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Abstract 
 
Researchers analyzing historical data on human stature have long sought an estimator that 

performs well in truncated-normal samples. This paper reviews that search, focusing on 

two currently widespread procedures: truncated least squares (TLS) and truncated 

maximum likelihood (TML). The first suffers from bias. The second suffers in practical 

application from excessive variability. A simple procedure is developed to convert TLS 

truncated means into estimates of the underlying population means, assuming the 

contemporary population standard deviation. This procedure is shown to be equivalent to 

restricted TML estimation. Simulation methods are used to establish the mean squared 

error performance characteristics of the restricted and unconstrained TML estimators in 
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relation to several population and sample parameters. The results provide general insight 

into the bias-precision tradeoff in restricted estimation and a specific practical guide to 

optimal estimator choice for researchers in anthropometrics. 
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Introduction 
 

Human height is a widely used synthetic indicator of biological living standards in 

many different settings, including but not limited to underdeveloped economies, 

historical contexts, and circumstances in which economic indicators are either unreliable 

or completely lacking, as, for example, for the children of Soweto (Cameron 2003). 

Physical stature is positively correlated with net nutrition - the balance between the 

quantity and quality of nutrient intake and the demands on those resources by the human 

organism for growth, metabolic maintenance, work, and for resistance to diseases. Of 

course, individual heights depend as much on genetic potential as on nutrition, but at the 

population level environmental factors play a very substantial role in determining height 

at a particular age (Bogin 1999). 

Statistical analysis of height data is facilitated considerably by the biological law 

that height is approximately normally distributed within a population, and that its 

standard deviation is practically constant, varying over a range of only about one cm, 

while mean heights can easily vary by more than 15 cm within a population over time 

(Cole 2000; 2003; Baur and Komlos 2003).1 Consequently, variations in a population’s 

nutritional status affect primarily the mean of the distribution of heights, and not its form 

or dispersion. 

The Problem of Truncation 

Historical height data, though drawn from a normal population, are generally not 

random samples. In particular, height distributions drawn from military records prior to 

the introduction of universal conscription are often truncated from below, insofar as most 

armies imposed a minimum height requirement. 2  Often, the requirement was not strictly 
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enforced, and varied across units or over time, leaving the distribution with a deficient 

but not clearly-truncated left tail: the problem of shortfall (Komlos 2003). In the presence 

of truncation or shortfall, least squares (LS) estimators are biased. The nature of this bias 

is readily visualized as in Figure 1, which depicts the probability density function (pdf) of 

a truncated standard normal random variable. Without the lower tail, the mean of the 

distribution shifts to the right: in Figure 1, truncation at –1σ changes the mean of the 

distribution from zero to 0.29, clearly biased upward. 

Figure 1. Density and mean of a truncated standard normal random variable. 
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 More precisely, suppose that observations on a latent normal random variable Y*: 

y* = µ +ε;  ε ~ N(0,σ 2) , are selected only if they exceed truncation point τ, that is, when 

µ + ε ≥ τ , or ε ≥ τ − µ . Conditional on being selected into the sample, then, 

E[ε | y* ≥ τ ] > 0 and var(ε | y* ≥ τ ) <σ 2. The sample mean of the observed variable Y 
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In case of a truncated variable, the second term in Eq. 1 does not equal zero, since the 

conditional expectation of ε is positive. Nor does the sum of the ε’s go to zero as n → ∞. 

Hence, the sample mean is also inconsistent. This intuition generalizes to situations in 

which mean height µi varies across individuals i in relation to observable characteristics. 

LS estimators of the coefficients of that relationship are biased, and suffer the further 

problem of heteroskedasticity, the variance of εi depending positively on µi.3 

Estimators for Truncated Samples, Part I 

 Two early approaches to the problem of bias in samples suffering shortfall or 

truncation took quite different approaches. The Quantile Bend Estimator (QBE) sought to 

fill in the missing lower tail observations, creating an artificial complete distribution as 

close as possible to a normal. The mean and standard deviation of this artificial 

distribution provided unbiased estimators of the underlying population parameters. 

