and T' = 50. The se-
cond component of the 3;’s may be interpreted as a time—dependent group
effect. This simple model was chosen to investigate, if the procedure is able
to separate unit—specific and time-dependent parameters.

Parameter estimates are the result of a single run of length 52,500 cycles,
discarding the first 2,500 and using every Hth sample thereafter. Expectation
and standard deviation of the priors for all hyperparameters have been set to
the real values. Figure 1 shows the generated f,’s, posterior mean estimates
and pointwise one standard deviation confidence bands. Figure 2 shows the
true b;’s again with posterior mean + one standard deviation confidence
interval. The figures indicate that the MCMC procedure gives reasonable
results for this data set. Finally Figure 3 and 4 give examples of more
sophisticated estimation methods, see Section 3.3. Figure 3 presents the
estimated marginal posterior distribution of the group effect, obtained by
applying a kernel estimate to the posterior realizations. 50 %, 80 % and 95

% simultaneous credible regions for the group effect are shown in Figure 4.
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Figure 1 (top): True ;s (solid line), posterior mean estimates (dashed line) and
pointwise one posterior standard deviation confidence bands (dotted lines).

Figure 2 (bottom): True b;’s (x) and posterior mean estimates + one posterior

standard deviation (®). The units are ordered respective to the mean estimates.

4.2 Buslness test data

Fahrmeir (1992a), Fahrmeir & Nase (1994) and Knorr—Held (1995) analyzed
data from the IFO business test applying a dynamic cumulative model. This
monthly data is based on a questionnaire, answered by n = 55 firms of a
specific industrial branch for the years 1980 to 1990. The response variable
"short range production plans” is given in three ordered categories, ”decre-
ase”, "no change” and "increase”. Its conditional distribution is assumed to
depend on answers concerning “orders in hand”, "expected development of
the state of business for the next 6 months” as well as on the production

plans of the previous month. These three questions are also trichotomous

14



—

|

———
———
=

=
=

Figure 3: Estimated marginal posterior densities of the group effect p(3:2|y) versus

time ¢.

leading to 3*2 dummy variables, denoted by A*, A= (orders in hand), G,
G= (expected development of the state of business for the next 6 months)
and PET, PE= (production plans of the previous month) with "decrease” as
the reference category. The covariate vector x4 consists of these six dummy

variables.

To illustrate the flexibility of the model, we will discuss several model
approaches with or without unit-specific parameters. They all use the fact,
that a dynamic cumulative model for ordered response in ¢ + 1 = 3 ca-
tegories can be embedded in a multivariate DGLM (see Fahrmeir & Tutz,
1994, for more details) through the following specification: Response yy; is

multinomially distributed

yii ~ M(1, my),
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Figure 4: The group effect (solid line), 50 %, 80 % and 95 % simultaneous credible

regions.

where y;; = (1,0)T, (0,1)T or (0,0)7, if the first, second or third category is

observed, respectively. The response function is given by

N F(ni1)
) = ( F(iz) = F(nein) ) |

where F' must have all properties of a distribution function. Here F(z) =
1/{1l + exp(—x)} is used leading to dynamic versions of the cumulative logit

model.

Assuming no existence of unit—specific heterogeneity and a random walk

of first order for all components of 3;, we obtain the model

T = h(ne) = M(ZuBe), Br = Bioa + us,

where the design matrix Z;; is given by

1 0 2k
Ly = -
0 1 2k
Note that the first two components of 3; represent the threshold parameters

0,1 and 6;5. They have to follow the restriction #;; < 6,5 for all ¢.
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Going one step further, we introduce a category unspecific random effect

b;. Then the model above is extended to
T = h(ZeiBe + Weibi),

where W;; = (1,1)T. The threshold restriction 04 + b; < 045 + b; for all ¢ and

¢ boils down to the simpler form given above.

Category—specific random effects may be more flexible and are easily in-

tegrated by choosing

The two components of b; represent the unit-specific deviations from the two
threshold parameters 6, and ;5. Now the restriction ;1 + b;1 < 0,2 + b;5 for

all t and ¢ cannot be simplified.

