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Summary

Data-driven hyperparameter estimation or automatic choice of the smooth-
ing parameter is of great importance, especially in the applications. This
article presents and compares three methods for hyperparameter estima-
tion in the framework of exponential family state space models: First, we
motivate and derive a formula for an approximative likelihood, and an alter-
native, yet mathematical equivalent, expression proves to be a generalized
version of a proposal in Durbin and Koopman (1992). Second, the EM-type
algorithm suggested in Fahrmeir (1992) is restated here for reasons of com-
parison and third, the idea of cross-validation proposed by Kohn and Ansley
(1989) for linear state space models is extended to the present context, in
particular for multicategorical and multidimensional responses. Finally, we
compare the three methods for hyperparameter estimation by applying each
on three real data sets.

Keywords: Approximative likelihood, choice of the smoothing parameter,
cross-validation, EM-type algorithm, penalized likelihood, posterior mode
smoothing.



1 Introduction

An important and general tool for modelling time series observations y; at
discrete time ¢t = 1,2, ...,7T with fixed or stochastic covariates x; is the state
space approach. To estimate the unobservable structural parameters «; in
the framework of exponential state space models by posterior mode smoo-
thing, a penalized log likelihood criterion can be maximized equivalently.
Therefor Fahrmeir (1992) proposed the generalized extended Kalman filter
and smoother (GKFS) combined with an EM-type algorithm for hyperpa-
rameter estimation, and, as an alternative, Fahrmeir and Wagenpfeil (1994)
present an iteratively weighted Kalman filter and smoother (IWKFS). Varian-
ces within the penalized log likelihood criterion play, from a nonparametric
point of view, the role of smoothing parameters. Data-driven estimation of
these hyperparameters is an essential problem, especially in real data appli-
cations. For illustration, let us consider the following example:
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Figure 1: Tokyo rainfall data. Data points.

Figure 1 displays the number of occurences of rainfall in the Tokyo area
for each calendar day during the years 1983-1984. With m; as the probability
of occurence of rainfall on calendar day ¢, ¢t = 1,...,366, Kitagawa (1987)



chose the following dynamic binomial logit model:

{ B(1,m), t=060 (February 29)

Y B(2,m), t#60 ’
7y = h(og) = exp(ag)/1 + exp(ay),
(62 =R} = Oy +€ta gtNN(OaQ)a gONN(Gano)a

so that m; = probability (rain on day t) is parametrized by «;. Here, ag, qo
and ¢ are unknown hyperparameters. Setting ag = —1.51,¢9 = 0.0019 and
q = 0.5 fixed, Figure 2 shows corresponding estimates 7; = h(ay3s6) based
on (GKFS) together with the data points. The estimation is rough and
adjusted to the data. Retaining ag and ¢y as above and using ¢ = 0.001, the
estimates (ao|s66, @1[366, - - - » @1|366, - - -, U366366) Obtained with (GKFS) yield
an extremely smooth data-fit, displayed in Figure 3. Comparison of Figure
2 with Figure 3 shows that ¢ acts as a smoothing parameter.
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Figure 2: Tokyo rainfall data. Rough fit.

This example illustrates the necessity of procedures for data-driven hyper-
parameter estimation. In particular, automatically choosen hyperparameters
can be a useful starting point for further subjective selections.

In larger simulation studies, Kohn and Ansley (1991) compare the perfor-
mance of the marginal likelihood estimate with generalized cross-validation
GCYV and cross-validation CV for Gaussian stae space models. The result is
that the marginal likelihood estimate yields often better results than GCV,
and GCYV itself is better or equal than CV.
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Figure 3: Tokyo rainfall data. Smooth fit.

In this paper, after restating the concept of penalized likelihood estima-
tion for notational purposes in Section 2, we describe three methods for hy-
perparameter estimation in the framework of exponential family state space
models. The approximative likelihood approach as direct Bayesian variant
is motivated and derived in Section 3.1. We give a rigorous proof to show
that our version is a generalization of a proposal from Durbin and Koopman
(1992) allowing for the use of non-natural link functions. The EM-type algo-
rithm as indirect Bayesian method is given in Section 3.2. In Section 3.3, the
idea of cross-validation as nonparametric approach is extended to the pre-
sent exponential family state space context. At this stage, a very useful and
from the numerical point of view very desirable property of the estimation
procedures (GKFS) and (IWKFS) become apparent: Both algorithms give
direct access to the diagonal blocks of the inverse Fisher information matrix,
yielding to an efficient computation of the trace of the smoother matrix.

