
Florian Heiss und Viktor Winschel:

Estimation with Numerical Integration on Sparse Grids

Munich Discussion Paper No. 2006-15

Department of Economics
University of Munich

Volkswirtschaftliche Fakultät
Ludwig-Maximilians-Universität München

Online at http://epub.ub.uni-muenchen.de/916/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12162084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vwl.uni-muenchen.de/


Estimation with Numerical Integration on Sparse

Grids∗

Florian Heiss† Viktor Winschel‡

April 12, 2006

Abstract

For the estimation of many econometric models, integrals without
analytical solutions have to be evaluated. Examples include limited
dependent variables and nonlinear panel data models. In the case of
one-dimensional integrals, Gaussian quadrature is known to work ef-
ficiently for a large class of problems. In higher dimensions, similar
approaches discussed in the literature are either very specific and hard
to implement or suffer from exponentially rising computational costs
in the number of dimensions – a problem known as the “curse of di-
mensionality” of numerical integration. We propose a strategy that
shares the advantages of Gaussian quadrature methods, is very gen-
eral and easily implemented, and does not suffer from the curse of
dimensionality. Monte Carlo experiments for the random parameters
logit model indicate the superior performance of the proposed method
over simulation techniques.

JEL Classification: C15, C25, C51
Keywords: Estimation, Quadrature, Simulation, Mixed Logit

∗We would like to thank Alexander Ludwig, Axel Börsch-Supan, Melanie Lührmann,
Daniel McFadden, Paul Ruud, and Joachim Winter for valuable comments and sugges-
tions.

†University of Munich, Department of Economics, mail@florian-heiss.de
‡University of Mannheim, Department of Economics,

winschel@rumms.uni-mannheim.de

1



1 Introduction

Many econometric models imply likelihood and moment functions that in-
volve multidimensional integrals without analytically tractable solutions.
This problem arises frequently in microeconometric latent dependent vari-
able (LDV) models in which all or some of the endogenous variables are
only partially observed. Other sources include unobserved heterogeneity in
nonlinear models and models with dynamically optimizing agents.

There are different approaches for numerical integration. It is well
known that Gaussian quadrature can perform very well in the case of one-
dimensional integrals of smooth functions as suggested by Butler and Moffit
(1982). Quadrature can be extended to multiple dimensions. The direct ex-
tension is a tensor product of one-dimensional quadrature rules. However,
computing costs rise exponentially with the number of dimensions and be-
come prohibitive for more than four or five dimensions. This phenomenon
is also known as the curse of dimensionality of numerical integration.

The main problem of this product rule is that the class of functions in
which it delivers exact results is not restricted to polynomials of a given
total order. Unlike in the univariate case, general efficient quadrature rules
for this class are much harder to directly derive and often intractable (Judd
1998, Cools 2003, Ch. 7.5). They are therefore usually considered impractical
for applied research (Bhat 2001, Geweke 1996).

These problems led to the advancement and predominant use of simu-
lation techniques for the numerical approximation of multidimensional in-
tegrals in the econometric literature, see for example McFadden (1989) or
Börsch-Supan and Hajivassiliou (1993). Hajivassiliou and Ruud (1994) pro-
vide an overview over the general approaches of simulation and Train (2003)
provides a textbook treatment with a focus on discrete choice models, one
of the major classes of models for which these methods were developed and
frequently used.

This paper proposes and investigates the performance of a different ap-
proach that can be traced back to Smolyak (1963). Sparse grids integration
(SGI) has been advanced in recent research in numerical mathematics, see
for example Novak and Ritter (1999). The class of functions for which it
is exact is confined to polynomials of a given total order. This dramati-
cally decreases computational costs in higher dimensions. It is based on
one-dimensional quadrature but extends it to higher dimensions in a more
careful way than the tensor product rule. This implies that it is easily im-
plemented and very general since only one-dimensional quadrature nodes
and weights have to be derived.

1



After discussing the general approaches to numerical integration, SGI
is introduced in Section 3. Section 4 presents the Monte Carlo design and
results. They directly address the question of interest for estimation: Which
method delivers the best estimates with a given amount of computing costs?
The experiments are based on a panel data random parameters logit mod-
els which are widely used in applied discrete choice analysis. They vary
the panel data dimensions, the number of alternatives, the dimension of
unobserved taste components and the parameterization of the data gener-
ating process. The results show that the SGI methods clearly outperform
simulations based on both pseudo and quasi random numbers. Section 5
concludes.

2 Univariate Numerical Integration

We start the discussion with univariate integration in order to introduce the
notation and to lay the ground for an extension to the multivariate case.
Write a general univariate integration problem as

I1[g] =
∫

Ω
g(x)w(x) dx. (1)

In limited dependent variable (LDV) and other econometric models, inte-
grals often arise in the calculation of expected values. In this case, x rep-
resents a random variable, g(x) is a function which is in the nontrivial case
nonlinear in x and w(x) represents the p.d.f. of x with support Ω. The
integral I1[g] is the expected value of g(x).

A leading example for this kind of problem in microeconometric panel
data models are random effects (RE) models like the RE probit model dis-
cussed for example by Butler and Moffit (1982) – x represents the individual
random effect, g(x) is the probability of the sequence of observed outcomes
conditional on the explanatory variables, parameters and x. The integral
I1[g] is the marginal (with respect to x) probability. This value is needed
for example for the evaluation of the likelihood function.

Since for nonlinear functions g(x) the integral has in general no closed-
form solution, it has to be approximated numerically. One possible approach
is Monte Carlo simulation. Given a number R of replications, a set of random
numbers or “nodes” [x1, ..., xR] is generated such that each xr is a draw from
the distribution characterized by w(x). The simulated integral is then equal
to

S1,R[g] =
1
R

R∑
r=1

g(xr). (2)

2



Under very weak conditions, the simulated value is unbiased and
√

R-consistent
by a law of large numbers. In the one-dimensional case, other strategies like
simple Riemann sums with regularly-spaced nodes are straightforward - we
will come back to equivalent strategies when discussing multiple integration.

A somewhat different strategy is taken by Gaussian and related quadra-
ture rules. They provide a formula which delivers the exact integral for a
class of functions – typically polynomials – that approximate g(x). Gaussian
quadrature rules construct nodes and weights such that the rule is exact for
polynomials of a given order with a minimal number of nodes. Butler and
Moffit (1982) suggest using Gaussian quadrature for the RE probit model
and show evidence that it works very well compared to simulation.