Komlos and Kim criticized QBE estimates of time trends as displaying excessive short-

term variability – fluctuations that were implausible, given biological limits to the 

variability in the physical stature of a population in the short run. Subsequent simulation 

studies by Heintel confirmed that the QBE suffers much higher sampling variability than 

alternative estimators, and its popularity has waned.4  

In contrast to the QBE, Komlos and Kim (K&K) proposed to exclude those 

observations that should not have been present, excluding from analysis data below the 

highest truncation point known to have been applied by military authorities in any period 

or to any group in the data (Komlos and Kim 1990).5 The means of the K&K truncated 

samples by group y j
TR , j=1…k, of course, remain biased, but the differences over time or 

across groups, i.e. TR
nj

TR
j yy +− , have the same sign as the true differences in the underlying 
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population means. This is the case, because µ j
TR is a monotonic function of µ j , and y j

TR is 

an unbiased estimator of µ j
TR : if TR

1µ < TR
2µ  then it follows that µ1<µ2 . 

 A shortcoming of the K&K method is the difficulty of estimating the impact of 

multiple covariates on height, as the sample must be divided into mutually exclusive 

subgroups for which means can be calculated. However, it can be extended to the 

multivariate case by employing  least squares regression with multiple dummy variables, 

again truncating at the highest known τ (truncated LS, or TLS). Though biased, the TLS 

estimator preserves the signs and relative sizes of coefficients. Chung and Goldberger 

(1984) showed that the regression slope coefficients relating two variables in a truncated 

population are proportional to those for the entire population. As TLS is an unbiased 

estimator of those truncated population slopes, if follows that TLS-estimated coefficients 

will on average have the same signs and relative sizes as the (complete) population 

parameters of interest, though not the correct absolute magnitudes.6 Both K&K and TLS 

have been used extensively in the literature on historical heights, and offer greater 

robustness and stability than available alternatives. However, the Chung and Goldberger 

result implies that we would expect truncated means to vary less than true, suggesting 

that some of the apparently reduced sampling variability of the TLS estimator is illusory. 

We provide evidence on this below. 

Estimators for Truncated Samples, Part II 

Given the biologically determined normality of height distributions, an alternative 

approach to unbiased estimation is maximum likelihood (ML), based on the normal pdf. 

In the case of truncation, we require a likelihood function that conditions on the 

probability of y having been selected into the sample, i.e. on the chances that Y* > τ or 
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ε ≥ τ −µ . Intuitively, it is clear that the area under the normal pdf will not integrate to 

unity without the lower tail, and the function must be normalized accordingly. The pdf of 

the truncated normal random variable Y is thus: 


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


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

 −

=
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yf      if y ≥  τ;   f(y) = 0 if y < τ.                 (Eq. 2) 

φ denotes the standard normal pdf and Φ denotes its cumulative distribution function 

(cdf).7 Note that τ  should be adjusted for rounding.8  

Equation 2 provides the basis for truncated maximum likelihood (TML) 

estimation of µ and σ. The TML estimator has the usual ML properties of unbiasedness, 

consistency, and asymptotic efficiency, yields a direct estimate of σ, is amenable to 

handling multiple truncation points, and permits all forms of hypothesis testing. While 

these desirable characteristics make TML appear the ideal estimator, experience has 

demonstrated that TML estimates frequently display implausible magnitudes of variation 

over time or across groups.9 

Note that Equation 2 also provides a basis for inferring estimates of µ from K&K- 

or TLS-estimated truncated sample means y TR . Using f (y)  from Equation 2, for given 

values of µ, τ, and σ, µTR = y f (y) dy
τ

∞
∫ .10 While this integral cannot be solved 

analytically for µ as a function of µTR and the other parameters, it is possible to generate 

µTR  for successive values of µ (given τ and σ) until a µTR is found that equals y TR . The 

associated value of µ is taken as an estimator for the population mean. As y TR  is an 

unbiased estimator of µTR , this converted-TLS (CTLS) method yields unbiased estimates 
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of µ. This method requires an assumption about σ - an assumption that will rarely be 

exactly correct and will therefore induce bias; it discards all observations below the 

highest known τ; it does not address the difficulty of hypothesis testing in the TLS 

framework; and it is quite cumbersome computationally. However, if the greater stability 

of the TLS estimator is real, CTLS should share that characteristic. Both issues are 

addressed in the next section. 