To compare and illustrate the properties of these data-driven methods
for hyperparameter estimation empirically, real data applications from the
literature are given in Section 4.

2 Penalized likelihood estimation

Our basis for modelling discrete-valued time series observations y; € IR",t =
1,2,...,7, is the exponential family state space model. Thus we specify
the observation model for y; given the states a; € IRF by the density of a



r-dimensional distribution of the natural exponential family type:

Yi|oy ~ P(yt|04t) = ct(yt)exp{ﬁéyt - bt(gt)}a (2~1)

where 0, the natural parameter, is a function of 7y = Zyay, and ¢(+) and
b:(-) are known functions. 7 is a ¢ x r design-matrix, maybe dependent
on covariates x; or also on past responses yi,...,y;—1. In the latter case
densities, means etc. are to be understood conditionally. By the properties
of exponential families the mean and variance functions are then

E(ytlor) = pilar) = 0b(0:)/00s,
var (yt|at) == Et(at) = 82bt(9t)/89t89;

As in static generalized linear models GLM’s the mean g is linked to the
linear predictor n; = Z;a; by

He = W Zran), (2.2)

where h : IR” — IR" is an appropriate response function. The exponential
family assumption (2.1) together with the mean specification (2.2) is our
observation model. Note that for the classical linear state space model, (2.1)
and (2.2) specialize to

yt|at ~N (7]t = ZtOét, Rt) (23)

where R; = var (y;|o;) is the covariance matrix of y; given oy and h(-) the
identity function. The observation model is supplemented by a Gaussian
transition model with Markov property for ay:

O[t|0[t_1NN(FtOZt_1,Qt), t= 1,...,T (24)

with transition matrix Fy € IRFP'?| initial state ag ~ N (ag, Qo). We sum-
marize the hyperparameters ag, Qo, Q¢ 1n the vector A. Let A be fixed and
known for the moment.

The exponential family state space model (2.1), (2.2), (2.4) covers many
well-known time series models, cf. Fahrmeir and Tutz (1994) chapter 8. In
this framework we want to estimate the unobservable states «; via penalized
likelihood estimation which could be motivated by posterior mode smoothing
outlined in Fahrmeir and Wagenpfeil (1994). With o = (o, &, ..., &%), the
penalized likelihood estimate a € IR™, m = (T + 1)p, is defined as

a:= argmax {PL(a)}, (2.5)
where

PL:IR™ — 1R, PL(a):= th(at) + Zlnp(at|at_1) +Inp(ag) (2.6)

t=1 t=1



is the penalized log likelihood function with l; (o) := Inp(ys|ay) for 1 <t < T
and the densities from (2.2) and (2.4). Note that PL(«) in (2.6) reduces to
a quadratic function for the linear Gaussian state space model (2.3), (2.4).

To see the connection between hyperparameters in the framework of state
space models and smoothing parameters in nonparametric regression, let us
regard the simple case where, in addition, p=1,@; = ¢ € R for 1 <t < T
and Qo = ¢o € IR. Then PL(«) specializes to

T
1
PL(a) = -3 > (e — Zen) BT (e — Ziow)
t=1
1 & 1
= _F _ 2_ - _ 2.
% > (o — Frayy) 2q0(ao an)

t=1

From a Bayesian point of view, the first term is the log likelihood and the
second part acts as a smoothness prior defined by the transition model (2.4)
for {ay} with variances ¢ and ¢p. If we hold a nonparametric viewpoint, we
may consider {a;} not as random variables but as a sequence of unknown
states or parameters. Then the first part in PL(«) measures the goodness
of fit obtained by Z;«a; via weighted euclidean distances and the second one
penalizes roughness of the fit. The hyperparameters ¢ and ¢y play the role
of smoothing parameters. The problem of hyperparameter estimation is con-
sidered in chapter 3.