Define a sequence of quadrature rules V = {Vi : i ∈ N}. Each rule
Vi specifies a set of nodes Xi ⊂ R and a corresponding weight function
wi : Xi → R that is appropriate for w and Ω. The index i denotes the
increasing level of accuracy which depends on the number of nodes in Xi.
The approximation of I1[g] by Vi is then given as

Vi[g] =
∑
x∈Xi

g(x)wi(x). (3)

If Vi is a Gaussian rule with R nodes, then Vi[g] = I1[g] if g is a polynomial
of order 2R− 1 or less.

The sets of nodes and weights depend on w and Ω, but not on g. While
they are not trivial to determine, for the most common cases they are tab-
ulated in the literature and efficient software is available, see for example
Miranda and Fackler (2002) for implementations in Matlab. Given nodes
and weights, Gaussian quadrature rules are straightforward to implement,
since equation (3) merely requires to calculate a weighted sum of function
values.

For general functions g, the sequence of approximations Vi[g] converges to
I1[g] under weak assumptions as the number of function evaluations rise. A
sufficient condition is that g is bounded and Riemann-integrable. There are
various results concerning the speed of convergence for additional smooth-
ness properties. For example if g has n bounded derivatives, many Gaussian
quadrature approximations converge to the true value at a rate of R−n. This
is much better than the

√
R-consistency of Monte Carlo simulation if g(x) is

sufficiently smooth. A more detailed discussion of Gaussian quadrature can
be found in the literature, see for example Davis and Rabinowitz (1984).

3



3 Multivariate Numerical Integration

3.1 Formulation of the Problem

Many econometric models involve integration problems over several dimen-
sions. In the RE probit model mentioned above, these problems arise for
example if the error term follows a random process over time, has an error
components structure, or multiple outcomes are modeled as in the multino-
mial probit model. In the Monte Carlo section below, we discuss a multi-
nomial choice model with an error components structure – the mixed or
random parameters logit model.

Write the integration problem in the mulivariate case as

ID[g] =
∫

Ω1

· · ·
∫

ΩD

g(x1, ..., xD) w̃(x1, ..., xD) dxD · · · dx1. (4)

We restrict the discussion to the case in which the weight function w̃(x1, ..., xD)
can be decomposed as

w̃(x1, ..., xD) =
D∏

d=1

w(xd) (5)

and where Ωd = Ω for all d = 1, ..., D. In the interpretation with [x1, ..., xD]
representing random variables and w̃(x1, ..., xD) their joint p.d.f., this re-
striction is equivalent to assuming that the random variables are indepen-
dently and identically distributed. Independence is crucial for the remainder
of this paper, while identical distributions are merely assumed for notational
convenience to save on another subscript. This structure of the weighting
function is less restrictive than it might seem. If independence is violated
in the original formulation of the problem, a change of variables often leads
to such a structure. If for example z denotes a vector of jointly normally
distributed random variables with mean µ and covariance matrix Σ, then
x = L−1(z− µ) with LL′ = Σ is distributed i.i.d. standard normal.

Monte Carlo simulation is the most commonly used technique in the
econometric literature for the numerical approximation of integrals of the
form (4) in the multivariate case D > 1. The only difference to the univariate
case in equation (2) is that for each replication, a vector [x1,r, ..., xD,r] is
drawn from w̃(x1, ..., xD) at which the function g is evaluated. The result of√

R-consistency is independent of the number of dimensions D. This does
of course not imply properties of the approximation with a finite number of
replications.

4



Quasi-Monte Carlo methods and antithetic sampling algorithms dis-
tribute the nodes more evenly than pseudo-random nodes generated by a
standard random number generator. Therefore, they generally achieve both
a better approximation quality with a finite number of replications and in
many cases also faster convergence rates.

As argued above, deterministic integration schemes such as Gaussian
quadrature often work very well for univariate problems. Their extension to
multiple dimensions is not as straightforward as for simulation. A natural
goal for a quadrature rule in multiple dimensions is exactness for multivariate
polynomials of a given total order, also known as complete polynomials
(Judd 1998, Ch. 6.12). To be more specific, consider a D-variate polynomial

g(x1, ..., xD) =
T∑

t=1

at

D∏
d=1

x
jt,d

d (6)

for some T ∈ N, [a1, ..., aT ] ∈ RT and [jt,1, ..., jt,D] ∈ ND for all t =
1, ..., T . Define the total order of g as the maximal sum of exponents
maxt=1,...,T

∑D
d=1 jt,d Unlike in the univariate case, general efficient quadra-

ture rules for this class in the multivariate case are much harder to directly
derive and often intractable (Judd 1998, Ch. 7.5). As a result, there has been
a large literature on very specific problems. For a collection of these rules, see
for example Cools (2003). They are not only limited to very narrowly defined
problems, but often also difficult to implement. They are therefore usually
considered impractical for applied research (Bhat 2001, Geweke 1996).

We focus on two approaches which are easily implemented and cover
a wide range of applications since they merely combine one-dimensional
quadrature rules. We first discuss the well known product rule extension
(Tauchen and Hussey 1991) in Section 3.2. It does not restrict its attention
to polynomials of a given total order and suffers from exponentially rising
cost with increasing dimensions. It is therefore inefficient for moderate di-
mensions D > 1 and infeasible for higher dimensions, say D > 5. In Section
3.3, we suggest to use an extension of Gaussian quadrature to higher di-
mensions which is computationally efficient, easy to implement, and very
general.

3.2 Multivariate Quadrature: The Product Rule

Univariate quadrature rules can be extended easily to multiple dimensions
by the product rule. Define the tensor product over univariate quadrature
rules with potentially different accuracy levels in each dimension indicated

5



by the multi-index [i1, ..., iD] as

(Vi1 ⊗ · · · ⊗ ViD)[g] =
∑

x1∈Xi1

...
∑

xD∈XiD

g(x1, ..., xD)
D∏

d=1

wid(xd), (7)

where the nodes Xi1 , ...XiD and weights wi1 , ..., wiD are those implied by the
underlying one-dimensional quadrature rules Vi1 , ..., ViD .

