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ABSTRACT. This note gives a fairly complete statistical description of
the Hodrick-Prescott Filter (1997), originally proposed by Leser (1961). It
builds on an approach to seasonal adjustment suggested by Leser (1963)
and Schlicht (1981, 1984). A moments estimator for the smoothing pa-
rameter is proposed that is asymptotically equivalent to the maximum-
likelihood estimator, has a straightforward intuitive interpretation and is
more appropriate for short series than the maximum-likelihood estima-
tor. The method is illustrated by an application and several simulations.
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INTRODUCTION

What is known as the Hodrick-Prescott Filter (1997) is widely used in ap-
plications and has been embodied in various statistical packages. King
and Rebelo (1993, 230) write that the filter “is commonly used in inves-
tigations of the stochastic properties of real business cycle models,” and
many papers have been published that either use or improve the filter.
The economics databank EconLit lists 72 papers with “Hodrick-Prescott
Filter” in the title or abstract, and the statistic programs eViews and Stata
provide the filter as a standard feature.

The filter has been proposed originally by Leser (1961), building on the
graduation method developed by Whittaker (1923) and Henderson (1924).
It requires a smoothing constant as an input. This constant is usually
fixed in an ad-hoc way. The program eViews recommends 100 for annual
data, 1600 for quarterly data, and 14.400 for monthly data, for instance,
presumably summung up various findings in simulation studies and ap-
plied research. A theoretical approach to the determination of the filter has
been suggested by Hodrick and Prescott (1997, 4) who referred to Kalman-
filtering and related the smoothing constant to a ratio of variances. (Their
guess of a variance ratio of 1600 for quarterly data established a custom.)
Earlier, Schlicht(1981, 1984) proposed a two-sided filter, also based on the
variance ratio as a smoothing constant. Although it is possible, in prin-
ciple, to estimate the variance ratios both in the Kalman and the Schlicht
framework by using maximum-likelihood estimates, practical implemen-
tation is often not satisfactory, as corner solutions tend to occur for shorter
time series, and the rule-of thumb approach prevails.

The aim of this paper is to offer a rather systematic exposition and a
straightforward method for estimating the smoothing constant, based on
the approach by Schlicht (1984). A maximum likelihood estimator and a
related and more intuitive a moments estimator will be derived and com-
pared. A simulation study illustrates the performance of these estimators.

The paper is organized as follows. In Section  the filter is described; in
Section , a statistical interpretation of the filter is given that involves some
formal parameters. Section  gives the estimator for those parameters. In
Section  it is proven that the descriptive procedure described in Section





 gives an unbiased maximum-likelihood estimate for the trend, given a
smoothing parameter.

Given any smoothing parameter, the covariance matrix of the trend es-
timate is given in Section . Section  turns to estimation of the variances
by a maximum likelihood method. The variances determine the smooth-
ing parameter. It is shown that the numerical problem can be simplified
considerably in several ways.

Section  describes a moments estimator for the variances. This esti-
mator is characterized by the property that the computed variances of the
error terms are equal to their expectations. In Section  it is shown that
the likelihood estimates and the moments estimates differ only slightly
and approach each other with an increasing length of the time series. This
gives intuitive appeal to the maximum likelihood estimator and statistical
appeal to the moments estimator.

Section  comments on some practical aspects and presents some simu-
lations and section  points out some open problems.

. THE FILTER

Consider a time series x ∈ <T that is to be decomposed into a trend y ∈ <T

and an irregular component u ∈ <T :

x = y + u ()

Define the trend disturbance v ∈ <T−1 as

vt = ((yt − yt−1)− (yt−1 − yt−2)) t = 3, 4, ... , T

or
v = P y ()

with

P :=


1 −2 1 0

1 −2 1
. . .

0 1 −2 1

 ()

of order (T − 2)× T .





The decomposition of the original series x into trend y and irregular
component u is obtained by minimzing the weighted sum of squares

u′u + α · v′v = (x− y)′ (x− y) + α · y′P ′P y ()

with respect to y. This gives the first-order condition

(I + α · P ′P ) y = x ()

As (I + α P ′P ) is positive definite, the second order condition is satisfied
in any case.

The the system matrix in () can be written as as(
I, α

1
2 P ′

)( I

α
1
2 P

)
As ( I, α

1
2 P ′ ) is of full rank, (I + α · P ′P ) is nonsingular and equation

() has the unique solution

y = (I + α P ′P )−1
x ()

Equation () defines the descriptive filter that associates a trend y to the
time series x, depending on the smoothing parameter α.