To compute the penalized likelihood estimate a € IR"™ in the general case,
i.e. in the framework of our exponential family state space model, we have
to solve (2.5). A numerical solution of the nonlinear programming problem
involved in (2.5) could be obtained by various algorithms from optimization
theory. To denote one explicit Fisher scoring step in compact matrix no-
tation, the following abbreviations are introduced: the observation vector,
augmented by ag,

y = (af)aylla : "ay/T)a

the vector of expectations augmented by «y,
p(e)" = {ag, pi(e), ..., ppar)},
pi(a) = h(Ziay), the block-diagonal covariance matrix
Y(a) = diag {Qo, Z1(e1), ..., Zr(ar)},
the block-diagonal design matrix
7 = diag(L, Zy,. .., Zr),
with T € IR as the unit matrix and the block-diagonal matrix

H(«) = diag {I, Hi(o1), ..., Hr(ar)},



where Hy(er;) = Oh(n:)/0n is the first derivative of the response function h(n)

evaluated at 1; = Z;a¢. Then the score function of Zthl Li(oy) is
5(a) = Z'H(a) 5~} (a) {y — ()}
and the block-diagonal (expected) information matrix
S(a) = Z'W(a)Z

with the weight matrix

W(a) = diag {Qal, Wi(ar), ..., WT(aT)} = H(oz)E_l(oz)H'(a).

(2.7)

Defining the symmetric and block-tridiagonal penalty matrix M easily ob-

tained from (2.4), (2.6), as

Moy Moy 0
Mg My Mo

M = Moy

B Mr_17
0 Mpr 1  Mrpr
where

Mi1e = Mtlyt_la 1<t<T,

Moy = F|Q7'F],

My = Q7'+ F/ Qi)+ Fipn, 1<t<T,

Mry = 0,

M1y = —FQ7', 1<t<T,

the first derivative of PL(«) in (2.6) is
u(o) = OPL(«a)/0a = s(a) — M«
and the block-tridiagonal expected information matrix is

U(a) = —E {0°PL(a)/0ada’} = S(a) + M.

0 0

A single Fisher-scoring step from the current iterate a® = (a,al, . ..

IR, say, to the next iterate o' = (o}, ai,..., k)’ € IR™ is then
U(a")[a! = a] = u(a®).
This can be rewritten as

ol = {U()} ™ Z'W(a)j (a°)

(2.9)



with ”working” observation

7 (a°) == {ab, 1)), .. gr(0)} = {H (")} {y — u(a®)} + Za®.

To solve (2.9) in a numerical efficient way, that is without explicitly inverting
the block-tridiagonal expected information matrix U(«), Fahrmeir and Wa-
genpfeil (1994) propose the ” working Kalman filter and smoother”. In the fol-
lowing algorithm, ay ¢, V¢, asjs—1, Viji—1, @y, V37 denote numerical approxi-
mations to filtered, predicted and smoothed values of ay and corresponding
approximate error covariance matrices.

Working Kalman filter and smoother (WKFS)
Initialization: agjg = ao, Vojo = Qo-

Fort=1,...,7T:

prediction step:  azy—1 = Fraz_qs—1,
Vi1 = FiVioqioa FY 4 Qs (2.10)
correction step a):  ayy = a1 + Ky {g]t(a?) — Ztaﬂt_l} ,

Vt|t = Vt|t—1 - KtZtVﬂt—la

with Kalman gain = K, =  Vip_17Z, { ZiViper Z) + Wi (a9)}

For smoothing one may use the classical fixed interval smoother.

Fort=1T,..1:
G = G1p—1 + Belayr — aye—1),
Vicyr = Vicipe—1 + Bi(Vayr — Vapp—1) By, where
By = Vt—1|t—1Ft/Vt|_t1_1 (2.11)

or any other computationally more efficient version. The result is ol =

(ang, a/1|T’ cee a’TlT)’ € IR™. Note that, underlying the linear Gaussian state
space model (2.3), (2.4), ! = a, and a € IR™ is also the posterior mean
estimate since posterior modes and means coincide in the normal distribution
case. Furthermore (WKFS) reduces to the classical linear Kalman filter and
smoother in Kalman gain form. Setting g:(ay) = H{(a?)g:(a?) and supposing
that H(«?) is regular, we may rewrite the correction step of (WKFS) as

correction step b):  ayy = a1 + Ky {yt(a?) — Ht/(oz?)Ztaﬂt_l} ,

Vig = Vapor — KeH{(ad) Z4Vijeoy (2.12)
with Kalman gain = K; = Vi1 ZHe(of) { H{(2)) Z:Vijeo1 Z3 Hy(00f)
+Zi(al)} (2.13)

To solve the nonlinear programming problem (2.5) we have to iterate (WKFS)
yielding (IWKFS) as proposed in Fahrmeir and Wagenpfeil (1994):



Iteratively weighted Kalman filter and smoother

(IWKFS):

Initialization: Compute o® = (ang, a(1J|T’ Cel a%lT)’ with (GKFS) from
Fahrmeir (1992).