The widely known product rule TD,k for D-variate Gaussian quadrature
with accuracy level k (Tauchen and Hussey 1991) is simply this tensor prod-
uct with the same accuracy in each dimension (Vk ⊗ · · · ⊗ Vk) [g]. If Vk is
exact for all univariate polynomials of order o or less, then TD,k is exact for
a special class of D-variate polynomials. Instead of a bound on the total
order (that is the sum of exponents), it restricts the maximum exponent
of all monomials to be at most o. For example a second-order Taylor ap-
proximation in two dimensions is a polynomial of total order 2: it contains
terms in x2

1, x2
2, and x1x2. Instead of being exact in this class of functions,

the product rule is additionally exact for terms in x2
1x2, x1x

2
2, and x2

1x
2
2. In

higher dimensions and higher order, the number of these terms, which di-
minish at a higher rate in the approximations, rises quickly which makes the
product rule inefficient and causes the curse of dimensionality (Judd 1998,
Ch. 6.12).

The product rule evaluates the function g at the full grid of points
Xk ⊗ · · · ⊗ Xk. In D dimensions, the product rule therefore requires RD

evaluations of the function g if the underlying univariate rule Vk is based on
R nodes. This exponential growth of computational costs with the number
of dimensions is labelled “curse of dimensionality” of multivariate integra-
tion. While for example Gaussian quadrature exactly evaluates a univariate
polynomial of order 7 with 4 function evaluations, the corresponding prod-
uct rule with 20 dimensions requires 420 = 1, 099, 511, 627, 776 evaluations
which is generally prohibitive.

3.3 Multivariate Quadrature on Sparse Grids

We suggest to extend univariate quadrature rules to multiple dimensions
with a substantially smaller number of function evaluations in higher di-
mensions than the product rule. This can be achieved by combining the
univariate rules in a different way than the product rule. The basic idea
goes back to Smolyak (1963) and is a general method for multivariate ex-
tensions of univariate approximation and integration operators.

6



The construction of Smolyak can be defined as follows. For an underlying
sequence of univariate quadrature rules, define V0[g] = 0 and the difference
of the approximation when increasing the level of accuracy from i − 1 to i
as

∆i[g] = Vi[g]− Vi−1[g] ∀i ∈ N. (8)

With i = [i1, ..., iD], define for any q ∈ N0

ND
q =

{
i ∈ ND :

D∑
d=1

id = D + q

}
(9)

and ND
q = ∅ for q < 0. For example, N2

2 = {[1, 3], [2, 2], [3, 1]}. The Smolyak
rule with accuracy level k ∈ N for D-dimensional integration is defined as

AD,k[g] =
k−1∑
q=0

∑
i∈ND

q

(∆i1 ⊗ · · · ⊗∆iD) [g]. (10)

For D = 1, the underlying one-dimensional quadrature rule emerges as a
special case:

A1,k[g] =
k∑

i=1

(Vi[g]− Vi−1[g]) = Vk[g]. (11)

This integration rule is designed to be exact for polynomials of a given
total order:

Theorem 1 Assume that the sequence of univariate quadrature rules V =
{Vi : i ∈ N} is defined such that Vi is exact for Ω, w, and all univariate
polynomials of order 2i − 1 or less. This implies the Smolyak rule AD,k

using V as the univariate basis sequence is exact for D-variate polynomials
of total order 2k − 1 or less.

See the appendix for a proof.
It is instructive to express AD,k[g] directly in terms of the univariate

quadrature rules instead of their differences. It can be written as (Wasilkowski
and Woźniakowski 1995)

AD,k[g] =
k−1∑

q=k−D

(−1)k−1−q

(
D − 1

k − 1− q

) ∑
i∈ND

q

(Vi1 ⊗ · · · ⊗ ViD)[g]. (12)

7



Figure 1: Construction of the sparse grid in two dimensions

Univariate nodes:
X1 X2 X3

Product rule:
X3 ⊗ X3

X1 ⊗ X2 X1 ⊗ X3

X2 ⊗ X1 X2 ⊗ X2

X3 ⊗ X1



Sparse grid:
X2,3

This rule is a weighted sum of product rules with different combinations of
accuracy levels i = [i1, ..., iD]. Their sum is bounded which has the effect
that the tensor product rules with a relatively fine sequence of nodes in one
dimension are relatively coarse in the other dimensions. This is analogous to
the bound on the sum of exponents for multivariate polynomials of a total
order.

Figure 1 demonstrates the construction of the sparse grid by the Smolyak
rule for a simple example with D = 2 and k = 3. The nodes for a sequence of
univariate quadrature rules X1, X2, and X3 are shown in the top of the figure.
The product rule X3 ⊗ X3 evaluates the function at all two-dimensional
combinations of nodes prescribed by X3 which are shown in the upper right
part of the figure. As equation (12) shows, the sparse grids rule combines
tensor products of lower degree Xi ⊗Xj such that 3 ≤ i + j ≤ 4. The nodes
of these products as well as the resulting sparse grid are shown in the lower
part of the figure.

8



The set of nodes used by the sparse grids rule (12) can be written as

XD,k =
k−1⋃

q=k−D

⋃
i∈ND

q

(Xi1 ⊗ · · · ⊗ XiD). (13)

The number of nodes in XD,k depends on the univariate nodes X1, ..., Xk

and can in general not be easily calculated. We first discuss the speed in
which it grows as D → ∞ if Gaussian quadrature is used for the sequence
of underlying univariate rules. Remember that the product rule TD,k with
underlying Gaussian quadrature rules uses kD nodes so that the logarithm
of the nodes is of order O(D−1) as D →∞.

Theorem 2 Consider the sparse-grids rule AD,k with underlying Gaussian
quadrature rules V = {Vi : i ∈ N} such that each Xi used by Vi has i nodes.
For a given accuracy k and rising D, the logarithm of nodes in XD,k is of
order O(log(D)−1).

We give a proof in the appendix. At least asymptotically, the number of
nodes (its logarithm) does not rise exponentially (linearly) as for the prod-
uct rule, but only polynomially (logarithmically). This is of course only
of limited use in practice since realistic D are far from infinity. We there-
fore give precise numbers for different dimensions below. Before, we discuss
alternatives to Gaussian quadrature as the underlying univariate rules.

Theorem 1 requires that in the sequence of quadrature rules V1, V2... each
Vi is exact for all univariate polynomials of order 2i−1 or less. As discussed
above, Gaussian quadrature rules achieve this requirement on univariate
exactness with a minimal number of i nodes for each Vi. Obviously, a low
number of univariate quadrature nodes helps to obtain a low total number
of nodes in the sparse grids rule.

In the example presented in Figure 1, the sets of univariate nodes are
nested in the sense that Xi ⊆ Xj if i ≤ j. Because the nodes are nested, the
sets X1 ⊗ X2 and X2 ⊗ X1 do not add any distinct nodes to the sparse grid
and also the other sets share a substantial number of points. This makes the
union of the tensor products a much smaller set than in the other extreme
case in which each set contains different nodes so Xi ∩ Xj = ∅ if i 6= j.
Gaussian quadrature rules are close to the latter case – generally, only the
midpoint is shared by rules with an odd number of nodes.