. STOCHASTIC INTERPRETATION

Equations () and () can be embedded in a stochastic model by assuming
that the disturbances u and v in () and () are normal random variables
with variances σ2

u and σ2
v and zero expectations:

u ∼ N
(
0, σ2

u

)
, v ∼ N

(
0, σ2

v

)
()

This turns x and y into random variables with probability distributions
that will be derived in the following.

As the rank of P is T − 2, there exist two orthogonal solutions z to the
equation Pz = 0. These can be taken as columns of a (T × 2)-matrix Z that
satisfies

PZ = 0, Z ′Z = 0 ()

Consider now (
P

Z ′

)(
P ′ Z

)
=

(
PP ′ 0

0 I

)
()





which is of full rank. Inverting both sides of (), pre-multiplying by (P ′, Z)

and multiplying from the right-hand side by

(
P

Z ′

)
implies

(
P ′ Z

)( (PP ′)−1 0
0 I

)(
P

Z ′

)
= I ()

and hence
P ′ (PP ′)−1

P + ZZ ′ = I ()

The auxiliary matrix Z comprises the set of the two orthogonal solutions
to the equation Pz = 0. Any solution to () can be witten as

y = P ′ (PP ′)−1
v + Z β ()

with β ∈ <2 as a formal parameter vector. The time series x can be seen as
the sum of y and u, and hence as brought about by the disturbances u and
v:

x = u + P ′ (PP ′)−1
v + Z β ()

Combining () and () gives(
x

y

)
=

(
I P ′ (PP ′)−1

0 P ′ (PP ′)−1

)(
u

v

)
+

(
Z

Z

)
β ()

As the disturbances u and v are normal with variances σ2
u and σ2

v , the vec-
tor (u′, v′) is normal as well:(

u

v

)
∼ N (0, Suv) ()

The co-variance matrix is

Suv :=

(
σ2

u · I 0
0 σ2

v · I

)
()

From () to () we obtain(
x

y

)
∼ N

((
Z

Z

)
β, Sxy

)
()





with1

Sxy :=

(
σ2

uI + σ2
vQ σ2

vQ

σ2
vQ σ2

vQ

)
()

and
Q := P ′ (PP ′)−1 (PP ′)−1

P ()

Note that () entails

Z ′Q = 0 ()

From () we obtain the marginal density of x as

x ∼ N (Zβ, Sx) ()

with

Sx :=
(
σ2

uI + σ2
vQ
)

= σ2
v

(
I +

σ2
v

σ2
u

Q

)
()

Note that

Z ′S−1
x =

1
σ2

v

Z ′

(
I − σ2

v

σ2
u

Q +
(

σ2
v

σ2
u

Q

)2

−
(

σ2
v

σ2
u

Q

)3

+
(

σ2
v

σ2
u

Q

)4

− ...

)

=
1
σ2

v

Z ′ ()

The marginal density of y for given x is

(y | x ) ∼ N (ȳ, Sy) ()

where

ȳ := Zβ + σ2
vQ
(
σ2

uI + σ2
vQ
)−1

(x− Zβ) ()

Sy|x := σ2
vQ− σ2

vQ
(
σ2

uI + σ2
vQ
)−1

σ2
vQ ()

Equations () and () can be simplified. Note that

I − σ2
v

(
σ2

uI + σ2
vQ
)−1

Q = σ2
u

(
σ2

uI + σ2
vQ
)−1

1Note that the covariance matrix Sxy is not of full rank. Hence (x′, y′) is distributed on a
subspace of <2T that is determined by the parameter λ.





which is verified by pre-multiplication with
(
σ2

uI + σ2
vQ
)
. Hence the co-

variance matrix can be written as

Sy|x = σ2
uσ2

vQ
(
σ2

uI + σ2
vQ
)−1

With α = σ2
u/σ2

v we have

σ2
vQ
(
σ2

uI + σ2
vQ
)−1

= Q (αI + Q)−1 ()

and with ()

(αI + Q) (P ′P ) =
(
αP ′P + P ′ (PP ′)−1

P
)

= (I + αP ′P − ZZ ′)