Set 1teration index k = 0 .

Step 1: Starting with o, compute o*+! by application of (WKFS).
Step 2: If a convergence criterion is fulfilled, e.g. o**! is very close to o*:
STOP, else set k = k+ 1 and go to Step 1.

3 Three methods for hyperparameter estima-
tion

So far we assumed the vector of hyperparameters A to be fixed and known.
In the following we describe three methods for data-driven hyperparameter
estimation in the framework of our exponential family state space model.

3.1 Approximative likelihood

In the following we motivate and derive an approximative formula for the
likelihood p(y*) with y* = (¥, ..., yy)’, which proves to be a generalization
of a proposal from Durbin and Koopman (1992) allowing for the use of non-
narutal link functions. For natural link functions our formula can be regarded
as an alternative, however mathematical equivalent, expression to Durbin and
Koopman‘s proposal.

The i1dea for derivation is as follows: The joint density of o and y* 1s

pla,y™) = p(y")plaly”). (3.1)

Let the numerical solution a(A) := {ag r(A), a1 r(}),..., ElTyT(A)}/ c IR™ of
(2.5) be obtained with (GKFS) or (IWKFS). Approximating p(«|y*) by the

normal distribution with expectation a(A) and variance V(A) where

_ 9?Inp{a(N),y*}] 1) 0 Inp{a(N)|y*}
V=i(A) = -F W] = _E [W], (3.2)
we get
BES ! ex L a—a(N)YV! o —a
POl ) e e = (o a0}V ) = ()|

Considering p(a|y*) as a function of «, we have

1

(2m)m/2\/det {V(N)}

pla(N)y"} ~

(3.3)



10

(3.1) and (3.3) yield
p(y") & FN) = 2m)™2 [det V()Y pla(V), 7}, (3.4)

where f(A) is the approximative likelihood function. Note that for the linear
Gaussian state space model f(A) = p(y*).

The aim is to maximize the approximative likelihood f(A) in (3.4) with
respect to A. Therefore we give explicit formulae for [det{V(/\)}]1 /% and
pla(A), y*}. Repeated application of Bayes’ theorem, using (2.1), (2.2), (2.4)
and further independence assumptions, cf. Fahrmeir and Tutz (1994) chapter
8, yields

Inp{a(A),y*} = In {(271')_7”/2} + In(det Qo)_l/2 +

+> In(det @)7/* + PL{a())} (3.5)

t=1
with the penalized log likelihood PL(:) from (2.6) and the densities from
(2.1), (2.4),

PL{a(A th{at )} = —{ao( ) = ao}' Q5 {ao(A) — ao}

5 D) — (Y Q7 ah) — Far 1 ()}3.6)

Lemma 1 in Appendix A shows that

1/2
{det V(X)}/? = {detQOHGt } : (3.7)

t=1

with G¢(A) := det Vy), det(I—-F} tht_ll Vt/—1|t—1)’ 1 <t < T, where V; and
Vijt—1 are numerical approximations to filtered and predicted approximate
error covariance matrices obtained from (GKFS) or (IWKFS). Considering

(3.4), (3.5) and (3.7), the approximative likelihood is thus

T
F) = TT{det(@0) 7 det(Vige) /2 des(t = F{V, 7t Ry}

t=1

exp[PL{a(\)}].
Durbin and Koopman (1992) give a different yet mathematical equivalent ex-
pression for {det V(X\)}'/2. The following formula (3.8) is more general than

the original version of Durbin and Koopman (1992) as we do not presume
the natural link function well-known from static GLM’s:

T 1/2
{det V(\)}H2 = {deth HAt(A)} (3.8)

t=1
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with A;(X) := det(Qy) det{Zy(a?)} det{H{(a?) Z: Vyjy_1 Z{Hi(a)+ Ty (o)} 71,
1 <t <T. Note that Xy(a?) = Hy(ad),t =1,...,T,if h : IR" — IR is the
natural response function, that is the inverse of the natural link function,
and then we have Durbin and Koopman’s formula. Supposing that F; and
7,1 <t < T, are regular, Appendix B gives the proof that (3.7) and (3.8)
coincide. Considering (3.4), (3.5) and (3.8), the approximative likelihood is
then

70y = T [det {2} det {Hi(ad) 20V 20 M) + Zila)} 7]

exp[PL{a(A)}].

