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TESTING THE EQUALITY OF CENTRAL TENDENCY 

MEASURES USING T1 STATISTIC WITH DIFFERENT 

TRIMMING STRATEGIES 

 
 

ABSTRACT 
 

When the assumptions of normality and homoscedasticity are met, researchers should 

have no doubt in using classical test such as t-test and ANOVA to test for the equality of 

central tendency measures for two and more than two groups respectively.  However, in 

real life we do not often encounter with this perfect situation. T1 statistic was proposed 

as an alternative robust method that could handle the problem of nonnormality when 

using trimmed mean with 15% symmetric trimming as the central tendency measures, 

but their study only focused on the condition of homogeneous variances. Motivated by 

the good performance of the method, in this study we propose using T1 statistic with 

three different trimming strategies, namely, i) predetermined 15% symmetric trimming 

ii) predetermined asymmetric trimming based upon hinge estimators  and iii) empirically 

determined asymmetric trimming based on robust scale estimators, MADn, Tn and LMSn 

to handle simultaneously the problem of nonnormality and heteroscedasticity. To test for 

the robustness of the procedures towards the violation of the assumptions, several 

variables will be manipulated. The variables are types of distributions, heterogeneity of 

variances, sample sizes, nature of pairings of group sample sizes and group variances, 

and number of groups. Type I error for each procedures will then be calculated. This 

study will be based on simulated data with each procedure will be simulated 5000 times 

and each set of data will be bootstrapped 599 times. The proposed procedures, generally, 

generated good Type I error control. The combination of T1 statistic with HQ1 produced 
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promising procedures that are capable of addressing the problem of testing the equality 

of central tendency measures especially for skewed distributions. 

 

 
 

Keywords:   Robust statistics, Type I error, robust scale estimators, skewed distributions 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

In recent years, numerous methods for locating treatment effects or testing the 

equality of central tendency (location) parameters by simultaneously controlling the 

Type I error to detect effects are being studied. Progress has been made in terms of 

finding better methods for controlling the Type I error of the test that detects treatment 

in one-way independent group designs (Babu et al., 1999; Othman et al., 2004; Wilcox 

and Keselman, 2003). Through a combination of impressive theoretical developments, 

more flexible statistical methods, and faster computers, serious practical problems that 

seemed insurmountable only a few years ago can now be addressed. These 

developments are important to applied researchers because they greatly enhance the 

ability to discover true differences between groups while maximizing the chance of 

detecting a genuine positive effect. 

The parametric approach in testing the equality of the central tendency 

parameters continued to play a prominent role because of its capacity to 

comprehensively describe information contained in a data.  However, the good 

performance and valid application of the procedures require strict adherence to certain 

assumptions, which do not always operate as predicatively as assumed in the real world.  

Some of the most common statistical procedures are extremely sensitive to these minor 

deviations from assumptions such as in the case of normality of distributions and 

homogeneity of variances.  As an example, when computing confidence intervals and 

testing hypothesis about means, the methods are based on the assumption that 
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observations are randomly sampled from normal distributions.  Another instance is when 

comparing independent groups; where the methods are also assume that groups have a 

common variance.  Currently, these methods form the backbone of most applied 

research that involves statistical methodology.  It is therefore desirable to construct 

methods of inference that do not depend on distributional and homoscedasticity (equal 

variances) assumptions for their validity.  

Consequently, nonparametric statistics emerged as a field of research and some 

of its methods become widely popular in applications. The basic principle was to make 

as few assumptions about the data as possible and still get the answer to a specific 

question.  However, nonparametric procedures are more appropriate for data based on 

weak measurement scales.  Besides, procedures in the nonparametric are less powerful 

than the parametric and therefore, require a larger sample size to reject a false 

hypothesis.  In practice, it often happens that we need to robustly estimate central 

tendency and/or scale from small sample.  The sample size n is often constrained by the 

cost of an observation.  In many experimental settings (e.g. in chemistry) one will 

typically repeat each measurement only a few times.  Even a small sample may contain 

aberrant values due to technical problems or measurement inaccuracies for example, and 

since the sample is small, getting rid off the aberrant values is very much avoidable.   

 

1.2 Robust Statistics 

There are several definitions of robust statistics that have been found in the 

literature and these unfortunately lead to the inconsistency of its meaning.  Most of the 

definitions are based on the objective of the particular study by different researchers 

(Huber, 1981).  
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Robust statistics combine the virtues of both, the parametric and the 

nonparametric approach.   In nonparametric inference, few assumptions are made 

regarding the distribution from which the observations are drawn.  In contrast, the 

approach in robust inference is different wherein there is a working assumption about 

the form of the distribution, but we are not entirely convinced that the assumption is 

true.  Robustness theories can be viewed as stability theories of statistical inference.  

What is desired is an inference procedure, which in some sense does almost as well as 

possible if the assumption is true, but does not perform much worse within a range of 

alternatives to the assumption.   

A statistical method is considered robust if the inferences are not seriously 

invalidated by the violation of such assumptions, for instance nonnormality and variance 

heterogeneity (Scheffe, 1959). Huber (1981) defined robustness as a situation which is 

not sensitive to small changes in assumptions while Brownlee (1965) reported slight 

effects on a procedure when appreciable departures from the assumptions were 

observed.  

The theory of robust statistics deals with deviations from the assumptions on the 

model and is concerned with the construction of statistical procedures which is still 

reliable and reasonably efficient in a neighborhood of the model (Ronchetti, 2006). 

Hampel et al. (1986), stated that in a broad informal sense, robust statistics is a body of 

knowledge, partly formalized into “theories of robustness” relating to deviations from 

idealized assumptions in statistics. As mentioned by Hoel et al. (1971), a test that is 

reliable under rather strong modifications of the assumptions on which it was based is 

said to be robust. Hence in this research, a statistical method is considered robust when it 
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has estimators which cannot be influenced by the deviations from the given assumptions 

when hypothesis testing is being conducted.  

The classical tests of group equality such as the t test and analysis of variance 

(ANOVA) are always misrepresented due to variance heterogeneity and nonnormality. 

To overcome the problem of variance heterogeneity, many methods were developed and 

proved to be more robust than these classical tests. A few of such methods are the Welch 

test (Welch, 1951), the James test (James, 1951) and the Alexander-Govern test 

(Alexander & Govern, 1994). These methods are among the best methods that have 

good control of type I error rates (Alexander & Govern, 1994; Schneider & Penfield, 

1997; Myers, 1998). 

In their efforts to control the Type I error rate, investigators looked into 

numerous robust methods since these methods generally are insensitive to assumptions 

about the overall nature of the data (e.g. Babu et al., 1999; Keselman et al., 2004b; 

Kulinskaya, 2003; Luh and Guo, 1999; Othman et al., 2004).  Any small deviations from 

the model assumptions should only slightly impair the performance, for example, the 

level of a test should be close to the nominal value calculated at the model, and larger 

deviations from the model should not cause catastrophe.  Robust measures of central 

tendency such as trimmed means, medians or M-estimators (refer to Huber, 1981; 

Staudte and Sheather, 1990; Wilcox, 2005) have been considered as alternatives for the 

usual least squares estimator, i.e., the usual least squares means, in most research 

recently (e.g. Keselman et al., 2004;  Luh and Guo, 1999; Wilcox et al., 1998;  Wilcox 

and Keselman, 2002). These measures of central tendency had been shown to have 

better control over Type I error and power to detect treatment effects (see e.g. Lix and 

Keselman, 1998; Othman et al., 2004; Wilcox, 2005; Yuen, 1974).  Yuen (1974) found 
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these benefits in the two-group case of trimmed means and Lix and Keselman (1998) 

demonstrated similar results in the more than two-group problem.  Other investigators, 

e.g. Babu, et al. (1999) used median as the central tendency measure when dealing with 

skewed distribution and Wilcox and Keselman (2003) introduced a modified one-step 

M-estimator (MOM) as the central tendency measure when testing for treatment effects. 

To date, there are several new procedures that were developed to deal with group 

trimmed means. Even though the usual trimmed mean has good control of Type I error 

rate, the trimming is done regardless of the types of distribution.  The percentage of 

trimming is set prior to the facts whether the outliers are presence or not.  It will be a 

gross mistake to eliminate data which are not outliers such as in a normally distributed 

data.  Keselman et al. (2007) proposed an adaptive trimmed mean which trimmed 

extreme data based on the types of distribution as an alternative to the usual trimmed 

mean.  This adaptive trimmed mean uses hinge estimator HQ1 (Reed & Stark, 2003) in 

order to adjust the trimming process that suits the shape of data distribution.  Keselman 

et al. (2007) successively improved Welch test using this adaptive trimmed mean in 

controlling Type I error rates.  

Another method which uses trimmed mean is the modified MOM-H statistic 

introduced by Wilcox and Keselman (2003) which used modified one-step M-estimator 

(MOM) as the central tendency measure in their work on the H statistic. Essentially, 

MOM is automatic variable trimming.  This method was proven to have good control of 

Type I error rates when comparing for the differences between distributions.  Motivated 

by the good performance of this procedures, in this research we propose a modification 

of T1 statistic developed by Babu et al. (1999) with three different trimming strategies 

namely i) predetermined 15% symmetric trimming ii) predetermined asymmetric 
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trimming based upon hinge estimators (Keselman, Wilcox, Lix, Algina & Fradette, 

2007) and iii) empirically determined asymmetric trimming based on robust scale 

estimators, MADn, Tn and LMSn (Rousseeuw & Croux, 1993) to handle simultaneously 

the problem of nonnormality and heteroscedasticity.  

 

1.3 Trimming 

Two approaches that may be considered by researchers faced with data that 

appear to violate the ANOVA assumptions are (i) to apply a transformation to the data 

and proceed with use of the F test or (ii) to select an alternative test procedure which is 

insensitive (i.e., robust) to assumption violations.  

 

1.3.1 Purpose of trimming 

When data are not normal and variances are heterogeneous, it is often possible to 

transform the data so that the new scores more nearly approximate normality and 

equality of variances. For example, when dealing with skewed distributions, two general 

suggestions are to take the square root or logarithms of every observation. Often these 

transformations produce data that are nearly normal. In some circumstances, the same 

transformations also achieve equality of variances (Maxwell & Delaney, 2004). 

Transforming data from designed experiments is an old and valuable tool (Carroll, 

1982). Most researchers would wish to transform data if such was necessary to obtain a 

normal distribution. Upon transformation, standard analyses will often be performed. 

However, there are some issues that should be kept in mind when applying 

transformation.  First, when doing transformation on the data, it indicates that an attempt 

at making inferences about the mean of the original score has been ignored. This will 
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lead to complex issues of interpretation, since the conclusions which are drawn must be 

based on the transformed scores, not the original observations (Lix et al., 1996). Thus, 

the interpretation of the results may also be less clear (Maxwell & Delaney, 2004). For 

example, most individuals find it difficult to understand the mean value of the square 

root of their original observations. Second, the complex transformations (i.e. Box-Cox 

transformation) do not remove the effects of outliers.  That is, outliers remain and can 

inflate the sample variance and also lower the power by a substantial amount. Third, if 

each observation is transformed in the same manner, situations arise where the 

distribution of the observed scores remains skewed (Wilcox, 2002).  Fourth, there is the 

problem of finding the correct transformation. Even though, there are a variety of 

transformations which may be applied to a set of data (Oshima & Algina, 1992), 

depending on the particular type and degree of assumption violation that is thought to be 

present in the data, this may not always be a simple solution (Lix et al., 1996). Also, it is 

difficult to find a transformation that will simultaneously deal with asymmetric and 

variance heterogeneity (Keselman et al., 2007). 

 Because of all of these drawbacks especially the interpretation issues, e.g. square 

root of the mean and log of the mean, we will ignore transformation and consider a 

robust method involving trimming. 

Robust method is another alternative method to deal with nonnormal distribution. 

A robust test will control the actual Type I error rate close to the nominal level of 

significance, even when the data do not conform to the test's derivational assumptions, 

and will maintain actual statistical power close to theoretical power, as well (Lix et al., 

1996). The literature so far suggest that the robust test are generally superior to the F test 

in the majority of assumption violation situations where the classical ANOVA F-test and 
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alternative test statistics (e.g., Welch) would not be (e.g., Levy, 1978; Tomarken & 

Serlin, 1986).  