Hence

(αI + Q)−1 = (P ′P ) (I + αP ′P − ZZ ′)−1

and

σ2
vQ
(
σ2

uI + σ2
vQ
)−1

= (I − ZZ ′) (I + αP ′P − ZZ ′)−1 ()

With (), and (), () can be re-written as

ȳ = Zβ + Q (αI + Q)−1 (x− Zβ) ()

or

ȳ = Zβ + (I − ZZ ′)
(

I +
σ2

u

σ2
v

P ′P − ZZ ′
)−1

(x− Zβ) ()

Further we have

P ′PQ =
σ2

u

σ2
v

P ′P + P ′ (PP ′)−1
P

= I +
σ2

u

σ2
v

P ′P − ZZ ′

and hence

Sy|x = σ2
uQ

(
I +

σ2
u

σ2
v

Q

)−1

()

or

Sy|x =

(
I − (I − ZZ ′)

(
I +

σ2
u

σ2
v

P ′P − ZZ ′
)−1

)
σ2

vQ ()





. ESTIMATING THE FORMAL PARAMETERS β

The parameters that need to be estimated are the formal parameter vector
β and the variances σ2

u and σ2
v .

The estimation of the formal parameters β is straigtforward. Equation
() gives rise to the likelihood function

L
(
x, β, σ2

u, σ2
v

)
: = −log det

(
σ2

uI + σ2
vQ
)

− (x− Zβ)′
(
σ2

uI + σ2
vQ
)−1

(x− Zβ) ()

Minimizing L with respect to β leads to sufficient condition

Z ′ (σ2
uI + σ2

vQ
)−1

x = Z ′ (σ2
uI + σ2

vQ
)−1

Zβ̂ ()

In view of (), () , and () this reduces to

β̂ = Z ′x ()

. ESTIMATING THE TREND y

If we substitute the formal parameters β with the estimator β̂ in (), we
obtain the conditional distribution of the trend y (which is a random vari-
able). It seems sensible to take the expectation of this random variable as
our estimator for the trend. This yields:

ŷ := Zβ̂ + Q

(
σ2

u

σ2
v

I + Q

)−1 (
x− Zβ̂

)
()

Theorem 1. With the smoothing constant α equal to the variance ratio σ2
u

/
σ2

v

the descriptive decomposition () is numerically identical to the estimator ().

Proof. Setting α = σ2
u

/
σ2

v in () and and ordering terms gives

ŷ = Zβ̂ + Q (αI + Q)−1
(
x− Zβ̂

)
()

Note that
Q (αI + Q)−1 = I − α (αI + Q)−1 ()

which is verified by right-hand multiplication with (αI + Q). Inserting
this into () and re-arranging terms gives

(αI + Q)−1
(
x− Zβ̂

)
=

1
α

(x− ŷ) ()





This can be inserted into () again, and we obtain

ŷ = Zβ̂ + Q
1
α

(x− ŷ) ()

Pre-multiplication with αP ′P yields

α P ′P ŷ = α P ′PZβ̂ + P ′PQ (x− ŷ) ()

As PZ = 0, the first term on the right-hand side cancels. From the defini-
tion () of Q and () it follows that

P ′PQ = I − ZZ ′ ()

Substituting this into () gives

α P ′P ŷ = (x− ŷ)− ZZ ′ (x− ŷ) ()

Because of () we have Z ′x = β̂. Pre-multiplying () by Z ′ while noting
that Z ′Z = I and Z ′Q = 0 results in Z ′ŷ = β̂ as well. Hence the last term
in () cancels and we obtain

(I + α P ′P ) ŷ = x ()

which is numerically identical to the normal equation () that defines the
descriptive filter. �

. THE COVARIANCE MATRIX OF THE ESTIMATES

Consider a given time series x and a realization of the associated trend y.
Because x can be viewed as brought about as the sum of the trend y and
the disturbance u, we can write :

ŷ = (I + α P ′P )−1 (y + u) ()

Since
y = (I + α P ′P ) y − αP ′P y ()

and v = P y, equation () can be written as

ŷ − y = (I + α P ′P )−1 (u− αP ′v) ()

Equation () gives the estimation error, and the covariance matrix of this
error is calculated as

E
{
(ŷ − y)′ (ŷ − y)

}
= σ2

u (I + α P ′P )−1 ()





For given variances (and therefore a given smoothing constant α = σ2
u

/
σ2

v ),
equation () gives the variances of the trend estimates. The square roots
of the main diagonal elements of () give the standard errors of the cor-
responding point estimates ŷt of the trend. It is thus possible to guess, for
any smoothing parameter α, the precision of the trend estimate.