The maximization of f(A) with respect to A can be achieved by various al-
gorithms. In our test examples we used the BFGS algorithm decribed e.g. in
Gill, Murray and Wright (1981).

3.2 EM-type algorithm

An indirect Bayesian method for estimation of unknown hyperparameters
summarized in A is the EM algorithm proposed by Dempster, Laird and
Rubin (1977). Considering y* as the observable but incomplete data and
(y'*, ') as the non-observable, however complete data, the idea is to compute
the conditional expectation of the log likelihood given the observations and
the current iterate A(F)

E (/\|/\(k)) =E (lnp(oz,y*;/\)|y*,/\(k)).

The next iterate A(*+1) is obtained as the maximizer of E (/\|/\(k)) with re-
spect to A. In the linear Gaussian state space context this optimization
problem can be solved analytically. More details are given in Goss (1990).
For the exponential family state space model (2.1), (2.2), (2.4), Fahrmeir
(1992) suggests to replace posterior expectations by posterior modes a7 ob-
tained from (GKFS) or (IWKFS). Moreover, as V;p are the diagonal blocks
of U7(a) in (8), cf. Fahrmeir and Kaufmann (1991), covariance matrices
may be replaced by Vjr from (GKFS) or (IWKFS) yielding the following
formulae for the

EM-type algorithm:

1. Choose starting values Q%) QEO), aéo) and set iteration index k£ = 0.

2. Smoothing: Compute a§|kT)’ Vt(l?, t=1,...,Tby (GKFS) or IWKFS),
(k)
0 >

with unknown parameters replaced by their current estimates Q%) Q
(k)
ag .
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3. EM step: Compute QUF+1), ngH), ang) by

=
kE+1 k
QYT = VO(IT)
T
1 b 3 k k ! k
QU = TZ[(“§|T)—FN§—)1|T) (affp = Py + Vi)
t=1
~RBOVE VDB V]

with Bt(k) defined as in (2.11).

4. If some termination criterion is reached: STOP, else set &k = k£ + 1 and
go to 2.

Note that the EM-type algorithm jointly estimates the structural and hyper-
structural parameters a and A.

3.3 Cross-validation

A further, nonparametric way for hyperparameter estimation is to adjust
the principle of cross-validation proposed by Kohn and Ansley (1989) for
linear state space models and mentioned in Hastie and Tibshirani (1990),
Fahrmeir and Tutz (1994, Chapter 4) for static generalized additive models
to the present situation. Let now a(A) := {ai r(A), ..., CflTyT(/\)}/ cIR"7? be
the (approximative) solution of (2.5) obtained with (GKFS) or (IWKFS) for
fixed A. Adopting the idea of cross-validation from static generalized linear
models to (dynamic) exponential family state space models and weighting the
Pearson residuals as in the generalized cross-validation criterion, we arrive at
the generalized cross-validation function

i [y — h {Zayr(M)}]) Z7 {agr N} [ve = h { Ziayr (V)]

GOV = 53 {1 —tr (S))/TY

bl

Nl =

(3.9)
where Sy is the smoother or hat matrix. The trace of the smoother matrix
tr (S)) can be computed as follows: Considering (2.9), the estimated weighted
linear predictor is

W a2 Za(A) = WH{aW2Z[U{a(M)N 2/ W {a(A)}]? -
W {a(M}V*g{a(N)}. (3.10)
As the approximate error covariance matrices Vyp, ¢ = 1,..., 7', conveniently

and without extra computational effort obtained with (GKFS) or (IWKFS),
are the diagonal blocks of the inverse Fisher information matrix [[U{a(A)}]~!
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(cf. Fahrmeir and Kaufmann, 1991) and suppressing the information connec-
ted with p(ag), we get from (3.10)

(Wi {ay (MY 220 Vi 21 [Wi{ayr(A) 12 *
Sy =
* Widar o (MY 20 Ve 25 [Wrdarr (A) 112
Thus tr(Sh) = iy tr [[W/{aqr N NY2ZVir ZiWilagr(MNY?]. To

maximize GCV(A) in (3.9) with respect to A we used in our test examples
the BFGS algorithm with numerical differentiation. However, any nonlinear
programming method from optimization theory can be used in principle.