Methodology researchers consider ways to improve the performance of 

alternative procedures when the data are nonnormal (Lix et al., 1996). Wilcox (1995) 

has suggested that trimming, or discarding outliers from a data set prior to analysis, can 

lead to improve performance, both in terms of Type I error control and power.  

Trimming is the most popular robust based method when dealing with skewed data. 

Naturally, trimming is a very drastic way of dealing with extreme observations.  

However, removing a small set of observations in a relatively large sample should not 

change the results in a major way (Rodrigues & Rubia, 2006). 

The key factors in trimming are the amount of trimming and how the trimming is 

specifically conducted. There are two common methods in trimming, symmetric and 

asymmetric trimming.  In symmetric trimming, equal amount of trimming is applied on 

both tails of the distribution.  In asymmetric trimming, the process of trimming is either 

conducted on one-tail or on both tails with unequal amounts.  In order to avoid loss of 

information, trimming need to be conducted with care. Before trimming could be 

performed, the amount of trimming has to be determined first, usually by fixing the 

amount of trimming (predetermined).  In our study, we are going to depart from 

trimming with fixed amount to automated trimming. 

 

1.3.2 Trimmed mean 

Trimming will definitely get rid of outliers but how do we address the question 

of outliers? Usually outliers are culprits leading to nonnormality and heterogeneity. 
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Even so, if we are looking at the differences between groups, the presence of outliers in 

one group will definitely lead to rejection of the null hypothesis. How do we deal with 

this rejection? The rejection will not be taken at face value. Further analysis will now be 

done on the outliers. However, in our study, the question of outliers does not arise 

because our study conditions do not involve them. Our study conditions are variance 

heterogeneity, pairing of group variances and group sample sizes, types of distributions, 

balanced and unbalanced sample sizes and number of groups. 

Trimmed mean is a central tendency measure that summarizes data when 

trimming is carried out. By using the trimmed means, the effect of the tails of the 

distribution is reduced by their removal based on the trimming percentage that has to be 

stated in advanced (predetermined amount). The common trimmed mean used the fixed 

amount of trimming method. It needs the fix amount of trimming percentage and tight 

down with this amount of trimming. By using this method, amounts such as 10% or 20% 

of the observations from a distribution will be trimmed from both tails. In the case of a 

light-tailed distribution or the normal distribution, it may be desirable to trim a few 

observations or none at all. There is extensive literature regarding this trimming method 

that uses the fixed amount of symmetric trimming. Among them are Lee and Fung 

(1985), Keselman et al. (2002), and Wilcox (2003).  

If we have skewed distributions then the amounts of trimming on both tails 

should be different. More should be trimmed from the skewed tail. However, if the fixed 

symmetric trimming is used, regardless of the shape of the tails, the trimming is done 

symmetrically as set. A research by Keselman et al. (2007) used asymmetric trimming 

and in particular, applying hinge estimators proposed by Reed and Stark (1996) to 
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determine the suitable amount of trimming on each tail of a distribution. However, their 

method still used fixed trimming percentages.  

The trimmed mean is not so robust because the breakdown point of trimmed 

mean is just as much as the percentage of trimming and this shows that trimmed mean 

cannot withstand large numbers of extreme value. Wilcox et al. (2000) in their study 

stated that when comparing trimmed means versus means with actual data, the power of 

the trimmed mean procedure was observed to be greatly increased. They also discovered 

that there was improved control over the probability of a Type I error. 

 

1.4 T1 Statistic 

Types of distributions and homogeneity of variances are two important aspects 

that need to be taken into consideration before we proceed with the testing of the 

equality of central tendency measures using robust statistics.  If the type of distribution 

is unknown and cannot be assumed as normally distributed, Babu et al. (1999) suggested 

the use of their T1 statistic to compare the differences between distributions. They 

applied this statistic when the distributions are tested symmetric. This procedure used 

15% symmetric trimming with trimmed mean as the central tendency measure.  

 

1.5 Objective of the Study 

The main objective of this study is to examine the operating conditions that 

would result in good Type I error rates for the following new procedures: 

1. T1 with predetermined 15% symmetric trimming.  

2. T1 with predetermined asymmetric trimming based upon hinge estimators 

(Keselman, Wilcox, Lix, Algina & Fradette, 2007). 
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3. T1 with automatic trimming based on robust scale estimators, MADn, Tn 

and LMSn (Rousseeuw & Croux, 1993) 

The secondary objective is to compare the performance of procedures 1 – 3 via 

Type I error. In doing so, this study should be able to  

1. determine the best trimming strategy. 

2. recommend the best procedure for extreme conditions. 

 

1.6 Significance of the Study   

This research will contribute towards knowledge development in experimental 

design methodology especially in the experimental sciences.  Statisticians are aware that 

experimental design methodology depends on assumptions of normality and treatment 

groups having equal variances.  However, in the real world, data are not always 

normally distributed.  The benefit of this research is that with these new alternative 

methods, researchers (in various fields, especially the experimental sciences) will not be 

constrained with all the assumptions such as normality and homogeneity of variances.  

They can instead work with the original data without having to worry about the shape of 

the distributions. This research contributes to the development of robust statistics that 

uses trimming strategy in its test statistic or in its procedures. Robust statistics with 

trimming strategy were designed to handle assumptions of normality and variance 

homogeneity. This research will also naturally want to determine which trimming 

strategy is the best for the T1 statistics. 
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1.7 Organization of the report  

Chapter 1 gives an introduction on the importance of the study and gives in depth 

explanation regarding the robust statistical methods. This chapter also presents a brief 

introduction to the methods proposed in this study, namely T1 statistics. Details of these 

methods are presented in Chapter 2. Chapter 2 also discusses about the scale estimators 

and defines terminologies used throughout this study. Explanations about operating 

conditions that have been manipulated are found in Chapter 3. They are the number of 

groups, the sample sizes for balanced and unbalanced design, heterogeneity of variances, 

the nature of pairings of group sample sizes and group variances and type of 

distributions. This chapter further gives the design specifications and explains the 

generation of data used in this study. The results from the analyses of Type I error was 

presented in Chapter 4. We conclude our findings and propose suggestions for further 

studies in the last chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

The two sample t-test and the analysis of variance (ANOVA) are two common 

statistical methods used to locate treatment effects in a one-way independent group 

design. However, in using these two statistics, assumptions of normality and variance 

homogeneity need to be fulfilled. In real life applications, these conditions are rarely 

achieved and these will lead to inaccuracy in decision based on the testing procedure.  

 Departures from normality originate from two problems, i.e. skewness and the 

existence of outliers. These problems could be remedied by using transformation such as 

exponential, logarithm and others but sometimes, even after the transformation, 

problems with nonnormal data still occur.  Simple transformations of the data such as by 

taking logarithm can reduce skewness but not for complex transformations such as the 

class of Box-Cox transformations (Wilcox & Keselman, 2003).  However, problems due 

to the outliers are not eliminated.  According to Wilcox and Keselman (2003), a simple 

transformation can alter skewed distributions to make them more symmetrical, but they 

still do not deal directly with outliers.  They suggested using a trimming method when 

dealing directly with outliers. 

The existence of outliers in a sample data will cause the probability of Type I 

error to be less than the nominal alpha level and concurrently lower the power of the test 

statistic. In the application of t-test, outliers can inflate the sample variance and 

simultaneously lower the value of the test (Wilcox & Keselman, 2003). Even when 

sampling from a perfectly symmetrical distribution, outliers can still cause the t-test to 
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lose power when compared against modern methods. Modern methods here are methods 

that are based on robust measures of location (Wilcox & Keselman, 2003). According to 

Keselman, Lix et al. (1998), the reduction in the power to detect differences between 

groups occurs because the usual population standard deviation is greatly influenced by 

the presence of the extreme observations in a distribution of scores. 

The presence of outliers will inevitably lead to the observed scores being 

skewed. However, skewness itself can be an inherent property of several score 

distributions. It is also well known that skewness can also be a problem when we are 

trying to control the probability of Type I error. Type I error rates and the confidence 

intervals can be highly inaccurate when the data are skewed. For the normal distribution 

and any symmetric distribution, the skewness for the distributions are zero. When the 

data are skewed to the left, the skewness value is negative. This denotes that the left tail 

is longer than the right tail. When the data are skewed to the right, the skewness value 

will be positive. Many classical statistical tests depend on normality assumptions. When 

this assumption is not satisfied, the rate of Type I error and the power of the test 

conducted will be affected.  

 The sample mean is the most common estimator used in most statistical analyses. 

However, this estimator is very sensitive to the presence of outliers and skewness. One 

single outlier could easily influence this estimator, thus causing it to have a low 

breakdown point (Sawilowsky, 2002).  In addition, the sample mean also has unbounded 

influence function, implying that a single contaminated observation may have a 

considerable effect on the estimate (Thomas, 2000). Under these conditions, any test that 

used the sample mean as the estimator will produce low power and distorted rates of 

Type I error. These include the t-test and ANOVA.  Furthermore, the standard error of 
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the usual mean can become seriously inflated when the underlying distribution is heavy-

tailed. To address this problem, Wilcox and Keselman (2003) suggested using estimators 

of robust measures of location and rank-based methods. Some of these robust estimators 

are the M-estimator and trimmed mean. 

The sample trimmed mean (will be referred to as “trimmed mean” throughout 

this thesis) is one of the estimators which are able to handle the problem of nonnormality 

due to skewness. When using this estimator, the smallest and the largest observations in 

the distribution will be trimmed, thus automatically discarding skewed data. By using 

the trimmed mean, high power, accurate probability coverage, relatively low standard 

errors, a negligible amount of bias and a good control over the probability of a Type I 

error can be achieved (Wilcox & Keselman, 2003).  

There are two possibilities of estimating the trimmed mean, i.e. equal amount of 

trimming or symmetric trimming and unequal amount of trimming or asymmetric 

trimming. In symmetric trimming, the trimming is done equally on both sides of the 

distribution. While for asymmetric trimming, the trimming is done on only one side or 

unequally on both sides of the distribution. Othman et al. (2002) in their study suggested 

that when the data are said to be skewed to the right, then in order to achieve robustness 

to nonnormality and greater sensitivity to detect effects, one should trim data just from 

the upper tail of the data distribution. Hogg (1974), Hertsgaard (1979), and Tiku (1980, 

1982) suggested that the data should have different amounts of trimming percentages 

from the right and left tails of the distribution. Keselman et al. (2007) proposed a 

method called adaptive robust estimators to determine the number of observations to be 

trimmed from each tail of the distribution. By using this method, the total amount of 
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trimming is determined a priori before making the decision whether to trim the data 

symmerically, asymmetrically or not to trim at all.  

If the distribution is skewed, the trimmed mean provides better estimates of the 

typical score than the usual mean. This is due to the fact that when a distribution is 

skewed, the trimmed mean does not estimate  but rather some value (i.e. t ) that is 

typically closer to the bulk of the observations (Keselman et al., 2004). Herron and 

Hillis (2000) stated that, for heavy-tailed distributions, the trimmed mean is less 

sensitive to the outliers and also have smaller standard errors than the usual mean. To 

avoid unnecessary loss of information due to trimming, if a distribution is highly skewed 

to the left, it seems more reasonable to trim more observations from the left tail of the 

distribution than from the right tail.  

However, the trimmed mean suffers from at least two practical concerns which 

are (i) the proportion of data at the tails exceeds the percentage of adopted trimming and 

vice versa and (ii) the trimming is done unproportionately.  In the latter case, the 

problem occurs when equal percentage of trimming (as in trimmed mean) on both tails is 

adopted on skewed distribution, whereas it would be more reasonable to trim more 

observations from the tail that is highly skewed.  Note that these problems arise because 

of the amount of trimming have to be fixed in advance without examining the 

characteristics of the data. In many situations, researchers would want to use an adaptive 

trimmed mean, (i.e. asymmetric trimmed mean) in which the trimming proportion adapts 

itself to the characteristics of the distribution on the basis of the sample. 

To avoid from trimming erroneously, the process needs to be done meticulously.  

In our proposed method of trimming, this problem can be avoided since the amount of 
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trimming is determined by the characteristics of the sample data. This method utilizes 

characteristics of the observed data to determine whether data should be trimmed 

symmetrically, asymmetrically or not at all. The idea is that, good efficiency will be 

obtained when sampling from normal distributions as well as non-normal distributions 

by introducing flexibility into how much is trimmed. 