. MAXIMUM-LIKELIHOOD ESTIMATION OF THE VARIANCES

In order to estimate the smoothing parameter α, we turn now to estimat-
ing the variances σ2

u and σ2
v . A first approach is to simply write down the

maximum likelihood function. The distribution of the observations x is
given by density function (). Taking logarithms and disregarding con-
stants gives the likelikood

L
(
x, λ, σ2

u, σ2
v

)
:= −log det

(
σ2

uI + σ2
vQ
)

− (x− Zβ)′
(
σ2

uI + σ2
vQ
)−1

(x− Zβ) ()

By replacing the parameter λ with its estimate λ̂ = Z ′x from (), we ob-
tain the concentrated likelihood

L∗ (x, σ2
u, σ2

v

)
:= − log det

(
σ2

uI + σ2
vQ
)

−x′ (I − ZZ ′)′
(
σ2

uI + σ2
vQ
)−1

(I − ZZ ′) x ()

This would suffice, in principle, to estimate the variances σ2
u and σ2

v , but
the problem can be simplified considerably. The following theorem states
that the likelihood () can be expressed in terms of the estimated trend
ŷ and the weighted sum of the variances of the estimates errors û and v̂

which are defined as follows:

ŷ := (I − αP ′P )−1
x ()

û := x− ŷ ()

v̂ := P ŷ ()

Theorem 2. The likelihood () can be written as

L∗ (x, σ2
u, σ2

v

)
= − log det

(
σ2

uI + σ2
vQ
)
− 1

σ2
u

û′û− 1
σ2

v

v̂′v̂ ()

Proof. As the first terms of eq () and () are identical, it suffices to show
that the quadratic forms in these equations are the same. Consider first the





quadratic in (). From () we obtain

û′û = x′
(
I − (I + αP ′P )−1

)(
I − (I + αP ′P )−1

)
x ()

and
v̂′v̂ = x′ (I + αP ′P )−1

P ′P (I + αP ′P )−1
x ()

Because

(I + αP ′P )−1 = I − αP ′P + (αP ′P )2 − (αP ′P )3 + ...

the matrices P ′P and (I + αP ′P )−1 commute and we can re-write equa-
tion () as

v̂′v̂ = x′P ′P (I + αP ′P )−1 (I + αP ′P )−1
x ()

Combining () and () gives

û′û + αv̂′v̂ = x′
(
I − (I + αP ′P )−1

)
x ()

With
A :=

(
I − (I + αP ′P )−1

)
()

and α = σ2
u

/
σ2

v the quadratic in equation () is

1
σ2

u

û′û +
1
σ2

v

v̂′v̂ =
1
σ2

u

x′Ax ()

Consider next the quadratic in (). With

B := (I − ZZ ′)′ (αI + Q)−1 (I − ZZ ′) ()

it is
x′ (I − ZZ ′)′

(
σ2

uI + σ2
vQ
)−1

(I − ZZ ′) x =
1
σ2

v

x′Bx ()

Right-hand multiplication of () by the non-singular matrices(I + αP ′P )
and (αI + Q) and use of () results in

A (I + αP ′P ) (αI + Q) = α (I + αP ′P − ZZ ′) ()

Equation () can be re-written as

B = (αI + Q)−1 − 1
α

ZZ ′ ()





This makes use of the fact that the matrices (I − ZZ ′) and (αI + Q)−1 com-
mute, that (I − ZZ ′) is idempotent and that Z ′Q = 0. Righ-hand multipli-
cation of () by (αI + Q) and (I + αP ′P ) yields

B (I + αP ′P ) (αI + Q) = I + αP ′P − ZZ ′ ()

This makes use of the fact that the non-singular matrices (I + αP ′P ) and
(αI + Q) commute and that PZ = 0. Equations () and () imply

1
σ2

u

A =
1
σ2

v

B ()

Therefore the expressions given in equations () and () are identical.
�

For purposes of estimation, it is useful to parametrize the likelihood
function () by α and σ2

u instead of σ2
u an σ2

v . Because σ2
v = σ2

u /α , we can
write:

L∗∗ (x, σ2
u, α

)
:= − log det (αI + Q)− 1

σ2
u

(û′û + αv̂′v̂)