An example for nested sequences of univariate quadrature rules are
Kronrod-Patterson sequences (Patterson 1968). A Kronrod-Patterson rule
with accuracy level i adds a number of points to the set of nodes Xi−1 of the

9



preceding accuracy level and updates the weights. So by design, Xi ⊆ Xj if
i < j. The additional nodes are chosen such that a maximum polynomial
exactness is achieved. Because of the restriction that all nodes in Xi−1 are
to be reused, Kronrod-Patterson rules generally require a higher number
of nodes to achieve the same univariate polynomial exactness as Gaussian
quadrature rules which optimally choose the nodes without the requirement
of nested sets.1 With this approach, the goal in constructing univariate se-
quences is to add as few nodes as possible to reduce the computational costs
but enough to fulfill the requirements on polynomial exactness of Theorem
1. Petras (2003) discusses this problem for the case of unweighted inte-
gration (Gauss-Legendre equivalent) and Genz and Keister (1996) for the
normal p.d.f. weights (Gauss-Hermite equivalent). We supply the sequences
of both approaches with the accompanying Matlab and Stata code to this
paper.

Table 1 shows the number of function evaluations required by different
multivariate integration rules to achieve a given degree of polynomial exact-
ness. The product rule suffers from the curse of dimensionality. The number
of nodes for the Smolyak rule also rises with the number of dimensions, but
substantially slower. As discussed, while in one dimension Gaussian quadra-
ture is more efficient, in higher dimensions the Kronrod-Patterson rules need
fewer nodes.

Sparse grids integration can be easily implemented in practice. It is
not necessary to construct the grid of nodes and the corresponding weights
according to equation (12) for each approximation of the integral. Since
they do not depend on the integrand, it suffices to do this once or use
precalculated values. We provide general Matlab and Stata code for these
calculations. Existing code using simulation has to be changed only by
using these nodes and weights instead of drawing random numbers and by
replacing raw means of the results with weighted sums.

4 Monte Carlo Experiments

4.1 The Random Parameters Logit Model

When using numerical integration in the context of estimation, the ultimate
goal is to achieve good parameter estimates. They obviously depend on the

1With one or three integration nodes, the Kronrod-Patterson rule and the Gaussian
rule coincide. With 2m − 1 nodes for m > 1, Gaussian rules are exact for polynomials up
to order 2(2m − 1) − 1, whereas Kronrod-Patterson rules are only exact for polynomials
up to order 3 · 2m−1 − 1. So the ratio of both approaches 3/4 as m rises.

10



Table 1: Number of function evaluations
Product rule Smolyak rule

Dimensions Gaussian Gaussian) KP
Level k = 2, Polynomial exactness = 3
D = 1 2 2 3
D = 5 32 11 11
D = 10 1024 21 21
D = 20 1048576 41 41
Level k = 3, Polynomial exactness = 5
D = 1 3 3 3
D = 5 243 66 51
D = 10 59049 231 201
D = 20 3486784401 861 801
Level k = 4, Polynomial exactness = 7
D = 1 4 4 7
D = 5 1024 286 151
D = 10 1048576 1771 1201
D = 20 1099511627776 12341 10001
Level k = 5, Polynomial exactness = 9
D = 1 5 5 7
D = 5 3125 1001 391
D = 10 9765625 10626 5281
D = 20 95367431640625 135751 90561

approximation quality of the involved integrals. In this section we present
Monte Carlo experiments to asses the relative performance of the numerical
integration algorithms. Different random parameters logit (RPL) or mixed
logit models are implemented. The RPL model is widely used for studying
choices between a finite set of alternatives. McFadden and Train (2000)
provide an introduction to this model and a discussion of its estimation by
simulation methods. This model has also been used before to study the
performance of different simulation methods (Bhat 2001, Hess, Train, and
Polak 2006).

Consider a random sample of N individuals. The data has a panel struc-
ture, so that for each of the subjects T choices are observed. In each of these
choice situations, the individual is confronted with a set of J alternatives
and chooses one of them. These alternatives are described by K strictly
exogenous attributes. The (K×1) vectors xitj collect these attributes of al-

11



ternative j = 1, ..., J in choice situation t = 1, ..., T of individual i = 1, ..., N .
Random utility maximization (RUM) models of discrete choices assume

that the individuals pick the alternative which results in the highest util-
ity. The researcher obviously does not observe these utility levels. They are
modeled as latent variables for which the observed choices provide an indi-
cation. Let the utility that individual i attaches to alternative j in choice
situation t be represented by the random coefficients specification

Uitj = x′itjβi + eitj . (14)

It is given by a linear combination of the attributes of the alternative,
weighted with individual-specific taste levels βi. These individual taste lev-
els are distributed across the population according to a parametric joint
p.d.f. f(βi;θ) with support Ψ ⊆ RK . The i.i.d. random variables eitj cap-
ture unobserved utility components. They are assumed to follow an Extreme
Value Type I (or Gumbel) distribution.

Our goal is to estimate the parameters θ of the taste level distribution.
Let yitj denote an indicator variable that has the value 1 if individual i
chooses alternative j in choice situation t and 0 otherwise.2 Denote the vec-
tor of observed individual outcomes as yi = [yitj ; t = 1, ..., T, j = 1..., J ] and
the matrix of all strictly exogenous variables as xi = [xitj ; t = 1, ..., T, j =
1..., J ]. Then, the probability that the underlying random variable Yi equals
the observed realization yi conditional on xi and the individual taste levels
βi can be expressed as

P ∗
i (βi) = Pr(Yi = yi|xi,βi) =

T∏
t=1

∏J
j=1 exp(x′itjβi)yitj∑J

j=1 exp(x′itjβi)
. (15)

The likelihood contribution of individual i is equal to the joint outcome
probability as a function of θ. It can be written as

Pi(θ) = Pr(Yi = yi|xi,θ) =
∫

Ψ
P ∗

i (βi)f(βi;θ) dβi. (16)

A solution for this K-dimensional integral does in general not exist in closed
form and has to be approximated numerically.

4.2 Approximating the probabilities

We start with a simple case of the general model. Let J = 2 so that the
model simplifies to a binary choice model. Also let there only be K = 1

2Note that by definition,
PJ

j=1 yitj ∀i, t.