Another problem which researchers always encountered when using the classical 

methods is heteroscedasticity. Some of the parametric methods that can handle this 

problem are those proposed by Welch (1961), James (1951) and Alexander and Govern 

(1994). Unfortunately, all of these methods have difficulty in dealing with problem of 

nonnormal data.  Nonetheless, Abdullah et al. (2008) found that Alexander and Govern 

test which uses automatically trimmed mean as the central tendency measure in place of 

the usual mean is robust to skewed data when the trimming strategy was adopted.   

Some researchers sought for alternatives in the non-parametric methods, such as 

Mann Whitney and Kruskall Wallis. However, these methods have low power (Wilcox, 

1992). Even though non-parametric methods are distribution free, they are not 

assumptions free. Usually the distribution has to be symmetric.  The alternative is to use 

a robust approach to deal with the problems of nonnormality and heteroscedasticity. 

Robust statistics combine the virtues of both, the parametric and the non-

parametric approach.  In general, these statistics are used in handling the problem of the 

violation of the independence assumptions such as nonnormality and variance 

heterogeneity. In this study, we suggested robust procedure, the T1 statistic proposed by 

Babu et al. (1999). Babu et al. (1999) suggested the use of T1 statistic to compare the 

differences between distributions if the type of distribution is unknown and cannot be 
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assumed as normally distributed. They applied this statistic with 15% symmetric 

trimmed mean as the central tendency measure when the distributions are tested 

symmetric. Trimmed F statistic is a statistical method that is able to handle problems 

with sample locations when nonnormality occurs but the homogeneity of variances 

assumption still applies.  

In this study, we will look at the problems of nonnormality and variance 

heterogeneity, simultaneously. We will use these statistics with trimming strategies 

using robust scale estimators, Tn and LMSn proposed by Rousseeuw and Croux (1993). 

In addition to these two estimators, we also consider one of the most popular estimators, 

MADn.  We choose these estimators because of their high breakdown points and 

bounded influence functions. These strategies will trim extreme values without the need 

to state the trimming percentage in advanced. 

 There are a few terminologies that will be used throughout our study. We will 

discuss these terminologies briefly in the next sections prior to the in depth discussion of 

the proposed methods. 

 

2.2 Trimming  

Trimming is a method to eliminate outliers or extreme observations from each 

tail of a distribution. Determining the percentage of trimming must be made prior to the 

testing. In order to make this decision, efficiency is one factor to be considered. In this 

context, efficiency means achieving relatively small standard error when the trimming 

method is used. Trimming needs to be done cautiously. If the amount of trimming is too 

small, efficiency can be very poor when sampling is from heavy-tailed distribution, but 
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if the amount is too large, efficiency will be very poor when we consider the sampling 

from a normal distribution (Keselman et al., 2000).  

Trimming can be very beneficial in terms of efficiency and in achieving high 

power. Trimming can eliminate outliers and power might be increased substantially. 

This is a conclusion that follows almost immediately from a result derived by Laplace 

two centuries ago (Wilcox, 2005b). According to Wilcox (1998) trimming can be good 

or bad in terms of power, depending upon the criteria we adopt and the goals we hope to 

achieve. In Wilcox (2005b), it is stated that the median corresponds to the most extreme 

case in which all but one or two values are trimmed. He gave an example that if n is 

even, all but two observations are trimmed and if n is odd, all but one. Due to the 

extreme amount of trimming reflected by the usual sample median, the sample median 

will have a large standard error and low power relative to using the usual sample mean 

(Wilcox, 2005b).  

Theory indicates that the more we trim, the more we can reduce problems due to 

skewness.  Rocke et al. (1982) in their paper concluded that the best results were 

obtained with 20% – 25% symmetric trimming, while Othman et al. (2004) reported that 

one can achieve a slightly better Type I error control with a 15% symmetric trimming 

rather than a 20% symmetric trimming. Keselman, Othman et al. (2004) demonstrated 

that good control of Type I error can be achieved with only modest amounts of 

trimming, namely 15% or 10% from each tail of the distribution.  For long-tailed 

symmetric distributions, Lee and Fung (1985) recommended the used of 15% symmetric 

trimming. According to the literature, the optimal fixed amount of symmetric trimming 

percentage is between 0% and 25%.   



20 

 

When sampling from a symmetric distribution, it is intuitively appealing to use 

symmetric trimming (Wilcox, 2003). Symmetric trimming trims the same number of 

observations at both ends of data and hence is quite efficient for symmetric distributions. 

However, this strategy becomes less efficient when there is even just a slight departure 

from symmetry, for example with one end containing outlying points (Wu & Zuo, 

2009).  Higher amount (i.e. more than 20%) of symmetric trimming should be used 

when sampling from a skewed distribution (Wilcox, 2003).  Nevertheless if the amount 

of trimming is too high, this can result in lower power when sampling from a light tailed 

distribution (i.e. normal distribution) where outliers are relatively rare.  While for heavy-

tailed distributions, the power goes up as the amount of trimming increases, (Wilcox, 

1995).   

It has been a general practice that 90%, 95%, and 99% are typical choices to 

specify coverage probabilities. Nevertheless, as stated in Granger (1996), practical 

forecasters seem to prefer 50% intervals whereas academic writers focus almost 

exclusively on 95% intervals.  It is noted that the larger the probability coverage, the 

wider the prediction interval, and vice versa.  Relating to the trimming percentages, 

Wilcox (1998) stated that the more we trim, the less effect skewness had on the 

probability coverage.  According to Wilcox (1996), a 20% trimming provide more 

accurate probability coverage of confidence intervals regarding differences between 

means when the distributions are skewed.  

Nevertheless, when the sample size, n is small, the optimal amount of trimming 

is yet to be determined. The amount of trimming can also be arrived at empirically. 

However, it is difficult to do so. This is usually attempted when doing one-sided or 
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asymmetric trimming. Othman et al. (2002) dealt with predetermined amount of 

trimming on one side. The recent study done by Keselman et al. (2007) also worked 

with fixed total amount of trimming for both sides of the distribution. They then 

identified the number of observations that should be trimmed from each tail by the 

characteristics of the sample data. However, the total number of trimmed data from the 

left and right tail of the distribution must be equal to the total amount of trimming that 

they determined earlier. The mismatch of the proportion of skewed data is still of 

practical concern if we use this method.   Thus, in this study, we proposed a method of 

trimming without any fixed amount. The amount of trimming for both tails of the 

distribution is determined automatically using robust scale estimators, namely, MADn, Tn 

and LMSn to get the sample values.  We also compared this automatic method of 

trimming with the usual symmetric trimming. Specifically we chose 15% symmetric 

trimming for this purpose. 

Essentially one does not trim a fixed amount of the data but only the skewed 

data. These trimming mechanisms will ensure that the problems of outliers and skewed 

data will be adequately addressed.  

 

2.3 Type I Error 

Hypothesis testing is the art of testing if variation between sample distributions 

can either be explained by chance or not. If we are to test two distributions to see if they 

vary in a meaningful way, we must be aware that the difference is not just by chance. 

Type I error is the error of rejecting the null hypothesis given that it is actually true. In 

other words, this is the error of accepting an alternative hypothesis when the results can 

be attributed to chance.  
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According to Steven (1990), a test statistic is robust if the actual level of 

significance is very close to the nominal level. The nominal level is the level set by the 

experimenter and is the percent of time one rejects falsely when the null hypothesis is 

true and all assumptions are met. While the actual level is the percent of time one rejects 

falsely if one or more of the assumptions are violated. 

Type I error rejects an idea that should not have been rejected and also claims 

that two observations are different, when they are actually the same. It is also known as 

a ‘false positive’. A false positive usually means that a test claims something to be 

positive, when that is not the situation. The probability of a Type I error is designated by 

the Greek letter alpha ( ) and is called the Type I error rate. 

Conventionally Type I error is set at 0.05 or 0.01. This brings the meaning of 

there is only 5 or 1 in 100 chance that the variation that we obtained is due to chance. 

This is called the 'level of significance'. The significance levels need to be chosen 

attentively. For example, a 5% significance level is the rate to declare a result to be 

significant when there is actually no relationship in the population. The 5% value is also 

known as the rate of false alarms or false positives.  

 By convention, a procedure can be considered robust if it’s Type I error is 

between 5.0  and 5.1  (Bradley, 1978). Thus, when the nominal level is set at  = 

0.05, the Type I error rate should be in between 0.025 and 0.075. Type I error rates are 

considered liberal when they are above the 0.075 limit while those below the 0.025 limit 

are considered conservative. However, Guo and Luh (2000) in their study regarded a test 

with 5% level of significance to be robust if its empirical Type I error rate does not 

exceed the 0.075 limit.  

 



23 

 

2.4 Central Tendency Measures 

Measures of central tendency are measures of the location of the center of a 

distribution. The word "center" is purposely left somewhat vague so that the term 

"central tendency" can refer to a wide variety of measures. It is can also be defined as a 

single value that summarizes a set of data (Mason, Lind & Marchal, 1999). A measure 

of central tendency gives the center of a histogram or a frequency distribution curve 

(Mann, 2004). Some of the examples of central tendency measures are mean, median, 

mode, trimmed mean and Winsorized mean.  

Mean is the most commonly used measure of central tendency. For symmetric 

distributions, these measures are all the same but for skewed distributions, they can 

differ markedly. Wilcox (1998) stated that, a very small shift away from normality can 

inflate   result in extremely poor power for any hypothesis-testing based on means. A 

small shift from a normal distribution towards a heavy-tailed distribution will result in 

large standard errors for the sample mean and in many situations; standard hypothesis-

testing methods for means can miss true differences because of low power due to 

sampling from heavy-tailed distribution (Wilcox, 1998).  

In this study, the central tendency measure used is the trimmed mean. By using 

this measure in place of the usual mean, tests that are insensitive to the combined effects 

of nonnormality and variance heterogeneity can be obtained. Besides that, Kulinskaya 

and Dollinger (2007) recommended the use of the trimmed mean because of its 

simplicity and high relative efficiency.  
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2.4.1 Trimmed Mean  

Trimmed mean is the arithmetic average of residual data after deleting the k 

smallest observations and the k largest observations. The idea of a trimmed mean is to 

eliminate outliers, or extreme observations.  % trimmed means were calculated with 

 % trimming on both tails. Therefore  % trimmed means has actually (100 - 2 ) % of 

data left. The  % trimmed means is the average of the observations that remain after a 

proportion  % has been trimmed from each end of the ordered sample. 

How much trimming should be done in a given situation is still questionable, but 

the important matter is that some trimming often gives substantially better results, as 

compared to no trimming (Wilcox, 1996).  The median is the 50% trimmed mean. This 

is because when trimming is done on both tails, all the observations except for the 

median will be eliminated. On the other hand, the arithmetic mean is the 0% trimmed 

mean. A trimmed mean is apparently less liable to the effects of extreme data than the 

arithmetic mean. It is then, less liable to sampling fluctuation than the mean for 

extremely skewed distributions. Trimmed mean is best suited for large data, inconsistent 

deviations or extremely skewed distributions. 

The trimmed mean is a robust estimator of location because it is relatively 

insensitive to outliers. When the distribution deviates substantially from normality, 

trimmed mean lessen the effects of outliers and reduce the variance of the estimator over 

the usual mean (Reed, 1998). Trimmed mean as opposed to the usual least squares 

means, provide better estimates of the typical individual score in a distribution that 

contains outliers or is skewed in shape (Keselman, Lix et al., 1998). The standard error 

of the trimmed mean is less affected by departures from normality than the usual mean 
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because of the censored or the removal of the extreme observations (Keselman, 

Kowalchuk et al., 2000). Another advantage of trimmed estimators is that, the estimators 

do not require intensive computations and are intuitively easy to understand (Lix et al., 

2003). Reed (1996) described the trimmed mean as a safe estimator because its 

performance does not vary markedly from situation to situation. 

2.5 Scale Measures 

The central tendency measures do not reveal the whole picture of the dispersion 

of the distribution of a data set (Mann, 2004). The measures that acknowledge the spread 

of the data are called scale measures. Three measures that are commonly used are range, 

variance and standard deviation. Standard deviation is a scale measure with zero 

breakdown point. So, the standard deviation is not robust. In order to get tests that are 

not sensitive to the effects of nonnormality and variance heterogeneity, the Winsorized 

variance is adopted in this study. 