4 Comparison of the three methods

In the following we give an empirical comparison of the three methods for
hyperparameter estimation described above.

4.1 Tokyo rainfall data

1.44

£=3
N

10-7 Yo-8 1073 1074 1073 1072 101 109

1.

Figure 4: Tokyo rainfall data. GCV-function.

We come back to the example of daily rainfall data from the introduction.
The dynamic binomial logit model supplemented with a random walk of order
1 for the parameter process is retained:
B(1,m), t=060 (February 29)
B(2,m), t#60 '
7 = h(og) = exp(ae)/1 + exp(ay),

Qi1 = Qg +€ta gtNN(OaQ)a gONN(aoaqo)a

Yt
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Figure 5: Tokyo rainfall data. Computed with (GKFS) and ¢ = 0.032

With ag = —1.51,¢p = 0.0019 as in the introduction, Figure 4 displays
the GCV-function dependent on ¢. The computed estimate is § = 0.032. The
EM-type algorithm and maximizing the approximative likelihood f()) yield
the same result. What strikes is the slow convergence rate of the EM-type
algorithm in comparison to the other methods. Figure 5 shows the estimates
7y = h(ayzes) computed with (GKFS) and ¢ = 0.032. The fit is smoother
than in Figure 1 and rougher than in Figure 2.

4.2 Advertising data

West, Harrison and Migon (1985) analyzed weekly counts y; of the number
of people, out of a sample of n = 66, who give a positive response to the
advertisement of a chocolate bar. As a measure of advertisement influence, an
”adstock coefficient” serves as a covariate x;. Our framework for estimation
is the following dynamic binomial logit model, with

Yy~ B(66, 1), m =h(n+xf), o1 =ar+&,

with a; = (7, A¢)' and cové&; = diag(qi, q2). The EM-type algorithm yields
g1 = 0.0016 and ¢ = 0.00031 whereas the result from the GCV-criterion is
different: ¢; = 0.0006362 and ¢, = 0.000239.

Figure 6 displays the smoothed estimates #; obtained with (GKFS) and
EM-type algorithm. The fit for GCV, however, shows no remarkable diffe-
rences. The estimation of ¢; and ¢, with the approximative likelihood failed
due to numerical problems during the optimization procedure.
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Figure 6: Advertising data. Computed with (GKFS) and EM-type algorith
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Figure 7: Phone calls. GCV-function
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4.3 Phone calls

The data, analyzed in West, Harrison and Migon (1985), consist in counts
of phone calls, registrated within successive periods of 30 minutes, at the
University of Warwick, from Monday, September 6, 1982, 0.00 to Sunday,
September 12, 1982, 24.00 . We analyze the data with a dynamic loglinear
Poisson model:

Yt ~ Po (eXP(at))a He = eXP(at)
=41+ &, & ~ N(ao,q), a0~ N(0,qo).

220 T T T y T T T T L T T T

180 - b

140 [~ N

and y;

Hy

e P Pl

L 1 . ! ! 1 : L L

o 40 a0 120 160 200 240 280 320 380
t (time)

Figure 8: Phone calls. Computed with (IWKFS) and ¢ = 0.44

The EM-type algorithm with (IWKFS) yields the following hyperpara-
meter estimates: gg = 0.015,a9 = —0.864 and ¢ = 0.44. With GCV the same
estimated ¢ is obtained as can be seen from Figure 7 displaying the GCV-
function dependent on ¢. Figure 8 shows the corresponding fit computed with
(IWKFS) in combination with the data points. The result is adjusted to the
data and provides only moderate smoothing. Maximizing the approximative
likelihood yields different estimates: ¢ = 0.0077 or ¢ = 0.0976, dependent on
the starting value of ¢. Figure 9, computed with (IWKFS) and ¢ = 0.0077,
shows a quite smooth estimation without neglecting the cyclical structure of
the data.
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Figure 9: Phone calls. Computed with (IWKFS) and ¢ = 0.0077