12



explanatory variable for which xit2 − xit1 = 1 for all t. Let the taste level
βi be normally distributed over the population with mean 1 and variance
σ2. Let the individual have chosen T1 times alternative 1 and T2 times
alternative 2, so that there are in total T1 + T2 observations. The likelihood
contribution in equation (16) can then be simplified to

Pi(θ) =
∫ ∞

−∞
P ∗

i (z)φ(z) dz

with P ∗
i (z) = (1 + exp(−1− σz))−T1(1 + exp(1 + σz))−T2 . (17)

This univariate integral can either be simulated or approximated using stan-
dard Gaussian quadrature. Figure 2 shows the function P ∗

i (z) for two dif-
ferent cases and depicts the numerical approaches to its integration. The
simulated probability with R simulation draws can be represented as the
sum of R rectangles each of which has a width of 1/R and a height that
corresponds to the function value at randomly chosen points. Quadrature
exactly integrates a polynomial of a given degree that represents an approx-
imation to the integrand.

How well P ∗
i (z) is approximated by a low-order polynomial depends on

the parameters. With high T and σ2, the function has large areas in which
it is numerically zero (or unity). These areas create a problem for the
polynomial fit. In Figure 2, two cases are presented. In the simple case of
Model 1 with T1 = 0, T2 = 1, and σ2 = 1, the function P ∗

i (z) – and therefore
its integral – is already well approximated by a third-order polynomial. A
ninth-order polynomial is indistinguishable from the original function. In
order to integrate this ninth-order polynomial exactly, Gaussian quadrature
rules only need R = 5 function evaluations.

In the second model with T = 20, T1 = 8, T2 = 12, and σ2 = 5, the
problem of large tails with zero conditional probability is evident. A third-
order polynomial does a poor job in approximating the function and there
are noticeable differences between the original function and its ninth-order
polynomial approximation. A 19th-order polynomial for which Gaussian
quadrature needs 10 function evaluations however is again indistinguishable
from the true function. This can of course be arbitrarily problematic with
even higher σ2 and T . With a sharp and narrow peak, approximation by
simulation can have poor properties, too. Intuitively, this is since only a
small fraction of simulation draws are within the nonzero area.

This diagnosis directly suggests a remedy. The function can be trans-
formed by a change of variables that leads to a better-behaved function.
In the context of simulation, this approach is importance sampling and for

13



Figure 2: Approximating probabilities in one dimension

Model 1: T = 1, T1 = 0, T2 = 1, σ2 = 1
Simulation (R = 20) Quadrature (R = 2, 5, 10)

Model 2: T = 20, T1 = 8, T2 = 12, σ2 = 4
Simulation (R = 20) Quadrature (R = 2, 5, 10)

univariate quadrature, it works similarly well, see Liu and Pierce (1994).
For the remainder of this paper, we will not use these improvements and
leave the exploration of their advantages in the multivariate case for future
research.

For the two models depicted in Figure 2 and two more extreme cases, Ta-
ble 2 presents performance measures of simulation and Gaussian quadrature
approximations of the choice probabilities (17). The numbers presented are
absolute errors for the quadrature approximations and root mean squared
errors for simulations which have been performed 1,000 times for each model
and number of draws. All errors are defined relative to the value obtained by
a Riemann sum with 10,000 grid points. For all models, Gaussian quadra-

14



Table 2: Approximating probabilities in one dimension: RMSE
R = 2 R = 5 R = 10 R = 100 R = 1000

Model 0: T = 1, T0 = 0, T1 = 1, σ2 = .25
Simulation 0.0944 0.0569 0.0421 0.0130 0.0043
Quadrature 0.0046 0.0008 0.0002 0.0000 –

Model 1: T = 1, T0 = 0, T1 = 1, σ2 = 1
Simulation 0.1846 0.1111 0.0822 0.0253 0.0085
Quadrature 0.0102 0.0012 0.0002 0.0000 –

Model 2: T = 20, T0 = 8, T1 = 12, σ2 = 4
Simulation 1.0206 0.6745 0.4841 0.1516 0.0484
Quadrature 0.8115 0.2472 0.0024 0.0000 –

Model 3: T = 30, T0 = 10, T1 = 20, σ2 = 9
Simulation 1.5222 0.9658 0.6591 0.2121 0.0677
Quadrature 1.0000 0.6336 0.0402 0.0000 –

The reported numbers are root mean squared errors relative to the “true” value

ture with 10 nodes performs better than simulation with 1,000 draws.
To study more complex models, we turn to a setup where J = T = 5.

The number of explanatory variables K determines the dimensionality of
the integration problem. We chose K = 3, 5, 10, and 20 for the Monte
Carlo studies reported in Table 3. The individual taste levels are specified
as i.i.d. normal random variables with mean 1 and variance 2/K to hold
the total variance of Uitj constant as K changes. Instead of using one set of
predefined data, we draw 1,000 samples from the joint distribution of yi and
xi, where the xitj are specified as independent uniform random variables and
the conditional distribution of the Bernoulli random variables yitj is given
in equation (15). For each of these draws, we approximate the joint outcome
probability using simulation and Smolyak integration with different numbers
of nodes. For the calculation of the mean squared errors, we approximate
the true value by simulation with 200,000 draws.

The rows denoted as “simulation” represent simulated probabilities us-
ing a standard random number generator. They perform worst in all cases.
The “quasi Monte Carlo” results are obtained using modified latin hyper-
cube sequences (MLHS) which are shown to work well for the estimation of
RPL models by Hess, Train, and Polak (2006).3 This method works much
better than the standard simulation. The product rule performs better than

3We also experimented with Halton sequences which do not seem to make too much of
a difference compared to MLHS. Results can be requested from the authors.