 

2.5.1 Winsorized Variance 

In the quest to get the Winsorized variance, the trimmed mean must be calculated 

first. The Winsorized variance is a consistent estimator of the variance of the 

corresponding trimmed means (Gross, 1976). The finite sample breakdown point of 

Winsorized variance denoted as 2
ws  is  and this is the reason why the standard error of 

the trimmed mean is less affected by heavy-tailed distribution as compared to the mean 

(Wilcox, 1998). For heavy-tailed symmetric distributions, Yuen (1974) found that a 

statistic based on trimmed means and Winsorized variances could adequately control the 



26 

 

rate of Type I error and resulted in greater power than a statistic based on the usual mean 

and variance.  

 

2.6 Scale Estimators   

The value of a breakdown point is a main factor to be considered when looking 

for a scale estimator (Wilcox, 2005a). Rousseeuw and Croux (1993) have introduced 

several scale estimators with highest breakdown point, such as MADn, Tn and LMSn.  

Due to their good performances in Huber (1981), Rousseeuw and Croux (1993) and 

Syed Yahaya et al. (2004a), these scale estimators are chosen for this study. All these 

scale estimators have 0.5 breakdown value and also exhibit bounded influence functions. 

These estimators are also chosen because of their simplicity and computational ease. 

 

2.6.1 MADn        

            MADn is the median absolute deviation about the median. It demonstrates the 

best possible breakdown value of 50%, twice as much as the interquartile range and its 

influence function is bounded with the sharpest possible bound among all scale 

estimators (Rousseeuw & Croux, 1993).  

This robust scale estimator is given by 

jjiin xmedxbMAD  med   

where the constant b = 1.4826 is needed to make the estimator consistent for the 

parameter of interest, ni xxxx ,...,, 21  and ji 
 

However, there are drawbacks in this scale estimator. The efficiency of MADn is 

very low with only 37% at Gaussian distribution. Rousseeuw and Croux (1993) have 
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carried out a simulation on 10,000 batches of Gaussian observations to verify the 

efficiency gain at finite samples. They compared the variance of the standard deviation 

with the variance of MADn based on the finite samples. MADn also takes a symmetric 

view on dispersion and does not seem to be a natural approach for problems with 

asymmetric distributions. 

 

2.6.2 Tn 

Suitable for asymmetric distribution, Rousseeuw and Croux (1993) proposed Tn, 

a scale known for its highest breakdown point like MADn.  However, this estimator has 

more plus points compared to MADn. It has 52% efficiency, making it more efficient 

than MADn. It also has a continuous and bounded influence function.  Furthermore, the 

calculation of Tn is much easier than the other scale estimators. 

Given as 
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Tn has a simple and explicit formula that guarantees uniqueness. This estimator also has 

50% breakdown point.  

 

2.6.3 LMSn 

 LMSn  is also a scale estimator with a 50% breakdown point which is based on 

the length of the shortest half sample as shown below: 
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i
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given )()2()1( ... nxxx  are the ordered data and 1
2











n
h . The default value of 'c  is 

0.7413 which achieves consistency at Gaussian distributions. LMSn has an influence 

function as same as MAD (Rousseeuw & Leroy, 1987) and its efficiency equals that of 

the MAD as well (Grubel, 1988).  

 

2.7 Statistical Methods 

This study focuses on the T1 statistic (Babu et al., 1999) with several trimming 

criteria using robust scale estimators MADn, Tn and LMSn. The Type I error rates and 

power of these tests under conditions of normality and nonnormality are examined. They 

were also compared to determine the best procedure and whether they were significantly 

better than the original T1 statistic, with 15% symmetric trimming.   

 

2.7.1 T1 Statistic 

When the distributions are symmetric, Babu et al. (1999) recommended the use 

of T1 statistic to compare differences between distributions. They used a refined version 

of calculating trimmed means proposed by Rocke et al. (1982).  

To calculate the T1 statistic, let 
jnjj j

XXX )()2()1( ...  represent the ordered 

observations associated with the jth group.   

We calculated the g-trimmed mean of group j, tjX , by using: 
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jg1 =number of observations jiX )( such that   jji MX


)(
-2.24 (scale estimator), 

jg2 =number of observations jiX )( such that   jji MX


)(
 2.24 (scale estimator), 

jM


 = median of group j and the scale estimator can be MADn, Tn and LMSn. 

nj = group sample sizes 

 

The value 2.24 was suggested by Wilcox and Keselman (2003) in place of the 

multiplier of the scale estimator in the above criteria. They denoted the multiplier with 

the letter K. They adjusted the K value so that efficiency is good under normality 

especially for small sample sizes. They found that, by using simulation with 10,000 

replications, the efficiency of tjX  (the standard error of the sample mean divided by the 

standard error of tjX ) is approximately 0.9 for n1 = n2 = n3 = n4 = n5 = 20 with K = 2.24. 

tjX

 

was arrive at using MADn. We conducted a similar simulation study also on tjX  

using robust scale estimators Tn and LMSn, and found that the efficiencies are 

approximately 0.83 and 0.91, respectively. Hence, we kept the value of 2.24 in our 

selection criteria. Note that 2.24 is approximately equal to the square root of the 0.976 

quantile of a chi-square distribution with one degree of freedom (Wilcox & Keselman, 

2003). Indicating that, it is also suitable for skewed distribution. 
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The squared sample Winsorized standard error,
2ˆtj , is then defined as 
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Note that we used trimmed means in the 2

tj


formula instead of Winsorized means. 

 

Then the T1 statistic is given by 

 T1 = 
 Jjj

jjt
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' || , 

where 
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T1 is the sum of all possible differences of sample trimmed means from the J 

distributions divided by their respective sample Winsorized standard errors. Therefore, if 

there are J distributions then the number of tjj’s is equal to J(J-1)/2. Note that we used 

trimmed means in the Winsorized standard errors formula instead of Winsorized means.  

 

2.8 Bootstrapping  

The bootstrap is a Monte Carlo method that can be used to estimate the standard 

error of any estimator 


 and was introduced by Efron (1979). The advantage of 

bootstrapping is its simplicity. This method is straightforward to apply to derive 

estimates of standard errors and confidence intervals for complex estimators of complex 

parameters of the distribution, such as percentile points, proportions, odds ratio, and 
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correlation coefficients. Staudte and Sheather (1990) in their study stated that bootstrap 

is used to indicate that the observed data are used not only to obtain an estimate of the 

parameter but also to generate new samples. Bootstrap can routinely answer questions 

far too complicated for traditional statistical analysis. They work the same way (without 

formulae) for many different statistics in many different settings. In addition, 

bootstrapping can help in increasing accuracy of the test statistic.  

When the sampling distribution of the estimator of interest is unknown, a pseudo 

sampling distribution of the estimator can be estimated using bootstrap. With the 

establishment of the pseudo sampling distribution, we can now assess variability of an 

estimator, bias of an estimator and significance of a test involving the estimator (Efron, 

1979). 

Bootstrap method is known to yield a better approximation than the one based on 

the normal approximation theory (Babu & Padmanabhan, 1996; Babu et al., 1999).  

Othman et al. (2003) listed out two practical advantages of using bootstrap methods as 

detailed below; 

i) Theory and empirical findings indicate that they can result in better Type I error 

control than non-bootstrap methods. 

ii) Certain variations of the bootstrap method do not require the knowledge of the 

sampling distribution of the test statistic thereby not requiring explicit 

expressions for standard errors of estimators. This makes hypothesis testing quite 

flexible. 

Westfall and Young (1993) suggested that Type I error control could be 

improved by combining bootstrap methods with methods based on trimmed means. The 

bootstrap seems preferable for general use if the goal is to avoid Type I error probability 
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greater than the nominal level (Wilcox, 1998). The strategy behind the bootstrap is to 

use the shifted empirical distributions to estimate an appropriate critical value (Othman 

et al., 2003). Keselman et al. (2003) stated that, further improvement in Type I error 

control is often possible by obtaining critical values for test statistic through bootstrap 

methods.  

 

The bootstrap procedures on T1 statistic is discussed in depth in Chapter 3.  
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

 

Our main focus in this study is to use robust scale estimators such as MADn, Tn 

and LMSn as trimming criteria to trim data empirically. The mean of this trimmed data 

was calculated. A robust test statistic, namely T1 were proposed to compare the 

differences between the groups regardless of assumptions. These statistics use group 

trimmed means as the central tendency measures. Unlike trimmed means that were 

based on trimmed observations of predetermined percentage, these proposed methods 

trimmed flexibly in order to avoid unnecessary trimming. 

This study has been designed so as to encompass all conditions highlighting the 

strengths and weaknesses of testing the central tendency measures in achieving the 

objective of controlling Type I error and also the power of the tests. Under a completely 

randomized design, a few variables were manipulated to generate various conditions for 

testing robustness. The variables are the number of groups, balanced and unbalanced 

sample sizes, variance heterogeneity, nature of pairing of group variances and group 

sample sizes, and types of distributions. In addition to these variables, the study on 

power of tests also includes the setting of the central tendency parameters. This setting is 

dependent upon the effect size of the central tendency measures.  

 

3.2 Procedures Employed 

This study modified robust statistic, T1 using automatic trimming strategy. These 

automatic trimming strategy involved robust scale estimators, MADn, Tn and LMSn and 
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predetermine asymmetric trimmed mean. We also include 15% symmetric trimming on 

T1 as a benchmark. The 15% symmetric trimming in T1 (Babu et al., 1999) statistic 

produced good Type I error rates.  Figure 3.1 shows the combinations of the statistical 

test with their corresponding scale estimators. 

 

 

        

        

 

    Figure 3.1:   Statistical test with the corresponding scale estimators 

 

These procedures are compared in terms of Type I error and power of the test statistics. 

Listed below are the four procedures: 

i. T1 with 


 

ii. T1 with MADn 

iii. T1 with Tn 

iv. T1 with LMSn 

v. T1 with predetermine asymmetric trimming (HQ1) 

vi. t-test 

vii. ANOVA 

 

The first (T1 with 


) procedure is the benchmark procedures for the T1 statistic. It is 

included in this study for comparison purposes. 

Originally T1 statistic used symmetric trimmed mean as their central tendency 

measure. This statistic works well under symmetric distribution.  T1 can handle variance 

      


 (15%) 

      MADn 

  T1    Tn 

      LMSn 

      Hinge  
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heterogeneity and difference sample sizes. We still believe in trimmed mean. We believe 

that by trimming automatically, this statistic can handle heterogeneous, unequal sample 

sizes and skewed distribution. An additional feature of these new procedures includes 

the handling of the negative pairing of variances and sample sizes.  

Rousseeuw and Croux (1993) suggested MADn, Tn and LMSn as good robust 

scale estimators. Past studies by Wilcox and Keselman (2003) and Syed Yahaya (2005) 

have shown to provide good automatic trimming criterion for MOM based test statistic. 

Syed Yahaya (2005) has also shown similar results with Tn. Based on these; we can 

readily used MADn and Tn as automatic trimming criteria for trimmed mean. Since LMSn 

is of the same class of robust scale estimator as MADn and Tn, it is an obvious choice as 

trimming criterion for automatic trimmed mean. 

 

3.2.1 T1  with 


 

Let 
jnjj j

XXX )()2()1( ...  represent the ordered observations associated with 

the j
th

 group. 

 

In order to calculate the 100g% sample trimmed mean, define 

XLj = (1 – r)X(k + 1)j + rX(k)j         [3.1] 

and 

XUj = (1 – r) jkjnX )(   + r jkjnX )1(        [3.2] 

where 

g represents the proportion of observations that are to be trimmed in each tail of 

the distribution. 
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  1 jgnk  where  jgn  is the largest integer  jgn  and jgnkr  . 

 

The j
th

 group trimmed mean is given by 

 







 









kjn

ki
jkjnjkji

j

tj XXrX
ng

X
1

)1()()( )(
)21(

1
    [3.3] 

 

Its corresponding sample Winsorized mean is given by 

 













)(
1

1
)( UjLj

kjn

ki
ji

j

wj XXkX
n

X      [3.4] 

 

The squared sample Winsorized standard error is as follows: 

 



)12()21(

1
ˆ

gnnng jjj

tj   

      


















  





22
2

1
)( wjUjwjLj

kjn

ki

wjji XXXXkXX    [3.5] 

 

Then the T1 statistic is given by 

 T1 = 
 Jjj

jjt
'1

' || ,        [3.6] 

where 

 tjj’ = 
 

'

'

tjtj

tjtj XX







        [3.7] 
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3.2.2 T1  with MADn 

Let 
jnjj j

XXX )()2()1( ...  represent the ordered observations associated with 

the j
th

 group. 