Restricted and Unconstrained TML Estimation 

  In the simple linear regression model with normal disturbances, the LS and ML 

estimators are equivalent. The use of the truncated-normal pdf in CTLS – the same pdf 

used in TML estimation – suggests the intuition that the two procedures may be 

equivalent here too. The assumption of a particular value for σ would then be a form of 

restricted TML (RTML). This intuition can be tested by simulation, in which repeated 

samples are generated, ˆ µ CTOLS and ˆ µ RTML  estimated, and their squared difference 

calculated. Table 1 presents the root mean squared difference for various values of τ and 

σ, based on 1,000 trials in each case.11 The simulation results demonstrate that the two 

estimators are, in fact, essentially identical. The root mean squared difference between 

the two estimates is on the order of a hundredth of a millimeter with µ=165.  

 
Table 1. Root mean squared difference between RTML and CTLS estimates (cm)  
 

                 σ : 6.00 6.86 7.50 

  τ :    

150 .0012 .0012 .0013 
163 .0012 .0012 .0013 
166 .0012 .0013 .0012 
 
1000 replications; sample size 1000; true mean 165 cm in all cases.  
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 While yielding identical estimates of µ, RTML has the advantages of permitting 

hypothesis testing and allowing for multiple truncation points, and can be considered 

together with unconstrained TML in a unified framework. In the simulations summarized 

in Table 1, the true value of σ was used in estimating ˆ µ RTML , i.e. 6.00 cm in the column 1 

simulations, 6.86 in column 2, etc. In practice, of course, σ is never known. And 

whenever an incorrect restriction is imposed some degree of bias is induced. The figure 

of 6.86 cm has been suggested as a plausible figure for males based on data for modern 

populations, but any such rule of thumb will never be exactly correct (Frisancho 1990; 

Cole 2000). However, a general property of restricted ML estimators is their greater 

sampling precision in comparison with unconstrained estimation, and this is true 

regardless of any bias introduced by incorrect restrictions.12  

The optimal choice of estimator thus depends on how we evaluate the tradeoff 

between bias and precision. A common criterion for balancing these risks is mean 

squared error (MSE): 

MSE( ˆ µ ) = E ( ˆ µ −µ)2[ ] = bias( ˆ µ )2 + var( ˆ µ )    (Eq. 3)  

If the restrictions imposed are “close” to the true value, the bias induced will be 

small, and the reduction in variance substantial. So the choice between restricted and 

unrestricted estimation depends on the researcher’s degree of confidence in the 

restrictions. The extent of the trade-off between bias and variance is an empirical 

question, depending on sample size (n), τ, µ and σ. In the remainder of this paper, we use 

simulation methods to explore this trade-off and provide a practical guide for which 
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estimator, ˆ µ TML  or ˆ µ RTML , is to be preferred in the range of circumstances typical of 

applied work with historical heights. 

MSE Performance of Restricted and Unconstrained TML Estimators  

The simulation results reported here are based on 2,000 replications for a range of 

n, σ, and τ. The ranges for each parameter were chosen as representative of values likely 

to be encountered in research on historical heights: µ=165 cm throughout; σ varies 

between 6 and 8 cm by increments of 0.5 cm, with special consideration give to 6.86 cm; 

τ varies from 150 cm to 167 cm; n = 250, 500, and 1000. The RTML procedure imposes 

the restriction that σ = 6.86 cm in all cases.  

RTML results are summarized in Appendix Table 1, and illustrated in Figure 2. 

They indicate that a) MSE and both of its constituent elements increase with increasing 

τ ; b) MSE is very high if τ > µ ; c) if σ ≠  6.86 cm then E( ˆ µ ) ≠ µ, with bias increasing 

very rapidly as the σ restriction error exceeds about 5 mm; d) the variance of the 

estimates decreases as n increases, while bias is roughly constant.  

Figure 2: MSE of the Restricted TML Estimator, n = 500.13 
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Note: τ is measured along the long axis, σ along the short, both in centimeters.  

MSE is measured vertically in cm2 units. 
 

Table A2 and Figure 3 present the results for unconstrained ML estimation. They 

indicate that a) the bias of the TML estimator is zero, so that MSE is driven by variance 

alone; b) MSE rises with τ, but much more rapidly than was the case for the restricted 

estimator: MSE at τ = 167 is more than ten times its value at τ = 159; c) variance 

decreases with sample size, yielding a sharper decrease in MSE than for the restricted 

estimator since bias plays no role in its determination; d) MSE rises with the underlying 

population standard deviation σ. It is clear that for small n and τ ≥ µ, µ̂ TR is unreliable. 