15



Table 3: RMSE of probabilities: σ5 = 2/K, J = T = 5
K = 3, R = 7 8 87 125 495 512

Simulation 0.3373 0.2971 0.0879 0.0776 0.0372 0.0382
Quasi MC 0.2287 0.1802 0.0382 0.0331 0.0161 0.0152
Product rule 0.0669 0.0112 0.0048
Sparse grids 0.0303 0.0050 0.0020

K = 5, R = 11 32 151 243 903 1024
Simulation 0.2663 0.1448 0.0705 0.0536 0.0303 0.0278
Quasi MC 0.1486 0.0796 0.0310 0.0257 0.0127 0.0130
Product rule 0.0567 0.0277 0.0171
Sparse grids 0.0243 0.0049 0.0043

K = 10, R = 21 201 1024 1201
Simulation 0.1987 0.0654 0.0284 0.0255
Quasi MC 0.1076 0.0317 0.0135 0.0128
Product rule 0.0420
Sparse grids 0.0173 0.0211 0.0035

K = 20, R = 41 801 10001
Simulation 0.1428 0.0324 0.0095
Quasi MC 0.0795 0.0156 0.0048
Sparse grids 0.0125 0.0160 0.0027

The reported numbers are root mean squared errors relative to the “true” value

both simulation methods in low dimensions, especially K = 3. In five di-
mensions, its advantage disappears and in ten dimensions, it is clearly the
worst method. For K = 20, we did not obtain results since it is not compu-
tationally feasible. In all cases, the sparse grids method clearly outperforms
all other methods. Table 5 in the appendix shows results for the more dif-
ficult case σ2 = 5/K and J = T = 5. While all errors rise, the relative
performances remain unchanged.

4.3 Estimating the parameters

One of the main reasons why approximations of the outcome probabilities
are interesting is that they are required for most estimators of the parameters
θ. We discuss maximum simulated (or approximated) likelihood estimation
such that the estimators are defined as

θ̂ = arg max
θ

∑
i

log
(
P̃i(θ)

)
,

16



where P̃i(θ) is some approximation of the individual joint outcome proba-
bility Pi(θ). Alternatively, estimators could be based on simulated scores or
moments. We chose this estimator since it is easiest to implement and by
far the most widely used for these kinds of models. For a discussion of the
various approaches, see for example Hajivassiliou and Ruud (1994).

It is clear that the quality of approximation of P̃i(θ) translates into the
properties of the estimators. We specify a number of different models and
estimate the parameters using simulation, antithetic sampling, and numer-
ical integration using different degrees of accuracy. As a starting point,
a reference model is specified with N = 1000, T = 5, J = 5, K = 10,
µ = 1, and σ = 0.5. Then each of these numbers is varied separately to
asses their impact on the approximation errors of the different methods.
For each of these settings, estimates were obtained for 100 artificial data
sets. The K-dimensional vectors of properties of the alternatives xitj were
drawn from a standard uniform distribution. The model parameters µ and
σ are constrained to be equal for all properties to simplify the estimation
and estimated for each data set. We used the same methods as discussed
in the previous section pseudo-random Monte Carlo (PMC), quasi-random
Monte Carlo (QMC) and sparse grids integration (SGI).

Table 4 shows results for different dimensions of integration. The simulation-
based estimates are much better for µ than for σ. This can be explained
by the fact that while the simulated probabilities P̃i(µ, σ) are unbiased for
the true values Pi(µ, σ), the log transformation introduces downward bias.
This bias depends on the simulation variance which in turn depends on σ.
This tends to bias σ̂ downwards. As predicted from the results for the ap-
proximated probabilities, standard simulation is dominated by quasi-random
simulation. SGI is again clearly the best method and for example in ten di-
mensions requires only 21 nodes for the same accuracy for which QMC needs
201 and PMC 1201 function evaluations.

In the appendix, results for other model parameter choices are presented.
Table 6 shows variations of µ and σ and Table 7 varies N,T, and J . The basic
finding are unaffected by these changes. As σ increases, the approximation
error rises and therefore all methods perform worse.4 With a larger number
of i.i.d. cross-sectional observation units N or longitudinal observations T ,
the estimators improve. Their relative advantages remain unaffected.

4If σ has a very large value, all methods fail to give reasonable estimation results. As
discussed above, adaptive rescaling might solve this problem.

17



Table 4: Errors of the estimated parameters with different K
RMSE (µ̂) RMSE (σ̂)

R PMC QMC SGI PMC QMC SGI
Dimension K = 2

9 0.0486 0.0458 0.0448 0.3648 0.1648 0.1177
45 0.0458 0.0452 0.0448 0.1712 0.1246 0.1177

961 0.0449 0.0449 0.0448 0.1179 0.1170 0.1177
Dimension K = 4

9 0.0411 0.0361 0.0340 0.3857 0.1985 0.0902
81 0.0341 0.0340 0.0339 0.1319 0.0963 0.0923

1305 0.0338 0.0339 0.0339 0.0921 0.0916 0.0923
Dimension K = 10

21 0.0481 0.0353 0.0272 0.2951 0.1554 0.0668
201 0.0298 0.0277 0.0272 0.0874 0.0708 0.0654

1201 0.0276 0.0271 0.0271 0.0691 0.0662 0.0654
Dimension K = 14

29 0.0507 0.0348 0.0240 0.2493 0.1321 0.0601
393 0.0252 0.0247 0.0252 0.0665 0.0618 0.0632

3361 0.0251 0.0252 0.0249 0.0629 0.0637 0.0631
Dimension K = 20

41 0.0655 0.0465 0.0290 0.2323 0.1390 0.0620
801 0.0298 0.0285 0.0276 0.0634 0.0599 0.0564

10001 0.0289 0.0291 0.0291 0.0594 0.0585 0.0585
The reported numbers are RMSEs relative to the true value

5 Conclusions

Multidimensional integrals are prevalent in econometric estimation prob-
lems. Only for special cases, closed-form solutions exist. With a flexible
model specification, the researcher frequently has to resort to numerical
integration techniques. Previously discussed methods of quadrature in mul-
tiple dimensions are either very specific and difficult to implement or suf-
fer from the “curse of dimensionality” – exponentially rising computational
costs with increasing dimensions.

We suggest a method that solves both problems. It merely requires
the derivation of quadrature nodes and weights for univariate integration.
These are widely available in software implementations and tabulations.
This makes the method easy to implement and very broadly applicable.

18



The reason why product rules suffer from the curse of dimensionality is that
the class of functions for which they deliver exact results is not limited to
polynomials of a given total order. The proposed method of integration
on sparse grids is confined to this set and therefore requires a dramatically
lower number of function evaluations in higher dimensions. The increase of
computational costs is only polynomial instead of exponential.

As a result, this method can be used as an efficient alternative to sim-
ulation methods. An intuitive explanation of the advantage of quadrature-
based methods over simulation is that it efficiently uses smoothness proper-
ties of the integrand to recover its shape over the whole domain.

After introducing the method and discussing its properties, we present
extensive Monte Carlo evidence for the random parameters logit model. The
results show that the computational costs to achieve a negligible approxima-
tion error are dramatically lower with the suggested approaches than with
simulation estimators.