+T · log α− T · log σ2
u ()

For any given α, the minimization of L∗∗ with repect to σ2
u leads to the

necessary and sufficient conditions

∂L∗∗

∂σ2
u

= − T

σ2
u

+
1
σ4

u

(û′û + αv̂′v̂) = 0 ()

∂2L∗∗

∂ (σ2
u)2

∣∣∣∣∣
∂L∗∗
∂σ2

u
=0

= − T

σ4
u

< 0 ()

which imply the estimator

σ̂2
u =

1
T

(û′û + αv̂′v̂) ()

for the variance of u.
Given any smoothing parameter α, equation () permits estimating the

precision of the trend estimates - the covariance matrix () - in terms of
the calculated errors:

E
{
(ŷ − y)′ (ŷ − y)

}
=

1
T

(û′û + αv̂′v̂) (I + α · P ′P )−1 ()





By inserting () into () and disregarding constants, a concentrated
likelihood function can be derived that involves the smoothing parameter
α as its only parameter:

L
∗∗∗

(x;α) := − log det (αI + Q)− T · log R (α) + T · log α ()

with
R (α) := û′û + αv̂′v̂ ()

With (), maximum likelihood estimation reduces to maximizing over
just one parameter. As the solution ŷ to the band-diagonal normal equa-
tion () is straightforward, minimization of L∗∗∗ with respect to the smooth-
ing parameter α can be performed numerically. The solution ŷ can be cal-
culated for any α. The value of R (α) is calculated via () - () and ().
For any α, the corresponding variances are computed according to ()
and α = σ2

u/σ2
v as

σ̂2
u =

1
T

R (α) ()

σ̂2
v =

1
T

R (α)
α

()

The likelihood function can be further simplified with respect to the
first term. Consider

(αI + Q)
(

P ′ Z
)( P

Z ′

)
= (αP ′P + αZZ ′ + I − ZZ ′) ()

As

det

((
P ′ Z

)( P

Z ′

))
= det

((
P

Z ′

)(
P ′ Z

))

= det

(
PP ′ 0

0 I

)
= det (PP ′)

and () implies

det (PP ′) det (αI + Q) = det (I + αP ′P + (α− 1) ZZ ′) ()





Right-hand multiplication by det (I + αP ′P )−1 gives

det (PP ′) (αI + Q) det (I + αP ′P )−1 = det
(
I + (α− 1) ZZ ′ (I + αP ′P )−1

)
=det

(
I + (α− 1) ZZ ′

(
I − αP ′P + (αP ′P )2 − (αP ′P )3 + ...

))
=det (I + (α− 1) ZZ ′) ()

and therefore
det (αI + Q)

det (I + αP ′P )
=

det (I + (α− 1) ZZ ′)
det (PP ′)

()

The determinant of (I + (α− 1) ZZ ′) can be evaluated by means of its
Eigenvalues. For any symmetric matrix A ∈ <n , denote the vector of its
Eigenvalues by Λ (A). Its rank r (A) gives the number of non-zero Eigen-
values. The vector of these non-zero Eigenvalues is denoted byΛ+ (A) ∈
<r(A). The determinant of A is equal to the product of its Eigenvalues.

We have

Λ (I + (α− 1) ZZ ′) =


1
1
.

1

+ (α− 1) Λ (ZZ ′) ()

Further, r (Z) = 2 and ZZ ′ has rank 2 and two non-zero Eigenvalues of
unity.

Λ+ (ZZ ′) = Λ+ (Z ′Z) =

(
1
1

)
()

In view of () we conclude that (I + (α− 1) ZZ ′) has T − 2 Eigenvalues
of one and two Eigenvalues of α. The determinant of (I + (α− 1) ZZ ′) is
the product of its Eigenvalues and we can write

det (I + (α− 1) ZZ ′) = α2 ()

Equation () reduces thus to

det (αI + Q)
det (I + αP ′P )

=
α2

det (PP ′)
()

Taking logarithms and re-arranging terms yields

log det (αI + Q) = log det (I + αP ′P ) + 2 log α− log det (PP ′) ()





Disreganding constants, the likelihood function () can be written as

L (x;α) = − log det (I + αP ′P )− T · log R (α) + (T + 2) log α ()

. A MOMENTS ESTIMATOR FOR THE VARIANCES

The likelihood estimation described in the preceding section lacks intu-
itive appeal, and its small-sample properties are difficult to ascertain. As
an alternative, a moments estimator will be devised that is based on the
idea that the calculated variances ought to be close to their expectations.
(This type of estimator has originally been proposed by Schlicht (1989) in
the context of state-space models.) idea has been used The estimator is de-
rived by equating, at any sample size, the calculated variances with their
expectations.