 

We calculated the g-trimmed mean of group j by using: 





















jgjn

jgi
ji

jjj

tj X
ggn

X
2

11
)(

21

1
      [3.8] 

where 

jg1 =number of observations jiX )( such that    jji MX


 -2.24 (MADn)j,  

jg 2 =number of observations jiX )( such that    jji MX


 2.24 (MADn)j,  

jM


 = median of group j  

(MADn)j = median absolute deviation about the median of group j 

nj = group sample sizes 

 

The squared sample Winsorized standard error is then defined as 

 



)1)((

1
ˆ

2121

2

jjjjjj

tj
ggnggn

   
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  [3.9] 

Then the T1 statistic is given by 

 T1 = 
 Jjj

jjt
'1

' || ,                  [3.10] 

where 
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 tjj’ = 
 

'

'

tjtj

tjtj XX







                   

T1 is the sum of all possible differences of sample trimmed means from the J 

distributions divided by their respective sample Winsorized standard errors. Therefore, if 

there are J distributions then the number of tjj’s is equal to J (J-1)/2.  Note that trimmed 

means were used in the Winsorized standard errors formula instead of Winsorized 

means.  

 

3.2.3 T1  with Tn 

 

We calculated the g-trimmed mean of group j by using: 





















jgjn

jgi
ji

jjj

tj X
ggn

X
2

11
)(

21

1
     [3.11] 

where 

jg1 =number of observations jiX )( such that    jji MX


 -2.24 (Tn)j,  

jg 2 =number of observations jiX )( such that    jji MX


 2.24 (Tn)j,  

jM


 = median of group j  

(Tn)j = robust scale estimator of group j 

nj = group sample sizes 

Then proceed with the calculation of tjX and finally compute the T1 statistic (equation 

[3.10]). 
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3.2.4 T1 with LMSn 

 

We calculated the g-trimmed mean of group j by using: 





















jgjn

jgi
ji

jjj

tj X
ggn

X
2

11
)(

21

1
                [3.12] 

where 

jg1 =number of observations jiX )( such that    jji MX


 -2.24 (LMSn)j,  

jg 2 =number of observations jiX )( such that    jji MX


 2.24 (LMSn)j, 

jM


 = median of group j  

(LMSn)j = robust scale estimator of group j 

nj = group sample sizes 

After the g-trimmed means were calculated, the compute tjX  followed by the 

corresponding T1 statistic (equation [3.10]). 

 

3.2.5 Predetermined asymmetric trimmed mean (HQ1) 

The hypothesis to be tested in this report is 

H0: m1 = m2 = … = mj. 

where mj is adaptive trimmed mean for jth group and it is calculated as 

 


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where g1 = [njl], g2 = [nju], h = nj – g1 – g2, l = lower trimming percentage, u = upper 

trimming percentage and nj is the sample size. The percentage of lower and upper 

trimming identified using hinge estimator HQ1 (Reed & Stark, 1996). However the total 

percentage of trimming is predetermined just like the usual trimmed mean.  

To define the lower and upper trimming percentage, let consider an ordered 

sample J, L is the mean of the smallest [n] observations, where [n] denotes n 

rounded down to the nearest integer, while U is the mean of the largest [n] 

observations. As for example, let  = 0.05, therefore L0.05 is the mean of the smallest 

0.05n observations. The measurement of Q1 is defined as 

5.05.0

2.02.0
1

LU

LU
Q






     

 

Q1 classifies whether a symmetric distribution has light (for Q1<2), medium (for 

2.6<Q13.2) or heavy (for Q1>3.2) tail. It is a location free statistic and uncorrelated 

with other location statistics. Reed and Stark (1996) defined a general scheme of their 

approach based on the former definitions of tail length as follows: 

i. Set the total amount of trimming, , from the sample. 

ii. Determine the proportion to be trimmed from the lower end of the sample (l) by the 

proportion 













xx

x
l

LWUW

UW
  

where UWx and LWx are respectively the portion of the numerator and denominator of 

the previously defined statistic (Q1). The notation for UWx and LWx are as follows:  
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          =U0.2  L0.2  and =U0.5  L0.5    

  

Subsequently, the calculation for HQ1 is  

           

                     

 

iii. The upper trimming percentage is defined as: 

u=  - l     

  

3.3 Variables Manipulated 

Several variables were manipulated in this study to create conditions which are 

known to emphasize the strengths and weaknesses of the proposed tests. This 

manipulation helps to identify the robustness of the tests in handling problems of 

nonnormality and heterogeneity. 

 

3.3.1 Number of Groups 

This study focused on a completely randomized design containing two and four 

groups (J = 2 and J = 4). Investigations on these two designs (J = 2 and J = 4) were 

chosen since previous work related to this study such as by Yuen (1974), Lix and 

Keselman (1998) and Othman et al. (2004) had also utilized similar designs. 

Furthermore, design containing four groups (J = 4) had been widely used successively 

among earlier researchers for its convincing F test results.   
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3.3.2 Balanced and Unbalanced Sample Sizes 

For the purpose of examining the effect of sample sizes on Type I error and 

power of the investigated procedures, balanced and unbalanced sample sizes were 

allocated to each of the cases (J = 2 and J = 4). According to Othman et al. (2004), total 

sample sizes of 70 and 90 for J = 2 and J = 4 respectively, produced Type I error rates 

close to nominal value of  = 0.05, and it can be inferred that total sample sizes of any 

value within the 70 and 90 range should produce reasonably good Type I error rates 

(Syed Yahaya, 2005).  Hence, in this study, total sample sizes for J = 4 was set at 60 and 

80 while for the case of two groups (J = 2), the total sample sizes were half the values 

allocated to J = 4. Table 3.1 exhibits the sample sizes and variances for each group 

respectively.  

Table 3.1: Sample sizes and variances  

Groups  Group Sizes (2 Cases) Group  

Variances 

 

 

 

 

J = 2 

 

 

N = 30     nj = 15, 15 

                nj = 15, 15 

                nj = 12, 18 

                nj = 12, 18  

                nj = 12, 18 

N = 40     nj = 20, 20 

                nj = 20, 20 

                nj = 15, 25 

                nj = 15, 25 

                nj = 15, 25     

1:1 

1:36 

1:1 

1:36 

36:1 

1:1 

1:36 

1:1 

1:36 

36:1 

 

 

 

 

J = 4 

N = 60     nj = 15, 15, 15, 15 

                nj = 15, 15, 15, 15 

                nj = 12, 14, 16,18 

                nj = 12, 14, 16, 18 

                nj = 12, 14, 16, 18 

N = 80     nj = 20, 20, 20, 20 

                nj = 20, 20, 20, 20   

                nj = 10, 20, 20, 30 

                nj = 10, 20, 20, 30 

                nj = 10, 20, 20, 30 

1:1:1:1 

1:1:1:36 

1:1:1:1 

1:1:1:36 

36:1:1:1 

1:1:1:1 

1:1:1:36 

1:1:1:1 

1:1:1:36 

36:1:1:1 
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For the purpose of comparison, this study covered both the (i) balanced and (ii) 

unbalanced sample sizes.  For balanced sample sizes, the number of sample for J = 2 

was set to be equal to 15 (n1 = 15, n2 = 15) and 20 (n1 = 20, n2 = 20) for each group. 

These values were also applied to both cases of J = 4 such that n1 = 15, n2 = 15, n3 = 15, 

n4 = 15 and n1 = 20, n2 = 20, n3 = 20, n4 = 20.  

For the unbalanced case, each of the groups was arbitrarily assigned different 

numbers of observations, namely (i) n1 = 12, n2 = 18 and (ii) n1 = 15, n2 = 25 for J = 2.  

As for the four groups (J = 4) case, the smallest sample for N = 60 was set at 12 with 

subsequent increment of 2 for each group such that n1 = 12, n2 = 14, n3 = 16, n4 = 18 

while for N = 80, the increment was not consistent for all the groups with n1 = 10, n2 = 

20, n3 = 20, n4 = 30. Syed Yahaya et al. (2004a) and Keselman, Kowalchuk and Lix 

(1998) used N = 80 in their study and found that this number of sample sizes generated 

reasonable controlled Type I errors. Findings from Othman et al. (2004) also indicated 

that by using total sample sizes of 70 and 90, respectively the Type I error rates are close 

to the significance level ( 05.0 ). Therefore, it can be concluded that any value within 

the 70 and 90 as a total sample size should generate good Type I error rates. For two 

sample analysis with N = 30, Guo and Luh (2000) suggested the usage of the invertible 

Hall’s transformation trimmed t under heterogeneity and nonnormality to get good 

control of Type I error rates. Therefore, this study adopted the same number of total 

sample sizes in evaluating the Type I error and power rates in order to achieve robust 

Type I error values. The chosen total sample sizes of N = 30 and N = 40 for J = 2 are 

half of the total sample sizes used for J = 4. 
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3.3.3 Variance Heterogeneity 

The degree of variance heterogeneity is one of the factors affecting the 

robustness of the tests. In addition to affecting the Type I error rate, variance 

heterogeneity also affects the statistical power of the analysis (Wilcox, Charlin & 

Thomson, 1986). When the population variances differ, the actual statistical power can 

be less than that desired (Luh & Olejnik, 1990). To test for the effect of variance 

heterogeneity on Type I error and power, various ratios of variances were used in the 

literature.  

Wilcox et al. (1986) have reported that the approximate tests still can provide 

liberal hypothesis tests if the ratio of standard deviations is as large as 4 to 1. In addition, 

Fenstad (1983) had chosen the ratio of 1:4 and stated the variances equal to 4 are not 

extreme as the ratio between the two standard deviations is only 2. Even though the ratio 

is quite small, there is a possibility of heteroscedastic variances. A ratio of 8:1 can be 

categorized as a less extreme ratio (Keselman et al., 2007). Report on real data by 

Higazi and Dayton (1984) uncovered that the estimated value of variance could exceed 

the value of 8. Wilcox (1987) stated that the value as large as 16 is not relatively 

common.  He also said that some violation of the homogeneity of variance assumption is 

tolerable in terms of maintaining the nominal Type I error probability. Keselman, Lix et 

al. (1998) also found the usage of ratios 24:1 and 29:1 in a one-way and completely 

randomized factorial designs. Furthermore, Wilcox (2003) mentioned in his paper that a 

data set with variance ratio as high as 17977:1 was used in a study conducted by earlier 

researchers. 

In this study, we looked at the effect of variance heterogeneity towards Type I 

error and power of the test statistics by using variance with ratio 1:36 (1:1:1:36). Even 
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though the selected ratio seemed large, based on the previous literature, higher ratio than 

1:36 (1:1:1:36) had been used by other researchers in their study (Keselman et al., 

2007). In addition, it will also provide researchers with information regarding how well 

the methods hold up under any degree of heterogeneity they are likely to obtain in their 

data, thus providing a very generalizable result (Keselman et al., 2007). Othman et al. 

(2004) and Lix and Keselman (1998) also used the same ratio 36:1:1:1 in their research 

work to represent the extreme condition.  

For the purpose of comparison, all the tests were conducted based upon similar 

conditions of variance homogeneity and heterogeneity. From this comparison, the tests 

that work excellently under this condition can be determined.  

 

3.3.4 Nature of Pairings 

When heterogeneous variances are paired with unbalanced sample sizes, there 

exist two types of pairings namely positive and negative pairings. Positive pairing refers 

to the case in which the largest sample size is associated with the population having the 

largest variance and the smallest sample size is associated with the population having the 

smallest variance. While negative pairing refers to the case in which the smallest sample 

size is associated with the population having the largest variance, and the largest sample 

size is associated with the population having the smallest variance.  

 Keselman, Othman et al. (2004), Othman et al. (2004), Syed Yahaya et al. 

(2004a) and Keselman et al. (2007) stated in their paper that the nature of pairings 

influenced the rate of Type I error. Syed Yahaya et al. (2004a) reported that for normal 

distribution, the difference in Type I error for each method they investigated was 

obvious for different pairings but for skewed distributions, the pairings did not show 
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much difference in Type I error. In addition, Othman et al. (2004) wrote that 

empirically, the positive and negative pairings typically produce conservative and liberal 

Type I error rates, respectively.  

 Therefore, to appraise the robustness of the procedures in relation to the nature of 

the pairings, each of the proposed procedures was analyzed under the two types of 

pairings.   