Conclusion

The EM-type algorithm is a very robust method for hyperparameter esti-
mation. However, convergence is slow and sometimes the result seems to
depend on the starting point and on the value of the stopping accuracy.
Thus estimation algorithms with a higher rate of convergence should be a
point of further research. The GCV-criterion as well as maximizing the ap-
proximative likelihood could be an alternative since these methods use the
convergence rate of nonlinear programming algorithms. In most situations
of our study GCV worked well, whereas hyperparameter estimation with the
approximative likelihood often ran into numerical problems for multidimen-
sional A. Summarizing we could say: EM is robust but slow, GCV and
approximative likelihood are faster if they work.
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Appendix A

Lemma 1:
Let V3¢ and V};— denote numerical approximations to filtered and predicted
approximate error covariance matrices obtained with (GKFS) or (IWKFS).
Then

T T-1 ,
det V() = det Qo - [T det Vi - TT det (1= FLyy V5 Fia Vi)
t=1 t=0

Proof:
Since the normalizing terms in (3.5) are independent of «, (2.8) and (3.2)
show that V=1(A) = U{a())}. Furthermore U{a())} can be uniquely facto-

rized according to Fahrmeir and Kaufmann (1991) into

U{a(\)} = LDL'

I 0
B 1
with lower triangular matrix I = ) ) , By from (2.11),
0 “BL 1
1<t <T,T€RPP as the unit matrix, D = diag(Dg, D1, ..., Dr),
Dyt = Vit — Big1 Vig1p Big, 0 <t < T — 1, D' = Vo7, (A1)

Vi, 0 <t < T, from (2.12) and Vy;—1,1 <t < T, from (2.10). Although V;},
and Vj;—1 can be regarded as functions of A, we suppress this dependence
for notational convenienc. Thus

1
det V(A = det U™ H{a(M)} = 5
et V(A) et U™ {a(A)} det U{a(M)}
det(L)=1 1 l
€ — = RN ——— det D_1
H?:O det Dt tHO !
) T-1
= det Vi H det (Vm — Bt+1Vt+1|tB;+1)
t=0
B (2.11) =
t from (2. '~
il det Vi p H {det Vi det (I— Ft/+11/t+11|tFt+1Vt/|t)}
t=0

T T-1
Volo=Qo -
12 det QoHdet Vil H det (I_ Ft/+1vt+11|th+1Vt/|f) )
t=1 t=0
Appendix B

To show that (3.7) and (3.8) in Chapter 3.1 coincide, we have to proof
Gi(A) = Ay (A) for 1 <t < T, (B.1)
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assuming that F; and Z;,1 <t < T, are regular. Therefor we use
FtVt/—1|t—1 = (Viji—1 — Q) ™! (B.2)

obtained from (2.10). Moreover we need

- B.2 _ .
det ( F ‘/ﬂt 11 t/_1|t_1) (: ) det {I F V 1 (‘/t/lt_l . Q;)Ft 1

t)t—1
= det{1- (1- RV, 7QE )}
= det(F)) det(Ft_ )det(tht ') det(Q))
= det(Vye—1) ™" det(Qy). (B.3)
To proof (B.1) we use the definition of G;(A) and get

(2.12)

Gi(N) det { Vyj—1 — K H; (O‘t)Zttht 1}
det( F Vm_ll t—1|t—1)
det(Viji_1) det [T — Z/H,(a9) { H)(a0) 7 Vi1 Z4 Hi(a?)+

Z(a?)) H{(a?)Zth_l] det(Vyje—1) ™" det(Q) =

(B.3)

2ozl ot (Qy) det [Z{Ht(a?){H;_l (@) 2Vt 27V () -

tlt—1
(HU(a2)Zy Vi1 ZHi(00) + () }H (@) Z,Vijso 1]
= det(Qy) det { H{(ad)ZVip—1 ZLH (D) + Si(ad)} -
det { H{(a)) Z:Vip—1 Z{Hy(of) + Zi(af) } -
det { Hy(af)ZVije—1 Z1Hi(0]) } -

det[ Yo Z "W 2 (o) -

tlt—1

{HUa9) 2V ZEH(0?) + Su(a)} ']
= det(Qy) det { H{(ad)ZVip—1 ZLH (D) + Si(ad)} -
det { H{(a{)Z:Vij—1 ZiHy () + Zi(af) } -
det{Et (@) H (092 Vil 20, o )}
= det(Qt det {Ht O[?)Zt‘/ﬂt_thHt(OZ?) + Et(a?)}_l .
det { £y (af)} det(I)

@5 4,0\,
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