(In Figure 3, MSE is off the scale for τ ≥  166. 14) At the extremes of τ = 167,  σ = 8, and 

n = 250, MSE is 12 cm2. This implies a root MSE of 3.5 cm, which is very large relative 

to the differences typically observed over time or across groups of historical data. Note 

that MSE values are off the scale (greater than 4) for τ ≥  166 at the higher values of σ.  
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Figure 3. MSE of the Unrestricted TML Estimator, n = 500. 
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Note: τ is measured along the long axis, σ along the short, both in centimeters.  
MSE is measured vertically in cm2 units. 

 

 The practical question is: over what range of parameter values of µ and σ is the 

restricted estimator preferred to unconstrained TML? Table A3 reports differences in 

MSE: ˆ µ TML − ˆ µ RTML . Positive numbers thus indicate superior performance of the restricted 

estimator. Figure 4 makes it clear that if the σ restriction is approximately true (say, 

within half a centimeter) and the truncation point exceeds about 160 cm, the restricted 

estimator offers substantial advantages over unconstrained TML. Considering Table A3, 

the choice is clearest at the extremes (the upper right and lower left corners). At 

truncation points well above the mean in small samples, the restricted estimator offers 

dramatically better precision than ˆ µ TML , which far outweighs its bias. However, at 

truncation points well below the mean in large samples, unconstrained estimation is 
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generally to be preferred; it performs less well only in the immediate neighborhood of σ 

= 6.86 cm and then only by a very slight amount.  

 

Figure 4. MSE Difference ˆ µ TML − ˆ µ RTML , n = 500. 
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Note: τ is measured along the long axis, σ along the short, both in centimeters.  

The MSE difference is measured vertically in cm2 units. 
The front lower left corner of the surface is off the scale, i.e. less than –2. 

 
 

 In historical datasets one typically encounters truncation points less than but not 

far from the mean, and sample sizes that are relatively small on account of the fact that 

they have to be drawn manually from archival records. Thus, the center row of Table 3A, 

for τ = 163 cm, and the columns for n = 250 or 500 can be considered typical of such 

situations. Figure 5 depicts the MSE graphically for τ = 163 and n = 250 and 500. 

(Appendix Figure 1 shows the same information for the more extreme case of τ = 165.) It 



 14

becomes clear that the optimal choice of estimator depends on the degree of confidence 

in the σ restriction. If one is confident that σ is within a half-centimeter or so of 6.86, 

µ̂ CTLS or µ̂ RTR is clearly preferred over µ̂ TR. The reduction in risk can be substantial in 

small samples: on the order of 2 cm2 when the restriction is approximately correct. That 

implies a reduction of about 1.4 cm in the expected error (i.e. root MSE). This is large, 

relative to likely true differences over time and across groups.  
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Figure 5a. MSE of TML and RTML Estimators, τ = 163 cm, n = 250. 

 

Figure 5b. MSE of TML and RTML Estimators, τ = 163 cm, n = 500. 
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Much research with historical height data must confront the problem of samples 

truncated from below, a situation that induces bias in the standard LS estimator. Two 

currently popular approaches are the calculation of truncated sample means (the K&K or 

TLS estimators) and truncated maximum likelihood estimation (TML). The TLS method 

has the advantages of simplicity, accuracy in estimating the sign of differences over time 

or across groups, and robustness. TML has the advantages of unbiasedness, yielding an 

estimate of the population’s standard deviation, the ability to handle multiple truncation 

points, and allowing hypothesis testing.  

Wwe have described a method for inferring estimates of population parameters 

from TLS-estimated truncated sample means. We show by simulation that this 

Converted-TLS estimator is a restricted form of TML, in which the population standard 

deviation is constrained to take a value chosen by the researcher. The choice between a 

restricted and an unconstrained ML estimator boils down to the tradeoff between the bias 

induced by incorrect restrictions and the superior precision offered by the restricted 

estimator. 