 

 

3.3.5 Types of Distributions  

Practically a set of data will be nonnormally distributed when they are skewed or 

have heavy-tailed. In this study, types of distributions that can represent these two 

aspects of shape simultaneously will be generated to investigate the effects of 

distributional shape on Type I error and power. For that purpose, the g- and h- 

distribution is deemed to be the most suitable distribution in handling the skewness and 

the tail of a distribution. Introduced by Hoaglin (1985), this distribution provides a 

convenient method for considering a very wide range of situations corresponding to both 

symmetric and asymmetric distributions (Wilcox et al., 2000).  

In their study on the effect of distributional shape on Type I error and power, 

Othman et al. (2004), Wilcox (2005b) and Keselman et al. (2007) used data generated 

from the g- and h- distribution.  The parameter g- controls the amount and the direction 

of skewness, while parameter h- controls the kurtosis or the amount of elongation.  To 

observe the effect of distributional shapes on Type I error and power with regard to the 

procedures proposed, this study focused on three different shapes of distribution 

representing different degrees of skewness.  The three distributions in ascending order of 

degree of skewness are normal, skewed normal-tail, and skewed leptokurtic (extremely 
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skewed) represented by g = h = 0, g = 0.5 and h = 0, and g = 0.5 and h = 0.5 

respectively.  

To give meaning to these values, it should be noted that, for the standard normal 

distribution, g = 0.0 and h = 0.0. The zero value for g and h, respectively, signifies that 

the distribution is symmetric (no skew) and the tails are normally distributed. The tails 

of the distribution become heavier as h increases and are further skewed as g increases. 

This means that the g-distributions are more skewed to the right for larger values of g 

and positive values of h produce positive elongation. The larger the value of h, the more 

the elongation will be. 

 The next distribution used in this study is a skewed distribution with normal-

tailed where g = 0.5 and h = 0.0. The skewness and kurtosis values for this distribution 

are 1  = 1.75 and 2  = 8.9, respectively (Keselman, Othman et al., 2004 & Othman et 

al., 2004).  

For a more skewed effect, Algina, Penfield and Keselman (2005) suggested the 

application of g = 0.225 with skewness of 1 = 4.9 and h = 0.225 and kurtosis of 2 = 

4673.8. Hence, the third distribution used in this study is the g = 0.5 dan h = 0.5. The 

values for the skewness and kurtosis for this distribution are undefined. Based on 

100,000 observations, Wilcox (2005a, 2005b) reported the computer generated values 

for the skewness and kurtosis of this distribution as 1


= 120.10 and 2


= 18393.6, 

respectively. In this study, the case of g = h = 0.5 is being considered as to see how each 

method performs under an extreme condition. The idea is that if a method performs 

reasonably well under extreme conditions, this provides some assurance that it will 

perform well under conditions likely to be encountered in practice. 
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Table 3.2: Some Properties of the g- and h- Distribution 

 

g 

 

h      1                2                


1                 


2  

0.0 

0.5 

0.5 

0.0 

0.0 

0.5 

     0.00            3.00            0.00             3.00 

     1.75            8.90            1.81             9.70 

       -                  -               120.10          18393.6 

Source: Wilcox (2005a) 

Listed in Table 3.2 are the skewness  1  and kurtosis  2 for the three 

distributions considered here. The estimated skewness ( 1



 ) and kurtosis ( 2



 ) of the g = 

0.5 and h = 0.5 distribution are based on 100,000 observations generated from the 

distribution are also shown in the table.   

 

3.4 Design Specification 

The design specifications shown in Table 3.3 – Table 3.10 are made up of the 

combinations of balanced and unbalanced sample sizes with homogenous and 

heterogeneous variances. The purpose of manipulating all the aforementioned variables 

is to examine the strengths and weaknesses of the tests.  Design specifications for J = 2 

and J = 4 are shown in the following tables. 

 

Table 3.3: Design specification for equal sample sizes and homogeneous variances  

(J = 2) 

N = 30 N = 40 

Group Sizes Group  

Variances 

Group Sizes Group  

Variances 

 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

15 15 1 1 20 20 1 1 
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Table 3.4: Design specification for equal sample sizes and heterogeneous variances  

(J = 2) 

N = 30 N = 40 

Group Sizes Group  

Variances 

Group Sizes Group  

Variances 

 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 

15 15 1 36 20 20 1 36 

 

Table 3.5: Design specification for unequal sample sizes and homogeneous variances  

(J = 2) 

 N = 30 N = 40 

Pairing Group Sizes Group Variances Group Sizes Group Variances 

 Group 

1 

Group 

2 

Group 

1 

Group 

2 

Group 

1 

Group 

2 

Group 

1 

Group 

2 

 12 18 1 1 15 25 1 1 

Table 3.6: Design specification for unequal sample sizes and heterogeneous variances  

(J = 2) 

 N = 30 N = 40 

Pairing Group Sizes Group Variances Group Sizes Group Variances 

 Group 

1 

Group 

2 

Group 

1 

Group 

2 

Group 

1 

Group 

2 

Group 

1 

Group 

2 

Positive  12 18 1 36 15 25 1 36 

Negative  12 18 36 1 15 25 36 1 
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Table 3.7: Design specification for equal sample sizes and homogeneous variances  

(J = 4) 

N = 60 

Group Sizes Group Variances 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

15 15 15 15 1 1 1 1 

N = 80 

Group Sizes Group Variances 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

20 20 20 20 1 1 1 1 

 

Table 3.8: Design specification for equal sample sizes and heterogeneous variances  

(J = 4) 

N = 60 

Group Sizes Group Variances 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

15 15 15 15 1 1 1 36 

N = 80 

Group Sizes Group Variances 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

20 20 20 20 1 1 1 36 

 

Table 3.9: Design specification for unequal sample sizes and homogeneous variances  

(J = 4) 

N = 60 

Group Sizes Group Variances 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

12 14 16 18 1 1 1 1 

N = 80 

Group Sizes Group Variances 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

10 20 20 30 1 1 1 36 
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Table 3.10: Design specification for unequal sample sizes and heterogeneous variances 

(J = 4) 

Pairing N = 60 

 Group Sizes Group Variances 

 Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Positive  12 14 16 18 1 1 1 36 

Negative  12 14 16 18 36 1 1 1 

 N = 80 

 Group 

1 

Group 

2 

Group 

3 

Group 

4 

Group 

1 

Group 

2 

Group 

3 

Group 

4 

Positive  10 20 20 30 1 1 1 36 

Negative  10 20 20 30 36 1 1 1 

 

3.5 Data Generation 

For each selected design specification shown in Table 3.3 – Table 3.10, five 

thousand data sets were simulated using significance level,  = 0.05. There are various 

numbers of simulations being used by previous researchers; usually, one thousand 

simulations were used for the trial stage and when the sampling distribution is known or 

be estimated. Ten thousand simulations were used when sampling distribution is really 

intractable or difficult to derive analytically. However, the frequently used number of 

simulations is five thousand.  

In their work, Lix and Keselman (1998) used five thousand data sets to obtain 

Type I error rates for one-way completely randomized designs in which the underlying 

distributions were nonnormal, variances were nonhomogeneous and groups sizes were 

unequal.  Keselman, Othman et al. (2004) also used five thousand replications for the 

new and improved two-sample t test. The same number of simulations was used by Syed 

Yahaya (2005) when examining Type I error and power rates of S1 statistic with robust 

scale estimators MADn, Sn dan Tn.  
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 The following steps will explain the generation of the pseudo-random variates 

for the g- and h- distribution: 

(i) Generate standard normal variates, Zij. This involved a basic usage of 

SAS generator RANNOR (SAS Institute, 1999) with mean equals to zero 

and standard deviation equals to one. 

(ii) Transform the standard normal variates to g- and h- variates via equation 

   

 














0g                                    ,2/exp

0g                   ,2/exp
1exp

2

2

2

ijij

ij

ij

ij

hZZ

hZ
g

gZ

X      [3.20] 

The parameter g controls the amount of skewness, while parameter h controls the 

kurtosis. 

 When dealing with skewed distributions, the central tendency measure such as 

the trimmed mean has value unequal to zero. To make certain that the null hypothesis 

remains true, the observations Xij, from each simulated distributions were standardized 

by subtracting the population central tendency parameter,   from the observations such 

that, 

   ijij XY                   [3.21] 

The value of   were determined by computing 


 with one million observations 

generated from the distribution under study (Othman et al., 2004; Wilcox & Keselman, 

2003). Therefore, when working with trimmed mean, the population trimmed mean 

should be subtracted from Xij to ensure that the null hypothesis for equal population 

trimmed means remains true. 

According to the 1,000,000 observations generated for robust scale estimators 

MADn, LMSn and also for 


, the population trimmed mean corresponding to the scale 
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estimators for each type of distribution are listed in Table 3.11. While for robust scale 

estimator Tn, the population trimmed mean was generated from 100,000 observations 

only as the computing time for the scale estimator Tn was quite long. Due to the time 

constraint and the limited power of the computer, we decided that the values of the 

population trimmed mean for Tn were based on 100,000 observations only. These values 

are recorded in Table 3.11. 

 

Table 3.11: Population trimmed mean for g- and h- distributions 

Distributions Robust scale estimators 

 MADn Tn LMSn 


 

g = 0.0 and h = 0.0 0.0021 0.0040 0.0023 0.0022 

g = 0.5 and h = 0.0 0.0327 0.0286 0.2647 0.0772 

g = 0.5 and h = 0.5 -0.0273 -0.0280 0.8075 0.0900 

 

The observations are then transformed in accordance to the variance condition by 

multiplying 2 to the centralized observations before adding in the term j . Note that 

j  is the dispersion of group trimmed means which represents the degree of departure 

from no effect (null hypothesis).   

For each design investigated, 5000 data sets were simulated. All of the 

procedures are tested using the 5% level of significance  05.0 .  According to Manly 

(1997), for a test at 5% level of significance, the minimum 1000 data sets are almost 

certain to yield the same results as would a full distribution, However, when using 5000 

data sets, better sampling limits within which estimated significance levels will fall 99% 

of the time were obtained when compared to the use of 1000 data sets (Manly, 1997).  
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After trying out the simulation with 5000, 8000 and 10,000 data sets, the results showed 

that even though higher data sets were used the Type I error rates did not change much. 

Therefore, based on these finding, the minimum value of 5000 datasets were used as the 

number of randomizations. The simulated data sets are used to compute the test statistic, 

T1.   

For each procedure of T1, every data set will then be bootstrapped B = 599 times. 

The choice of B = 599 is due to the fact that the test will produce the same result 

(converge to the same value) even if higher values are used. The effectiveness of this 

value was confirmed in Wilcox et al. (1998), who reported reasonable good results when 

using B = 599. 

 

3.6 Percentile Bootstrap  

Due to the intractability of the T1 distribution, percentile bootstrap method was 

used to conduct the hypothesis test on the T1 procedure. Babu et al. (1999) obtained the 

Type I error values for the S1 and T1 statistics by means of the percentile bootstrap 

method. They also discovered that the percentile bootstrap method produced better 

approximation than the one based on the normal approximation theory, and furthermore, 

this method works well especially when the samples are of moderate size.  

 

3.6.1 T1 with Bootstrap Method 

 To obtain the p-value of the T1 statistic by using the percentile bootstrap method, 

the steps are as follows; 

(a) Calculate T1 based on the available data. 
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(b) Generate bootstrap samples by randomly sampling with replacement nj 

observations from the j
th

 group yielding *

)(

*

)2(

*

)1( ,...,, jnjj j
XXX . 

(c) Each of the sample points in the bootstrapped groups must be centered at 

their respective estimated trimmed means so that the sample trimmed 

mean is zero, such that jtjijij niXXC ,...,2 ,1    ,**  . The empirical 

distributions are shifted so that the null hypothesis of the equal trimmed 

means among the J distributions is true. The strategy behind the bootstrap 

is to use the shifted empirical distributions to estimate an appropriate 

critical value. 

(d) Let *
1T be the value of T1 test based on the *

ijC values. 

(e) Repeat Step (a) to Step (d) B times yielding *

)1(

*

2)1(

*

1)1( ,...,, BTTT . B = 599 

appears sufficient in most situations when 12jn  (Wilcox, 2005a). 

(f) Calculate the p-value as number of 
B

TT B 1
*

1 
. 

The calculated p-values are the estimated rates of Type I error for the procedures 

investigated under the T1 statistic.  The option of using B is based on Hall (1986; pp. 