A realistic data analysis must assume, that this monthly data shows
strong seasonality with period 12. Although a random walk for both thres-
holds #;; and #;, will somehow reflect a seasonal pattern, a decomposition
into trend and season # = 7 4+ ~ is more appropriate. Here we assume a
random walk of first order for both trend components and a flexible seasonal
model y;_11 + ...+ v = uy, uy white noise, for both season components. The

design matrix Z;; now changes to

11 0 0 2k
Z“' - 9
0 0 1 1 :1;3;

the linear predictor is

. ( Tt1‘|‘7t1‘|‘bi1‘|‘$¥;gt )
te — ~ )
Tia + Y2 + biz + Sl?z;ﬂt

where B} = (Bisy- -+, Pip)L. Formally the transition model is given by

11
5t = (%17 Te1, V2, Tt2, @57 ceey 6tp)T = - Z Fzﬂt—z’ + uy,
i=1

17
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Figure 5: Posterior mean estimates (solid line) and pointwise one posterior stan-
dard deviation confidence band (dotted lines) of the seasonal components of the first

(above) and second threshold parameter.

where Fy = diag(—1,+1,—1,+1,—-1,—1,...
diag(0,+1,0,41,0,0,....,0).

,—1)and Fy=...=Fj; =

We run the procedure for the latter model with a single run of length
52,500 cycles, discarding the first 2,500 and using every 5th sample thereat-
ter. We specified the priors for the hyperparameters as follows: expectation
of the inverted Wishart prior for D was set to diag(0.5,0.5) with standard
deviation equal to 0.5 for the diagonal elements. The inverse gamma priors
for the elements of () had expectation and standard deviation 0.1 for the

seasonal components and 0.01 for the others.

Figure 5 shows the estimated seasonal components within pointwise 1
STD confidence intervals. A strong seasonal pattern can be seen with highs

in spring and in August, whereas the estimates of the two trend parame-
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Figure 6 (top): Posterior mean estimates (solid line) and pointwise one posterior
standard deviation confidence band (dotted lines) of the trend components of the first
and second threshold parameter.

Figure 7 (bottom): Posterior mean estimates of covariate effects.

ters (Figure 6) are nearly time—constant. Posterior mean estimates of time—
dependent parameters (Figure 7) correspond to the results in Fahrmeir &
Nase (1994) and Knorr—Held (1995), obtained with different methods (and
without unit-specific parameters). Figure 8 shows 50 %, 80 % and 95 %
simultaneous credible regions for those parameters. Only the dummy for
expected increase of "expected development of the state of business for the
next 6 months” shows a significant temporal variation with a low around
1982, when a new government was established in Germany. From that time
on the effect is increasing and may be interpreted as a growing trust in the

government.

Posterior mean estimates of the unit—specific parameters are shown in

Figure 9, where estimates of the first and second unit—specific effect, cor-
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Figure 8: 50 %, 80 % and 95 % simultaneous credible regions for covariate effects of

PE+, PE= A+, A=, G+ and G=.

responding to the first and second threshold parameter, are plotted against
each other for all 55 firms. Interestingly, these two effects are highly corre-
lated (estimated correlation in ) is —0.50) and the following interpretation
seems to be plausible: Some firms are more conservative in their answers,
often choosing "no change” for the response variable while others often ans-
wer with the categories "decrease” or "increase”. Finally Figure 10 gives
the estimates plotted separately against corresponding estimated standard
deviations. We observe the (reasonable) result, that the more the estimates
tend "to the middle” (positive for the first and negative for the second), the

more precise they are (measured in posterior standard deviation).
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Figure 9: Posterior mean estimates of the unit—specific parameters I;il and I;iz,

plotted against each other for every unit.

5 Concluding Remarks

The major advantage of MCMC as a statistical inference technique is its
provided model flexibility together with implementation simplicity. The ap-
proach in this article is a convincing example for this duality. However, the
flexibility of MCMC is not yet exhausted; possible extensions of dynamic

generalized linear mixed models include
e the introduction of time-constant components of [,

o the use of robust mixtures of normals for the Gaussian error terms, see

Carlin, Polsen & Stoffer (1992),
e nonlinear models,

e extensions to spatial data, where the dependence of the (now space—

dependent) parameters 3; is modelled through Markov random fields
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Figure 10: Posterior mean estimate (horizontal) versus posterior standard deviation

estimate (vertical) for first (left) and second unit-specific parameter.

(Besag, York & Mollie, 1991; Besag, Green, Higdon & Mengersen,
1995).

It seems that nowadays the complexity of statistical models is no longer limi-
ted by the ability of inference techniques but (more natural) by the amount
of information given in the data, since too complex models often lead to se-
rious identification problems. It lies in the responsibility of the statistician to
find a compromise between parsimony and complexity. However, sensitivity
analysis and model selection by MCMC may help to derive an appropriate
model. For further details see Raftery (1995), Chib (1995), Green (1995) and
Besag, Green, Higdon & Mengersen (1995).
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