This tradeoff is evaluated in terms of the mean squared error criterion, which is 

calculated for a range of parameter values using simulation methods. The results show 

that the restricted estimator’s precision is a decisive advantage if the truncation point is 

close to or above the population mean. This is particularly the case with small sample 

sizes. In situations most typical of research with historical height data, choice of 

estimation technique will depend on the degree of confidence in the restriction that the 

historical population’s standard deviation equals a particular value such as the modern 
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figure of 6.86 cm. If that restriction is true within ± 0.5 cm, the restricted estimator is  

preferred in all situations except in large samples with a relatively low truncation point. 
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Table A1. Mean Squared Error of the Restricted TML Estimator, ˆ µ RTML .  
   

n = 250 
 

n = 500 
 

n = 1000 
 
τ 

 
σ 

 
bias2 

 
var. 

 
MSE 

 
bias2 

 
var. 

 
MSE 

 
bias2 

 
var. 

 
MSE 

 
167 

 
6.00 

 
6.105 

 
0.620 

 
6.725 

 
6.180 

 
0.383 

 
6.563 

 
6.122 

 
0.187 

 
6.309 

 6.50 1.023 0.692 1.714 0.952 0.301 1.253 0.932 0.153 1.085 
 6.86 0.000 0.591 0.594 0.000 0.314 0.315 0.000 0.157 0.158 
 7.00 0.082 0.613 0.695 0.123 0.300 0.423 0.112 0.151 0.263 
 7.50 2.226 0.571 2.797 2.323 0.279 2.602 2.374 0.135 2.509 
 8.00 6.759 0.555 7.314 6.918 0.271 7.190 6.855 0.135 6.990 
           

165 6.00 4.350 0.574 4.923 4.334 0.282 4.616 4.293 0.148 4.440 
 6.50 0.720 0.534 1.254 0.725 0.259 0.984 0.669 0.128 0.796 
 6.86 0.000 0.526 0.528 0.000 0.254 0.255 0.000 0.131 0.131 
 7.00 0.096 0.536 0.632 0.103 0.261 0.364 0.083 0.126 0.209 
 7.50 1.731 0.537 2.268 1.530 0.278 1.808 1.759 0.123 1.882 
 8.00 4.967 0.489 5.456 5.038 0.251 5.289 5.086 0.108 5.194 
           

163 6.00 2.857 0.436 3.293 2.821 0.222 3.043 2.823 0.105 2.928 
 6.50 0.498 0.449 0.947 0.462 0.213 0.674 0.462 0.114 0.575 
 6.86 0.000 0.428 0.428 0.000 0.218 0.218 0.000 0.113 0.113 
 7.00 0.040 0.483 0.523 0.052 0.249 0.301 0.059 0.116 0.175 
 7.50 1.305 0.408 1.713 1.305 0.206 1.511 1.194 0.107 1.301 
 8.00 3.648 0.405 4.053 3.699 0.197 3.896 3.651 0.105 3.757 
           

161 6.00 1.830 0.353 2.183 1.750 0.166 1.916 1.760 0.091 1.851 
 6.50 0.281 0.383 0.664 0.304 0.193 0.497 0.282 0.092 0.374 
 6.86 0.000 0.405 0.406 0.000 0.199 0.199 0.000 0.098 0.098 
 7.00 0.027 0.352 0.379 0.037 0.189 0.226 0.045 0.093 0.138 
 7.50 0.768 0.406 1.174 0.678 0.188 0.866 0.844 0.094 0.938 
 8.00 2.528 0.398 2.926 2.541 0.186 2.727 2.553 0.093 2.646 
           

159 6.00 1.057 0.286 1.343 1.062 0.157 1.219 1.017 0.074 1.091 
 6.50 0.184 0.325 0.509 0.240 0.162 0.402 0.172 0.076 0.247 
 6.86 0.000 0.322 0.322 0.000 0.171 0.171 0.000 0.085 0.085 
 7.00 0.020 0.317 0.337 0.022 0.157 0.180 0.025 0.079 0.104 
 7.50 0.565 0.320 0.885 0.542 0.166 0.708 0.520 0.088 0.607 
 8.00 1.657 0.348 2.005 1.712 0.161 1.873 1.682 0.084 1.767 
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Table A2. Mean squared error of the Unrestricted TML Estimator, ˆ µ TML .  
 
   

n = 250 
 

n = 500 
 

n = 1000 
 
τ 

 
σ 

 
bias2 

 
var. 

 
MSE 

 
bias2 

 
var. 

 
MSE 

 
bias2 

 
var. 