Assume a realization of a trend y (that we can’t observe) along with
a realization of the time series x (which is is taken as a realization of a
random variable) for a given set of parameters β, σ2

u, and σ2
v . According to

(), this gives rise to the estimate ŷ as a function of the variance ratio α =
σ2

u

/
σ2

v and of the time series x which is the sum of trend y and disturbance
u:

ŷ = (I + α P ′P )−1 (y + u) ()

Since
y = (I + αP ′P ) y − α P ′P y ()

and v = P y, equation () can be written as

ŷ = y + (I + α P ′P )−1 (u− α P ′v) ()

Pre-multiplication with P gives

v̂ = v + P (I + α P ′P )−1 (u− α P ′v) ()

In a similar way, from û = x− ŷ we obtain

û = u− (I + α P ′P )−1 (u− α P ′v) ()

Thus the estimated errors û and v̂ are linear functions of the the normal
random variables u and v:(

û

v̂

)
=

(
(I −M) −αMP ′

PM I − αPMP ′

)(
u

v

)
()





(
û

v̂

)
=

(
I −

(
I 0
0 P

)(
M M

M M

)(
I 0
0 αP ′

))(
u

v

)
()

with
M := (I + α P ′P )−1 ()

and their joint distribution can be calculated:(
û

v̂

)
= N

(
0,

(
S11 S12

S21 S22

) )
()

with

S11 :=σ2
u (I −M)2 + σ2

vα2MP ′PM ()

S12 :=σ2
u (I −M) MP ′ − σ2

vαMP ′ (I − αPMP ′) ()

S21 :=σ2
uPM (I −M)− σ2

vα (I − αPMP ′) PM ()

S22 :=σ2
uPM2P ′ + σ2

v (I − αPMP ′)2 ()

From this, the expectation of the average squared errors can be calculated:

E

{
1
T

û′û

}
= σ2

u ·
1
T

tr (I −M)2 + σ2
uα

1
T

tr
(
M2P ′P

)
()

E

{
1

T − 1
v̂′v̂

}
= σ2

u ·
1

T − 1
tr
(
M2P ′P

)
+σ2

v ·
1

T − 1
tr (I − αPMP ′)2 ()

Note that

tr (I −M)2 + α tr
(
M2P ′P

)
= tr (I −M)2 + α tr

(
M2P ′P

)
= tr

(
I − 2 M + (I + α P ′P ) M2

)
= tr (I −M)

= T − tr (M) ()

and





α tr
(
M2P ′P

)
+ tr (I − αPMP ′)2 =

= tr
(
αM2P ′P + I − 2 αMP ′P + α2M2 (P ′P )2

)
= tr

(
α (I + αP ′P ) M2P ′P + I − 2αMP ′P

)
= tr (I − αMP ′P ) ()

Because
M (I + αP ′P ) = I ()

we have
I − αMP ′P = M ()

Insering this into () gives

tr (I −M)2 + αtr
(
M2P ′P

)
= tr (M) ()

and ()-() reduce to

E
{

û′û
}

= σ2
u (T − tr (M)) ()

E
{

v̂′v̂
}

= σ2
vtr (M) ()

The moments estimators for the variances, denoted by σ̌2
u and σ̌2

v , are
obtained by equalizing the estimated moments û′û and v̂′v̂ with their ex-
pectations:

û′û = σ̌2
u (T − tr (M)) ()

v̂′v̂ = σ̌2
vtr (M) ()

Note that the estimated moments û′û and v̂′v̂ , as implied by ()-()
are functions of the observations x and the variance ratio α̌ = σ̌2

u

/
σ̌2

v and,
thus, of the variances σ̌2

u and σ̌2
v and that the matrix M depends on the

variace ratio as well. Hence the solution to ()-() amounts to finding
a fixpoint.

The system can be written equivalently as





σ̌2
u =

1
T

(
û′û + α v̂′v̂

)
=

1
T

R (α̌) ()

σ̌2
v =

v̂′v̂

tr (M)
()

One way of estimating the variances is, thus, to find a fixpoint of ()-
() or ()-() . Another way is the following.