Recent research in numerical mathematics suggests possible refinements
of integration on sparse grids. First, instead of predefining an approximation
level in terms of the number of nodes, a critical value of the approximation
error can be specified and the required number of function evaluations can
be determined automatically. Second, the approximation does not have to
be refined in each dimension symmetrically. It is also possible to invest
more effort in the most relevant dimensions. These dimensions can also
be determined automatically in an adaptive fashion (Gerstner and Griebel
2003). Third, quadrature-based methods can be refined to efficiently handle
functions that are not well-behaved. This can be achieved either by a change
of variables or by piecewise integration. These extensions are left for future
research.

19



Appendix

Proof of Theorem 1

Note that

AD,k

[
T∑

t=1

at

D∏
d=1

x
jt,d

d

]
=

T∑
t=1

atAD,k

[
D∏

d=1

x
jt,d

d

]
.

Therefore, it suffices to establish polynomial exactness for any of the T
monomials. Consider g =

∏D
d=1 xjd

d for some sequence j1, ..., jD with

(i)
∑D

d=1 jd ≤ 2k − 1.

The theorem states that this implies AD,k [g] = ID[g]. For the sequence of
underlying univariate quadrature rules V1, V2, ... we have by assumption

(ii) Vk[xj ] = I1[xj ] if j ≤ 2k − 1.

For the univariate case D = 1, we know that A1,k = Vk (see equation (11))
so the theorem follows immediately from (ii). For the multivariate case, a
proof is presented via induction over D. Suppose that polynomial exactness
has been established for D − 1 dimensions:

(iii) AD−1,k̃

[∏D−1
d=1 xjd

d

]
= ID−1

[∏D−1
d=1 xjd

d

]
if

∑D−1
d=1 jd ≤ 2k̃ − 1

It remains to be shown that this implies polynomial exactness for D dimen-
sions.

First note that because of the multiplicative structure of the monomial
integrand,

(∆i1 ⊗ · · · ⊗∆iD)

[
D∏

d=1

xjd
d

]
=

D∏
d=1

∆id [x
jd
d ].

Rewrite the general Smolyak rule (10) by separating the sum over the Dth

dimension:

AD,k[g] =
k∑

iD=1

k−iD∑
q̃=0

∑
i∈ND−1

q̃

(∆i1 ⊗ · · · ⊗∆iD) [g].

Combining these two expressions, we get

AD,k

[
D∏

d=1

xjd
d

]
=

k∑
iD=1

∆iD

[
xjD

D

]
AD−1,k−iD+1

[
D−1∏
d=1

xjd
d

]
.

20



By (ii), we know that whenever 2(iD − 1) > jD, ViD

[
xjD

D

]
= ViD−1

[
xjD

D

]
=

I
[
xjD

D

]
. Therefore, ∆iD

[
xjD

D

]
and the summands are zero unless jD ≥

2(iD−1). This in turn implies together with (i) that for nonzero summands∑D−1
d=1 jd ≤ 2(k − iD + 1) − 1 and therefore AD−1,k−iD+1

[∏D−1
d=1 xjd

d

]
=

ID−1

[∏D−1
d=1 xjd

d

]
by (iii).

With i∗D = .5(jD + 1) for odd jD and i∗D = .5jD for even jD, it follows
that

AD,k

[
D∏

d=1

xjd
d

]
= ID−1

[
D−1∏
d=1

xjd
d

] i∗D∑
iD=1

∆iD

[
xjD

D

]

= ID−1

[
D−1∏
d=1

xjd
d

]
Vi∗D

[
xjD

D

]
By (ii), Vi∗D

[
xjD

D

]
= I1

[
xjD

D

]
and the theorem follows.

Proof of Theorem 2

Let RD,k denote the number of distinct nodes in XD,k. For D ≥ k, it can
be bounded as

RD,k ≤
k−1∑
q=0

∑
i∈ND

q

D∏
d=1

id, (18)

since the univariate quadrature rule Vi has i nodes. The inequality comes
from the fact that the midpoints appear repeatedly in the underlying quadra-
ture rules. Note that the average element of i ∈ ND

q is D+q
D and that the

product is maximized if all elements have the same value. Therefore

D∏
d=1

id ≤
(

D + q

D

)D

∀i ∈ ND
q .

The number of vectors i ∈ ND
q is

(
D−1+q

D−1

)
. So

RD,k ≤ R̃D,k = k

(
D − 1 + k

D − 1

) (
D + k

D

)D

.

As D →∞,
(

D+k
D

)D → exp(k),
(
D−1+k

D−1

)
→ Dk

k! and therefore log
(
R̃D,k

)
→

k − log((k − 1)!) + k log(D) = O(log(D)−1).

21



Further results

Table 5: RMSE of probabilities: σ2 = 5, J = T = 10
K = 3, R = 7 8 87 125 495 512

Simulation 0.7284 0.8184 0.2093 0.1860 0.0902 0.0923
Quasi MC 0.6234 0.5849 0.1498 0.1147 0.0636 0.0600
Product rule 0.2060 0.0480 0.0221
Sparse grids 0.2696 0.0217 0.0055

K = 5, R = 11 32 151 243 903 1024
Simulation 0.6628 0.3921 0.2264 0.1652 0.0807 0.0726
Quasi MC 0.5226 0.3517 0.1550 0.1106 0.0653 0.0564
Product rule 0.1828 0.0917 0.0566
Sparse grids 0.2434 0.0567 0.0151

K = 10, R = 21 201 1024 1201
Simulation 0.6708 0.2025 0.0950 0.0816
Quasi MC 0.5278 0.1783 0.0784 0.0713
Product rule 0.1574
Sparse grids 0.1798 0.1058 0.0573

K = 20, R = 41 801 10001
Simulation 0.4928 0.1169 0.0348
Quasi MC 0.3971 0.1176 0.0286
Product rule
Sparse grids 0.1034 0.0756 0.0395

The reported numbers are root mean squared errors relative to the “true” value

22



Table 6: Errors of the estimated parameters with different µ and σ
RMSE (µ̂) RMSE (σ̂)

R PMC QMC SGI PMC QMC SGI
Parameters µ = 0.5, σ = 0.5

21 0.0268 0.0226 0.0208 0.2922 0.1533 0.0625
201 0.0211 0.0208 0.0209 0.0813 0.0638 0.0603

1201 0.0209 0.0209 0.0209 0.0631 0.0625 0.0605
Parameters µ = 2, σ = 0.5

21 0.0842 0.0598 0.0460 0.3050 0.1545 0.0712
201 0.0510 0.0470 0.0475 0.1034 0.0767 0.0738