 
MSE 

 
167 

 
6.00 

 
0.000 

 
9.431 9.431 0.000 3.894 3.894

 
0.000 

 
1.604 1.604

 6.50 0.000 9.559 9.559 0.000 4.450 4.450 0.000 1.875 1.875
 6.86 0.000 10.728 10.728 0.000 4.771 4.771 0.000 1.970 1.970
 7.00 0.000 12.476 12.476 0.000 4.704 4.704 0.000 2.083 2.083
 7.50 0.000 16.214 16.214 0.000 4.836 4.836 0.000 2.191 2.191
 8.00 0.000 12.233 12.233 0.000 6.515 6.515 0.000 2.468 2.468
      

165 6.00 0.000 4.474 4.474 0.000 1.898 1.898 0.000 0.821 0.821
 6.50 0.000 4.669 4.669 0.000 2.051 2.051 0.000 1.015 1.015
 6.86 0.000 5.575 5.575 0.000 2.470 2.470 0.000 1.123 1.123
 7.00 0.000 5.936 5.936 0.000 2.392 2.392 0.000 1.183 1.183
 7.50 0.000 5.913 5.913 0.000 2.819 2.819 0.000 1.336 1.336
 8.00 0.000 7.776 7.776 0.000 3.146 3.146 0.000 1.391 1.391
      

163 6.00 0.000 1.876 1.876 0.000 0.841 0.841 0.000 0.420 0.420
 6.50 0.000 2.374 2.374 0.000 1.078 1.078 0.000 0.507 0.507
 6.86 0.000 2.959 2.959 0.000 1.318 1.318 0.000 0.589 0.589
 7.00 0.000 2.907 2.907 0.000 1.289 1.289 0.000 0.644 0.644
 7.50 0.000 3.468 3.468 0.000 1.646 1.646 0.000 0.712 0.712
 8.00 0.000 4.594 4.594 0.000 1.988 1.988 0.000 0.864 0.864
      

161 6.00 0.000 0.909 0.909 0.000 0.440 0.440 0.000 0.217 0.217
 6.50 0.000 1.215 1.215 0.000 0.588 0.588 0.000 0.290 0.290
 6.86 0.000 1.537 1.537 0.000 0.691 0.691 0.000 0.348 0.348
 7.00 0.000 1.465 1.465 0.000 0.697 0.697 0.000 0.375 0.375
 7.50 0.000 1.907 1.907 0.000 0.927 0.927 0.000 0.422 0.422
 8.00 0.000 2.355 2.355 0.000 1.139 1.139 0.000 0.558 0.558
  0.000    

159 6.00 0.000 0.478 0.478 0.000 0.240 0.240 0.000 0.123 0.123
 6.50 0.000 0.664 0.664 0.000 0.337 0.337 0.000 0.158 0.158
 6.86 0.000 0.832 0.832 0.000 0.364 0.364 0.000 0.193 0.193
 7.00 0.000 0.896 0.896 0.000 0.393 0.393 0.000 0.205 0.205
 7.50 0.000 1.100 1.100 0.000 0.525 0.525 0.000 0.271 0.271
 8.00 0.000 1.422 1.422 0.000 0.667 0.667 0.000 0.332 0.332
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Table A3. MSE Difference, Unconstrained – Restricted TML, ˆ µ TML − ˆ µ RTML . 
   

n = 250 
 

n = 500 
 

n = 1000 
 
τ 

 
σ 

 
MSE diff. 

 
MSE diff. 

 
MSE diff. 

 
167 

 
6.00 2.706 -2.669

 
-4.705 

 6.50 7.845 3.197 0.790 
 6.86 10.134 4.456 1.812 
 7.00 11.781 4.281 1.820 
 7.50 13.417 2.234 -0.318 
 8.00 4.919 -0.675 -4.522 
   

165 6.00 -0.449 -2.718 -3.619 
 6.50 3.415 1.067 0.219 
 6.86 5.047 2.215 0.992 
 7.00 5.304 2.028 0.974 
 7.50 3.645 1.011 -0.546 
 8.00 2.320 -2.143 -3.803 
    

163 6.00 -1.417 -2.202 -2.508 
 6.50 1.427 0.404 -0.068 
 6.86 2.531 1.100 0.476 
 7.00 2.384 0.988 0.469 
 7.50 1.755 0.135 -0.589 
 8.00 0.541 -1.908 -2.893 
   