Consider the function

H (x, α) = − log det (I + αP ′P )− T · log R (α) + T · log α ()

The following Lemma states that the moments estimator can be derived
by maximizing the function H (x, α).

Lemma 1. The moments estimators, as defined by equations () and (), can
be obtained by minimizing the function H (x, α) defined in () with respect to
α. The variances are computed from the minimizing value α̌ as

σ̌2
u =

1
T

R (α̌) ()

σ̌2
v =

1
T

R (α̌)
α̌

()

Proof. With M = (I + αP ′P )−1 we have

d log det (I + αP ′P )
dα

=
d

dα

(
T log α + log det

(
1
α

I + P ′P

))
=

1
α

(T − tr (M)) ()

Note further that

R (α) = x′ (I −M)2 x + αx′MP ′PMx

= x′ (I − 2M + M2 + αMP ′PM
)
x

= x′ (I − 2M + M (I + αP ′P )M)

= x′ (I −M) x

= x′x− x′Mx ()





Consider

∂M

∂α
=

∂
(
α( 1

αI + P ′P )
)−1

∂α

= −MP ′PM ()

From () and () we obtain

R′ (α) = x′MP ′PMx

= v̂′v̂ ()

Using these results, the derivative ofH (x, α) with respect to α is calculated
as

∂H
∂α

=
1
α

tr (M)− T
v̂′v̂

R
()

Substitutiong v̂′v̂ by σ̌2
v tr (M) and R

T by σ̌2
u gives

∂H
∂α

=
1
α

tr (M)− σ̌2
vtr (M)

σ̌2
u

()

With α = σ̌2
u

σ̌2
v

, this reduces to zero. Hence any solution to (), () sat-
isfies the first-order condition for a maximum of H. Conversely, () im-
plies (), and () can be derived by putting () to zero and substitut-
ing () into (). �

. THE RELATIONSHIP BETWEEN THE MAXIMUM-LIKELIHOOD AND THE

MOMENTS ESTIMATOR

With the aid of the functionH, the asymptotic equivalence of the moments
estimator and the maximum likelihood estimator can be established easily.

Theorem 3. The maximum likelihood estimator and the moments estimator are
asymptotically equivalent.

Proof. We need to concentrate on the estimation of the smoothing parame-
ter α because the formulae that link the variances to α are identical for the
two estimators (See (), () and (), ()).

Both the likelihood function L (eq. ) and the criterion function H (eq.
) tend to infinity with increasing T 2. In order to compare their asymp-
totic behavior, it is useful to divide both functions by Tand to compare the

2Note that log det (I + αP ′P ) is O (T ) .





moments criterion

− 1
T

log det (I + αP ′P )− log R (α) + log α ()

with the likelihood criterion
− 1

T
log det (I + αP ′P )− log R (α) +

T + 2
T

log α ()

As T+2
T → 1 for T →∞, both maximands are asymptotically identical and

the theorem is proved. �

Theorem 3 establishes that the moments estimator shares the attractive
large-sample properties with the likelihood estimator. Conversely, it states
that the intuitive interpretation of the moments estimator - that the calcu-
lated variances are equal to their expectations - carries over to the likeli-
hood estimator in an approximate sense. This enhances the intuitive ap-
peal of the maximum likelihood estimator.

. NOTES ON NUMERICAL PERFORMANCE

A practical example is provided in Figure 13. Reducing the variance ratio
by one half or doubling it has no big effect on the qualitative behavior of
the trend (Figure 2).

This does not tell much, however, about how well the method recovers
the smoothing constant and the variances of the time series. Some simula-
tions were conductued in order to obtain an impression about this aspect
of performance. It is beyond the scope of the present paper to present a
full-fledged Monte-Carlo study, however. The following remarks are in-
tended to convey an overall impression.

The critical issue is, of course, how well (and how reliably) the smooth-
ing constant is estimated by the moments estimator. Given the smoothing
constant, the estimation is optimal anyway, and its theoretical distribu-
tion is known, see Theorem 1 and equation (). It is, thus, sufficiuent to
concentrate on the estimation of the smoothing constant α, or rather, its
logarithm log10 (α), because this seems to be the more relevant quantity.

For the simulations done, the method works resonably well. The fol-
lowing describes just describe a few examples. Figure 3 depicts the fre-
quency distribution for the estimates of the smoothing constant that are

3All computations are made using the Mathematica Package by Ludsteck (2004).