1201 0.0478 0.0475 0.0472 0.0803 0.0732 0.0735
Parameters µ = 1, σ = 0.25

21 0.0264 0.0253 0.0257 0.1759 0.0984 0.0919
201 0.0250 0.0252 0.0255 0.0929 0.0888 0.0893

1201 0.0255 0.0256 0.0256 0.0868 0.0955 0.0923
Parameters µ = 1, σ = 1

21 0.1070 0.0867 0.0490 0.4095 0.3053 0.1754
201 0.0409 0.0363 0.0343 0.0994 0.0824 0.0746

1201 0.0316 0.0309 0.0303 0.0614 0.0597 0.0553
The reported numbers are RMSEs relative to the true value

23



Table 7: Errors of the estimated parameters with different N , T , and J
RMSE (µ̂) RMSE (σ̂)

R PMC QMC SGI PMC QMC SGI
N = 500

21 0.0511 0.0441 0.0417 0.2993 0.1792 0.1101
201 0.0416 0.0414 0.0418 0.1284 0.1102 0.1126

1201 0.0413 0.0417 0.0417 0.1023 0.1109 0.1121
N = 2000

21 0.0417 0.0275 0.0165 0.3124 0.1530 0.0547
201 0.0185 0.0171 0.0166 0.0769 0.0575 0.0515

1201 0.0168 0.0166 0.0166 0.0548 0.0517 0.0512
T = 3

21 0.0513 0.0414 0.0374 0.3254 0.1836 0.1157
201 0.0378 0.0369 0.0383 0.1283 0.1220 0.1253

1201 0.0380 0.0381 0.0381 0.1208 0.1240 0.1234
T = 10

21 0.0195 0.0189 0.0281 0.2284 0.1375 0.0457
201 0.0253 0.0269 0.0291 0.0572 0.0466 0.0377

1201 0.0284 0.0288 0.0294 0.0393 0.0385 0.0376
J = 3

21 0.0619 0.0456 0.0363 0.2996 0.1485 0.0845
201 0.0389 0.0362 0.0370 0.1080 0.0931 0.0978

1201 0.0376 0.0372 0.0371 0.0972 0.0960 0.0964
J = 10

21 0.0339 0.0271 0.0214 0.2638 0.1415 0.0540
201 0.0226 0.0215 0.0216 0.0705 0.0563 0.0561

1201 0.0215 0.0215 0.0215 0.0569 0.0558 0.0559
The reported numbers are RMSEs relative to the true value

24



References

Bhat, C. (2001): “Quasi-Random Maximum Simulated Likelihood Estima-
tion of the Mixed Multinomial Logit Model,” Transportation Research B,
35, 677–693.

Börsch-Supan, A., and V. Hajivassiliou (1993): “Smooth Unbiased
Multivariate Probability Simulators for Maximum Likelihood Estimation
of Limited Dependent Variable Models,” Journal of Econometrics, 58,
347–368.

Butler, J. S., and R. Moffit (1982): “A Computationally Efficient
Quadrature Procedure for the One-Factor Multinomial Probit Model,”
Econometrica, 50(3), 761–764.

Cools, R. (2003): “An Encyclopedia of Cubature Formulas,” Journal of
Complexity, 19, 445–453.

Davis, P. J., and P. Rabinowitz (1984): Methods of Numerical Integra-
tion. Academic Press, New York, 2nd edn.

Genz, A., and C. Keister (1996): “Fully symmetric interpolatory rules for
multiple intergrals over infinite regions with Gaussian weights,” Journal
of Computational and Applied Mathematics, 71, 299–309.

Gerstner, T., and M. Griebel (2003): “Dimension-Adaptive Tensor-
Product Quadrature,” Computing, 71, 65–87.

Geweke, J. (1996): “Monte Carlo Simulation and Numerical Integration,”
in Handbook of Computational Economics Vol. 1, ed. by H. M. Amman,
D. A. Kendrick, and J. Rust, pp. 731–800. Elsevier Science, Amsterdam.

Hajivassiliou, V. A., and P. A. Ruud (1994): “Classical Estimation
Methods for LDV Models Using Simulation,” in Handbook of Economet-
rics Vol. IV, ed. by R. F. Engle, and D. L. McFadden, pp. 2383–2441.
Elsevier, New-York.

Hess, S., K. E. Train, and J. W. Polak (2006): “On the Use of a
Modified Latin Hypercube Sampling (MLHS) Method in the Estimation
of a Mixed Logit Model for Vehicle Choice,” Transportation Research Part
B, 40, 147–163.

Judd, K. L. (1998): Numerical Methods in Economics. MIT Press, Cam-
bridge, Mass.

25



Liu, Q., and D. A. Pierce (1994): “A note on Gauss–Hermite quadra-
ture,” Biometrika, 81, 624–629.

McFadden, D. (1989): “A Method of Simulated Moments for Estimation of
Discrete Choice Models Without Numerical Integration,” Econometrica,
57, 995–1026.

McFadden, D., and K. Train (2000): “Mixed MNL Models for Dis-
crete Response,” Journal of Applied Econometrics, 15, 447–470, Un-
veröffentlichtes Manuskript, University of California, Berkeley.

Miranda, M. J., and P. L. Fackler (2002): Applied Computational
Economics and Finance. MIT Press, Cambridge MA.

Novak, E., and K. Ritter (1999): “Simple cubature formulas with high
polynomial exactness,” Constructive Approximation, 15, 499–522.

Patterson, T. N. L. (1968): “The optimum addition of points to quadra-
ture formulae,” Mathematics of Computation, 22, 847–856.

Petras, K. (2003): “Smolyak Cubature of Given Polynomial Degree with
Few Nodes for Increasing Dimension,” Numerische Mathematik, 93, 729–
753.

Smolyak, S. A. (1963): “Quadrature and Interpolation Formulas for Ten-
sor Products of Certain Classes of Functions,” Soviet Mathematics Dok-
lady, 4, 240–243.

Tauchen, G., and R. Hussey (1991): “Quadrature-Based Methods for
Obtaining Approximate Solutions to Nonlinear Asset Pricing Models,”
Econometrica, 59(2), 371–396.

Train, K. (2003): Discrete Choice Methods with Simulation. Cambridge
University Press.

Wasilkowski, G. W., and H. Woźniakowski (1995): “Explicit cost
bounds of algorithms for multivariate tensor product problems,” Journal
of Complexity, 8, 337–392.

26