1453) which noted that: 

To make our point about coverage probability, recall that if we conduct B 

bootstrap simulations, the resulting statistic values divide the real line into 

B + 1 parts. Therefore, in principle, confidence interval whose critical 

points are based on B simulations have coverage probabilities close to 

nominal levels  
1B

b
    for b = 1,…., B.   
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Hall (1986) also stated that it is advantageous to choose B such that the nominal level, 

  , is a multiple of   1
1


B .  Efron and Tibshirani (1993) suggested that B should be at 

least 500 or 1000 in order to make the variability of the estimated percentile acceptably 

low.  When B is set at 599 instead of 600, the results show that the liberal values become 

non-liberal (Wilcox et al., 1998). They have found that the liberal values of Welch test 

decreased from 0.076 to 0.074 and from 0.078 to 0.077.  Wilcox and Keselman (2002) 

have tried B = 2000 and they suggested that this number offers no practical value.  In 

this study, B is set to be 599 with the reason that 599 is the lowest value that can make 

  a multiple of   1
1


B based on suggestion by Efron & Tibshirani (1993).  

Furthermore, trials on various numbers of bootstraps from B = 599 to 999 with the 

increment of 100 found that the p-values for different number of bootstraps are 

consistent.  Thus, to save the running time, this study chose for the smallest B in the 

range. 
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CHAPTER 4 

  RESULTS OF THE ANALYSIS 

 

4.1 Introduction 

This study centered on the proposed test statistic for testing the equality of 

central tendency measures, namely T1. This statistic was modified with predetermined 

asymmetric trimming and automatic trimming using robust scale estimators suggested 

by Rousseeuw and Croux (1993), i.e., MADn, Tn, and LMSn. The procedures were then 

compared in terms of Type I error for their robustness. Various conditions to test the 

strengths and weaknesses of each of the procedures were also considered in this study 

such as the shape of distributions, balanced and unbalanced sample sizes, equal and 

unequal group variances, and the nature of the pairings of groups sample sizes and group 

variances. The procedures were then tested under two cases: the two (J = 2) and four (J 

= 4) groups cases. For each case, two total sample sizes (N) were suggested. As for J = 

2, the total sample sizes are N = 30 and N = 40, while for J = 4, N = 60 and N = 80. The 

results, which are in the form of Type I error values, are presented in tables.  

 First column of the tables are types of distributions with different levels of 

skewness. They are g = 0.0 and h = 0.0, g = 0.5 and h = 0.0, and g = 0.5 and h = 0.5 

representing zero, skewed with normal tail and extreme, respectively. For the 

unbalanced cases, the second column represents the nature of pairings (positive and 

negative) of group sample sizes and group variances. The other columns show the Type 

I error values obtained for each investigated procedure. These procedures are 

represented by their trimming strategies using robust scale estimators, namely MADn, Tn, 

LMSn, HQ1 and 15% trimming, 


.  In this section, the T1 procedures will be denoted by 
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its estimator (e.g. T1 with MADn is denoted as MADn). The rows represent the average 

values of each procedure corresponding to each distributional shape. The grand average 

values are displayed in the last row of every table. These grand average values were 

obtained by averaging all of the Type I error values generated by each procedure. Each 

value represents the overall performance of each procedure and all of the Type I error 

values reported are based on non-directional tests.  

 

4.2 Type I Error for J = 2 

The results of the analysis on the Type I error rates for J = 2 using T1 statistic is 

shown in Table 4.1 to Table 4.4. The empirical Type I error rates are displayed for 

balanced and unbalanced sample sizes. For each condition, the table is partitioned 

according to the different total sample sizes, i.e., N = 30 and N = 40. The values that 

satisfied the Bradley’s criterion of robustness are highlighted in bold and the average 

values that satisfied the criterion are also underlined. 

 

4.2.1 Equal sample sizes and homogeneous variances 

The empirical Type I error rates for the condition of equal sample sizes and 

homogenous variances are presented in Table 4.1 and Table 4.2. 

Based on Table 4.1, the Type I error rates for 


, t-test and Mann-Whitney fall 

within the Bradley’s interval regardless of distributions.  For the proposed procedures, 

HQ1 also shows robustness except when the distribution is extremely skewed (g = 0.5, h 

= 0.5).  The Mann- Whitney procedure produced the best Type I error rates under this 

condition.  
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 As the sample size increased (N = 40), the Type I error rates for all procedures 

improved.  The HQ1 procedure robust throughout the three distributions.  In addition, Tn 

also generate Type I error within Bradley’s interval under normal distribution.   

 

Table 4.1: Type 1 error rates (Equal sample sizes and homogeneous variances, N = 

30) 

N = 30 (15, 15) and variances (1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0 0.0170 0.0192 0.0130 0.0454 0.0444 0.0462 0.0450 

g = 0.5 and h = 0.0 0.0138 0.0192 0.0104 0.0420 0.0352 0.0426 0.0420 

g = 0.5 and h = 0.5 0.0088 0.0100 0.0076 0.0372 0.0172 0.0276 0.0420 

Average 0.0132 0.0161 0.0103 0.0415 0.0323 0.0388 0.0431 

 

 

Table 4.2: Type 1 error rates (Equal sample sizes and homogeneous variances, N = 

40) 

N = 40 (20, 20) and variances (1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0 0.0244 0.0262 0.0194 0.0522 0.0536 0.0528 0.0560 

g = 0.5 and h = 0.0 0.0224 0.0234 0.0172 0.0490 0.0486 0.0474 0.0566 

g = 0.5 and h = 0.5 0.0138 0.0150 0.0102 0.0442 0.0336 0.0288 0.0526 

Average 0.0202 0.0215 0.0156 0.0485 0.0452 0.0430 0.0539 

 

 

 

 

 

 

 



60 

 

4.2.2 Equal sample sizes and heterogeneous variances 

 

For this case, the empirical Type I error rates for all the procedures are displayed 

in Table 4.3 and Table 4.4. The Type I error rates for 


, HQ1 and t-test are robust 

regardless of distributions.   The automatic trimming procedure Tn is also robust except 

under extreme distribution.     The results show some improvement in the automatic 

trimming of Tn and MADn, as the sample size increased.  

 

Table 4.3: Type 1 error rates (Equal sample sizes and heterogeneous variances N = 

30) 

 

N = 30 (15, 15) and variances = (1:36) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0 0.0248 0.0272 0.0238 0.0468 0.0624 0.0596 0.0766 

g = 0.5 and h = 0.0 0.0332 0.0326 0.0808 0.0518 0.0432 0.0746 0.0776 

g = 0.5 and h = 0.5 0.0164 0.0144 0.2666 0.0482 0.0416 0.0374 0.0664 

Average 0.0248 0.0247 0.1230 0.0489 0.0491 0.0572 0.0735 

 

Table 4.4: Type 1 error rates (Equal sample sizes and heterogeneous variances N = 

40) 

N = 40 (20, 20) and variances = (1:36) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0 0.0298 0.0320 0.0278 0.0538 0.0592 0.0618 0.0938 

g = 0.5 and h = 0.0 0.0414 0.0448 0.1132 0.0568 0.0602 0.0882 0.0820 

g = 0.5 and h = 0.5 0.0192 0.0214 0.4228 0.0516 0.0676 0.0430 0.0758 

Average 0.0301 0.0327 0.1879 0.0541 0.0623 0.0643 0.0853 
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4.2.3 Unequal sample sizes and homogeneous variances 

 

The empirical Type I error rates for unequal sample sizes and homogeneous 

variances are shown in Table 4.5 and Table 4.6. The group sample sizes for N = 30 and 

N = 40 were set as n1 = 12, n2 = 18 and n1 = 15, n2 = 25 respectively.  

Table 4.5: Type 1 error rates (Unequal sample sizes and homogeneous variances,  

N = 30) 

N = 30 (12, 18) and variances = (1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0 0.0200 0.0222 0.0170 0.0454 0.0482 0.0494 0.0502 

g = 0.5 and h = 0.0 0.0190 0.0220 0.0148 0.0430 0.0344 0.0476 0.0472 

g = 0.5 and h = 0.5 0.0100 0.0110 0.0076 0.0368 0.0162 0.0332 0.0472 

Average 0.0163 0.0184 0.0131 0.0417 0.0329 0.0434 0.0482 

 

Table 4.6: Type 1 error rates (Unequal sample sizes and homogeneous variances, N 

= 40) 

N = 40 (15, 25) and variances = (1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0 0.0250 0.0258 0.0216 0.0512 0.0496 0.0490 0.0510 

g = 0.5 and h = 0.0 0.0238 0.0272 0.0218 0.0492 0.0408 0.0468 0.0502 

g = 0.5 and h = 0.5 0.0170 0.0172 0.0122 0.0450 0.0218 0.0324 0.0520 

Average 0.0219 0.0234 0.0185 0.0485 0.0374 0.0427 0.0511 

 

 

For both tables, every entry in the 


, t-test and Mann-Whitney is highlighted in 

bold, which reflects that the procedure has good control of Type I error rates across the 

three types of distributions for both sample sizes.  The proposed HQ1 is in control of 
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Type I error rates under normal and mildly skewed distributions.  However, none of the 

automatic trimming procedures are robust for small sample size, but as the sample size 

increased, Tn and MADn under normal distribution become robust, while Tn maintains its 

robustness even under mildly skewed distributions.   

 

4.2.4 Unequal sample sizes and heterogeneous variances 

 

 

The results of the investigation on unequal sample sizes and heterogeneous 

variances are presented in Table 4.7 and Table 4.8.  For this case, as stated earlier, there 

is an additional column for the pairing category. Positive pairing refers to the case in 

which the largest sample size is associated with population having the largest variance 

and the smallest sample size is associated with the population having the smallest 

variance. While negative pairing refers to the case in which the smallest sample size is 

associated with the population having the largest variance, and the largest sample size is 

associated with the population having the smallest variance. 

As shown in Table 4.7 and Table 4.8, the 


and HQ1 are robust across the three 

types of distributions for both total sample sizes. However, Mann-Whitney only 

produced robust Type I error rates for positive pairing regardless of type of distribution. 
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Table 4.7: Type 1 error rates (Unequal sample sizes and heterogeneous variances,  

N = 30) 

N = 30 (12, 18) and variances (1:36) and (36:1) 

Distribution Pairing T 1  with scale estimator   

  MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0  Positive 0.0246 0.0264 0.0226 0.0504 0.0546 0.0242 0.0532 

Negative 0.0256 0.0220 0.0236 0.0462 0.0572 0.1168 0.1202 

Average  0.0251 0.0242 0.0231 0.0483 0.0559 0.0705 0.0867 

g = 0.5 and h = 0.0 Positive 0.0350 0.0340 0.0934 0.0500 0.0524 0.0276 0.0536 

Negative 0.0376 0.0334 0.0724 0.0506 0.0392 0.1394 0.1092 

Average  0.0363 0.0337 0.0829 0.0503 0.0458 0.0835 0.0814 

g = 0.5 and h = 0.5 Positive 0.0164 0.0158 0.3530 0.0510 0.0384 0.0124 0.0458 

Negative 0.0168 0.0132 0.1996 0.0450 0.0374 0.0892 0.0968 

Average  0.0166 0.0145 0.2763 0.0480 0.0379 0.0508 0.0713 

Grand Average  0.0260 0.0241 0.1294 0.0489 0.0465 0.0683 0.0798 

 

Table 4.8: Type 1 error rates (Unequal sample sizes and heterogeneous variances,  

N = 40) 

N = 40 (15, 25) and variances (1:36) and (36:1) 

Distribution Pairing T 1  with scale estimator   

  MAD n  T n  LMS n  


 HQ1 t-test Mann-

Whitney 

g = 0.0 and h = 0.0  Positive 0.0326 0.0344 0.0274 0.0548 0.0620 0.0270 0.0508 

Negative 0.0242 0.0256 0.0244 0.0466 0.0594 0.1290 0.1244 

Average  0.0284 0.0300 0.0259 0.0507 0.0607 0.0780 0.0876 

g = 0.5 and h = 0.0 Positive 0.0380 0.0416 0.1302 0.0540 0.0604 0.0340 0.0440 

Negative 0.0352 0.0384 0.0858 0.0466 0.0400 0.1540 0.1068 

Average  0.0366 0.0400 0.1080 0.0503 0.0502 0.0940 0.0754 

g = 0.5 and h = 0.5 Positive 0.0186 0.0216 0.5230 0.0552 0.0648 0.0140 0.0420 

Negative 0.0172 0.0162 0.2624 0.0470 0.0382 0.1020 0.1080 

Average  0.0179 0.0189 0.3927 0.0511 0.0515 0.0580 0.0750 

Grand Average  0.0276 0.0296 0.1755 0.0507 0.0541 0.0767 0.0793 
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For T1 with automatic trimming strategies, the results are not consistent. Under 

normal distribution with N = 30, only MADn shows robustness based on the average 

value.  As the total sample size increased, the performance of Tn and LMSn also 

improved where all the automatic trimming strategies are robust.   