FIGURE 1. US unemployment 1951-2002, source: US De-
partment of Commerce, Bureau of Labor Statistics. Esti-
mated parameters: σ2

u = 15, σ2
v = .51, and α = 28.8.

FIGURE 2. Effect of the smoothing constant: α = 28.8
(estimated value, heavily drawn curve), α = 57.6, and
α = 14.4 (thin line).





FIGURE 3. Distribution of estimates of log10 (α) for time
series of different length with σ2

u = 10 and σ2
v = 1, 1000

trials each.

obtained by generating 1000 random series according to equations (), (),
and () with variances σ2

u = 10 and σ2
v = 1 (corresponding to a smoot-

ing constant log10 (α) = 1) for alternative lengths T = 50, T = 100, and
T = 200, respectively.

As expected, the estimates are less reliable for short series and more
reliable for long series.4 It appears, further, that the median and the mean
both tend to overrestimate the smoothing constant. With an increasing
length of the series, the bias is reduced.

For long time series, the maximum-likelihood estimates and the mo-
ments estimates are nearly identical. For short time series, the difference
is noticable. In these examples, the moments estimators work better in the
sense of being less biased and pose less numerical difficulties.5

The decomposition depends on the smoothing constant, viz. the ratio of
the variances, rather than the absolute magnitude of the variances (which
are affected by scaling). This independence is reconfirmed in the simula-
tions (Figure 5).

4The descriptive statistics of the simulations are given below, including the further case T =
25.

T mean median min max standard deviation
25 1.36 1.33 −0.89 2.71 0.50
50 1.23 1.18 0.21 3.55 0.38

100 1.11 1.08 0.42 1.91 0.22
200 1.04 1.03 0.67 1.56 0.14

5For T = 20, the problem is rather ill conditioned. Computations of the moments estimator
failed to converge in 42% of the cases, as compared to 63% with the maximum-likelihood
estimator. The correspondig failure rates for T = 50 are 0.4% and 1.9%, respectively.





mean=1.11, T=100 mean=1.04, T=200

mean=1.18, T=100 mean=1.08, T=200

FIGURE 4. Comparison of moments estimators (first row)
with maximum-likelihood estimators (second row), T =
100, 1000 trials each.

FIGURE 5. Simulations with identical variance ratios but
different variances. The means are in the range 1.12−1.13,
and the standard deviations are in the range 0.24−0.27 in
all three cases. (T = 80 with 1000 trials each.)

Finally, Figure 6 gives the results when variance ratios are changed by a
factor of 10. This shifts the distribution on the logarithmic scale to the left
or to the right by one unit.

. NOTES ON MODELLING

The trend filter discussed here has given rise to two strands of thought.
One, originally proposed by Schlicht (1984) and also alluded to by Ho-
drick and Prescott (1997), relates to state-space modelling; the other, start-
ing with King and Rebelo (1993), looks at performance in the frequency
domain. The present paper falls into the first category.

The state-space literature tends to rely on Kalman filtering. As Kalman
filters are one-sided filters, they are never efficient in the sense of using all





FIGURE 6. Increasing the variance by some factor shifts
the distribution of estimates to the right by the same fac-
tor. The means are 0.04, 1.09, and 2.19. The standard de-
viations are 0.19, 0.22, and 0.33. (T = 100, 1000 trials each,
logarithmic scale.)

available information for estimating trend values at intermediate points
in time. The filter proposed in Schlicht (1984) in the context of seasonal
adjustment and detailed here for the case of a trend without seasonality is,
in contrast, two-sided and uses all information available. This seems to be
a preferable approach.

It seems misleading, however, to use the trend filter discussed here for
quarterly or monthly data. This would require integrating the trend filter
with a seasonal filter, as in Leser (1963) or Schlicht (1984) (preferably in
the Schlicht/Pauly (1983) specification). Otherwise the seasonal pattern
would misleadingly be interpreted as uncorrelated noise. For similar rea-
sons, the filter is perhaps not adequate for identifying business cycles. The
identification problem for business cycles is similar to the identification of
seasonal patterns, but is considerably more involved, as business cycles
vary in shape and periodicity.
The filter suggest some directions for future research. An improvement
would be to develop a correction for the small-sample bias of the moments
estimator. A further problem relates to the modelling and identification of
business cycles.
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