161 6.00 -1.274 -1.476 -1.634 
 6.50 0.551 0.091 -0.084 
 6.86 1.131 0.492 0.250 
 7.00 1.086 0.471 0.237 
 7.50 0.733 0.061 -0.516 
 8.00 -0.571 -1.588 -2.088 
   

159 6.00 -0.865 -0.979 -0.968 
 6.50 0.155 -0.065 -0.089 
 6.86 0.510 0.193 0.108 
 7.00 0.559 0.213 0.101 
 7.50 0.215 -0.183 -0.336 
 8.00 -0.583 -1.206 -1.435 

 
Note: positive numbers indicate superior MSE performance of the restricted estimator. 
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Appendix Figure 1a. MSE of TML and RTML Estimators, τ = 165 cm, n = 250. 

 

Appendix Figure 1b. MSE of TML and RTML Estimators, τ = 165 cm, n = 500. 
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1 More specifically, the standard deviation of heights appears to range between 6 and 7 

cm among modern male populations, between 5.3 and 6.5 cm among females: Cole 

(2000) p. 402. 

2 Truncation from above is also observed on occasion, but will not be dealt with here. 

3 See Ruud (2000) Ch. 28 for a full discussion of truncated distributions. 

4 Heintel has shown that both the TLS and TML estimators defined below offer superior 

mean squared error (Heintel 1995, 1996). See, in addition, Komlos (1985, 1989) and 

Heintel, Sandberg and Steckel (1998) for empirical investigations confirming the 

unreliability of the QBE. 

5 By applying  the highest-known τ to all groups, the artificial impact of potentially different 

shortfall patterns in the sub-samples is avoided by “equalizing” the bias over the complete 

sample (see Heintel and Baten, 1998, footnote 17, for an interesting study of artificial 

correlations if one fails to equalize the bias). When τ is unknown, Heintel’s truncation 

point estimator can be used. This procedure first smoothes the histogram of sample 

heights using a kernel density estimator, then identifies ˆ τ  as the point where the 

estimated density’s slope is maximal (i.e., where its first difference is greatest) (Heintel 

1996). 

6 Chung and Goldberger ‘s results apply to a wide variety of selection and censoring rules, 

and require only minimal assumptions, not including normality. In the particular case of 

interest here, the truncated population slope coefficients can be shown to be biased toward 

zero, relative to the complete population slopes. The authors base their discussion on the 
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concept  of projection. For the connection between projection and LS regression, see Ruud 

(2000) Part 1.  

7 Ruud (2000) Ch. 28 and Greene (1993) Ch. 22 provide more detail. 

8 If measurements were to the nearest half-centimeter, for example, the truncation point 

should be set at ˆ τ  - 0.25 cm. Aside from this, rounding has no significant effect on the 

performance of the estimators considered here, even if heaping, or the clustering of 

observations around particular values such as even integers, may pose more problems. 

See Komlos (1999) for a preliminary investigation. 

9 Examples include ML estimates by Twarog and A’Hearn of time trends in German and 

Italian data, respectively. In both cases, heights could fluctuate by as much as 2-3 cm 

across five-year birth cohorts, a figure as large as cumulative gains (losses) one would 

expect over about two decades of improving (deteriorating) living standards. Twarog 

(1997), A’Hearn (forthcoming). In the absence of famine, wars, or comparable events and 

their aftermaths, such dramatic and temporary fluctuations in height of a population are 

completely implausible. 

10 Ruud (2001, p. 804) gives an alternative expression for the truncated mean as the 

population mean plus a term involving the hazard rate (ratio of pdf to cdf) evaluated at 

the population mean, and shows how this equation can be the basis of a feasible weighted 

non-linear least squares (FWNLS) estimation procedure. It is further shown that FWNLS 

is not efficient, however. 

11 The simulations were run using code written by the authors for both the CTLS and 

RTML estimators in STATA6. STATA7 has a built-in TML command (“truncreg”), 

which can be used subject to any linear constraints. 
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12 For a proof see Judge et al 1988, pp. 235-40. 

13 The data were smoothed before graphing in this and the other figures. 

14 The increase in MSE with σ is seen in the torque of the surface, which twists up in the 

back, down in the front from the viewer’s perspective. This effect is pronounced for high 

values of τ. 