When the distribution is skewed with normal tail (g = 0.5 and h = 0.0), the Type I 

error rates for Tn and MADn are within the Bradley’s interval for both pairings and both 

total sample sizes, but this is not the case for LMSn.  As the skewness increased, the 

Type I error rates for the automatic trimming worsen. None of the procedures can be 

considered robust under extremely skewed distribution.  The t-test does not seem to 

perform well under most conditions.  

 

4.3 Type 1 Error for J = 4 

 

 

The previous section (4.2.1) discussed on the results of J = 2 case. Like in the 

case of J = 2, the conditions for the four groups case (J = 4) are the same except for 

changes in the total sample sizes to N = 60 and N = 80. The results of the analysis of the 

Type I error rates using T1 statistic for J = 4 are shown in Table 4.9 to Table 4.16.  

 

4.3.1 Equal sample sizes and homogeneous variances 

 

For the condition of equal sample sizes and homogeneous variances, the results 

for all the procedures investigated are presented in Table 4.9 and Table 4.10. Like in the 

previous sections, the values that satisfied the Bradley’s robust criterion were 

highlighted in bold and the average values that satisfied the criterion were also 

highlighted and underlined. 
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Based on all of the Type I error values in Table 4.9 and Table 4.10, T1 with HQ1, 

T1 with 


, ANOVA and Kruskal Wallis produced Type I error rates that satisfied 

Bradley’s criterion of robustness. As sample sizes increased the average Type I error 

values for all the procedures improved (approaching 0.05).  However, the automatic 

trimming strategies still produced conservative Type I error for T1 statistic even with 

larger sample sizes.   

 

Table 4.9: Type 1 error rates (Equal sample sizes and homogeneous variances,  

N = 60) 

N = 60 (15, 15, 15, 15) and variances  (1:1:1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0 0.0062 0.0084 0.0028 0.0404 0.0434 0.0498 0.0418 

g = 0.5 and h = 0.0 0.0050 0.0080 0.0022 0.0366 0.0286 0.0490 0.0448 

g = 0.5 and h = 0.5 0.0030 0.0030 0.0016 0.0294 0.0072 0.0274 0.0448 

Average 0.0047 0.0065 0.0022 0.0355 0.0264 0.0421 0.0438 

 

Table 4.10: Type 1 error rates (Equal sample sizes and homogeneous variances,  

N = 80) 

N = 80 (20, 20, 20, 20) and variances  (1:1:1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0 0.0110 0.0124 0.0096 0.0452 0.0486 0.0518 0.0464 

g = 0.5 and h = 0.0 0.0114 0.0116 0.0068 0.0402 0.0412 0.0550 0.0498 

g = 0.5 and h = 0.5 0.0050 0.0044 0.0028 0.0318 0.0208 0.0290 0.0498 

Average 0.0091 0.0095 0.0064 0.0391 0.0369 0.0453 0.0487 
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4.3.2 Equal sample sizes and heterogeneous variances 

 

Table 4.11 and Table 4.12 depicts the empirical Type I error rates for the 

condition of equal sample sizes and heterogeneous variances.  The group variances were 

set at 1:1:1:36.   

 

Table 4.11: Type 1 error rates (Equal sample sizes and heterogeneous variances, 

 N = 60) 

 

N = 60 (15, 15, 15, 15) and variances  (1:1:1:36) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0 0.0124 0.0156 0.0072 0.0410 0.0526 0.1046 0.0690 

g = 0.5 and h = 0.0 0.0176 0.0216 0.0388 0.0424 0.0386 0.1380 0.0696 

g = 0.5 and h = 0.5 0.0068 0.0068 0.1514 0.0368 0.0202 0.2270 0.0642 

Average 0.0123 0.0147 0.0658 0.0401 0.0371 0.1565 0.0676 

 

 

Table 4.12: Type 1 error rates (Equal sample sizes and heterogeneous variances,  

N = 80) 

 

N = 80 (20, 20, 20, 20) and variances  (1:1:1:36) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0 0.0194 0.0214 0.0162 0.0498 0.0548 0.1096 0.0720 

g = 0.5 and h = 0.0 0.0262 0.0258 0.0672 0.0490 0.0532 0.1270 0.0734 

g = 0.5 and h = 0.5 0.0110 0.0102 0.3006 0.0468 0.0544 0.2346 0.0684 

Average 0.0189 0.0191 0.1280 0.0485 0.0541 0.1571 0.0713 
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A glance through the columns shows that, the T1 statistic with automatic 

trimming strategies using MADn and Tn produced conservative Type I error rates, while 

for the other trimming strategy, i.e. LMSn, we observe an erratic pattern of the values.   

In contrast, ANOVA produced liberal values exceeding 0.1.  Robust values could be 

observed under the columns of 


 and Kruskal Wallis for sample sizes N = 60.  Even 

though HQ1 produced average robust value, but this procedure failed to control its Type 

I error under extreme condition (g = 0.5 and h = 0.5).  When the sample size was 

increased to 80, the rates under extreme condition improved tremendously.  Consistent 

values were observed under HQ1.  The larger sample size also improved the Type I error 

rates for 


.  Even though the values for Kruskal Wallis procedure are still within the 

robust criteria, the effect of larger sample size also caused the Type I error values to 

inflate. 

 

4.3.3 Unequal sample sizes and homogeneous variances 

 

The performance of the procedures under unequal sample sizes and 

homogeneous variances are shown in Table 4.13 and Table 4.14.  

Under this condition, the 


, ANOVA and Kruskal Wallis column produced 

Type I error values which are within the Bradley’s interval for both total sample sizes. 

When the total sample size increased from N = 60 to N = 80, the Type I error values for 




, ANOVA and Kruskal Wallis are also improved, producing Type I error values which 

are nearer to the nominal level ( )05.0 .  The Type I error value for HQ1 are also 

robust for normal distribution and still robust when the distribution is skewed with 
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normal tailed (g = 0.5 and h = 0.0). Unlike 


, ANOVA and Kruskal Wallis, the Type I 

error values  for HQ1 are decreased when the number of sample size are increased. 

 

Table 4.13: Type 1 error rates (Unequal sample sizes and homogeneous variances,  

N = 60) 

N = 60 (12, 14, 16, 18) and variances  (1:1:1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0 0.0108 0.0110 0.0050 0.0452 0.0406 0.0484 0.0440 

g = 0.5 and h = 0.0 0.0060 0.0052 0.0030 0.0370 0.0254 0.0444 0.0422 

g = 0.5 and h = 0.5 0.0028 0.0024 0.0020 0.0272 0.0058 0.0276 0.0422 

Average 0.0065 0.0062 0.0033 0.0365 0.0239 0.0401 0.0428 

 

Table 4.14: Type 1 error rates (Unequal sample sizes and homogeneous variances,  

N = 80) 

N = 80 (10, 20, 20, 30) and variances  (1:1:1:1) 

Distribution T 1  with scale estimator   

 MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0 0.0168 0.0150 0.0142 0.0486 0.0498 0.0492 0.0420 

g = 0.5 and h = 0.0 0.0132 0.0160 0.0110 0.0464 0.0372 0.0494 0.0506 

g = 0.5 and h = 0.5 0.0074 0.0068 0.0056 0.0334 0.0162 0.0388 0.0506 

Average 0.0125 0.0126 0.0103 0.0428 0.0344 0.0458 0.0477 

 

4.3.4 Unequal sample sizes and heterogeneous variances 

 

 

 

The Type I error rates presented in Table 4.15 and Table 4.16 were obtained from the 

tests performed on the unequal sample sizes and heterogeneous group variances. For this 

case, the study also involved investigations on the positive and negative pairings of 
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group variances and group sample sizes. The Type I error values for both pairings were 

averaged and recorded under “Average” for each distribution. Table 4.15 and Table 4.16 

also include the “Grand Average” which represents the average Type I error values 

across the distributions.  

As shown in the table, all the Type I error values of T1 statistic which used 


 as 

trimming strategy are robust according to the Bradley’s interval for both total sample 

sizes. The values ranging from 0.0376 to 0.0506 are quite close to the nominal level 

( )05.0 . The Type I error values  for HQ1 are also robust for normal distribution and 

g = 0.5 and h = 0.0 distribution. In contrast, T1 with MADn, Tn and LMSn, ANOVA and 

Kruskal Wallis produced Type I error that met Bradley’s criterion for certain cases only. 

They are   i) under skewed normal-tailed distribution and negative pairing for both 

sample sizes, Type I error rates that satisfied the Bradley’s criterion were observed,   ii) 

again, under skewed normal-tailed distribution and positive pairing for both sample 

sizes, T1 with LMSn produced Type I error rates within Bradley’s criterion, iii) for 

ANOVA, under normal distribution for both total sample sizes, iv) robust Type I error 

values only on positive pairing for both sample sizes for Kruskal Wallis. 
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Table 4.15: Type 1 error rates (Unequal sample sizes and heterogeneous variances,  

N = 60) 

 

N = 60 (12, 14, 16, 18) and variances (1:1:1:36) and (36:1:1:1) 

Distribution Pairing T 1  with scale estimator   

  MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0  Positive 0.0112 0.0116 0.0082 0.0438 0.0398 0.0678 0.0584 

Negative 0.0172 0.0146 0.0164 0.0428 0.0550 0.1596 0.0832 

Average  0.0142 0.0131 0.0123 0.0433 0.0474 0.1137 0.0708 

g = 0.5 and h = 0.0 Positive 0.0174 0.0164 0.0434 0.0406 0.0394 0.0978 0.0596 

Negative 0.0260 0.0248 0.0492 0.0454 0.0342 0.2002 0.0848 

Average  0.0217 0.0206 0.0463 0.0430 0.0368 0.1490 0.0722 

g = 0.5 and h = 0.5 Positive 0.0066 0.0062 0.2094 0.0376 0.0174 0.1920 0.0520 

Negative 0.0098 0.0086 0.1422 0.0392 0.0224 0.2628 0.0760 

Average  0.0082 0.0074 0.1758 0.0384 0.0199 0.2274 0.0640 

Grand Average  0.0147 0.0137 0.0781 0.0416 0.0347 0.1634 0.0690 

 

 

Table 4.16: Type 1 error rates (Unequal sample sizes and heterogeneous variances,  

N = 80) 

N = 80 (10, 20, 20, 30) and variances (1:1:1:36) and (36:1:1:1) 

Distribution Pairing T 1  with scale estimator   

  MAD n  T n  LMS n  


 HQ1 ANOVA Kruskal 

Wallis 

g = 0.0 and h = 0.0  Positive 0.0184 0.0174 0.0128 0.0504 0.0616 0.0336 0.0418 

Negative 0.0206 0.0208 0.0176 0.0464 0.0476 0.2840 0.1148 

Average  0.0195 0.0191 0.0152 0.0484 0.0546 0.1588 0.0783 

g = 0.5 and h = 0.0 Positive 0.0190 0.0218 0.0702 0.0470 0.0394 0.0754 0.0478 

Negative 0.0252 0.0252 0.0476 0.0506 0.0354 0.3282 0.1152 

Average  0.0221 0.0235 0.0589 0.0488 0.0374 0.2018 0.0815 

g = 0.5 and h = 0.5 Positive 0.0074 0.0096 0.3896 0.0424 0.0288 0.1486 0.0446 

Negative 0.0128 0.0096 0.1240 0.0410 0.0300 0.3544 0.0996 

Average  0.0101 0.0096 0.2567 0.0417 0.0294 0.2515 0.0481 

Grand Average  0.0172 0.0174 0.1103 0.0463 0.0405 0.2040 0.0693 
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CHAPTER 5 

  DISCUSSION AND CONCLUSIONS 

 

5.1 Introduction 

 

The goal of this study was to find alternative methods in testing the equality of 

location measures as most frequently used conventional methods such as the ANOVA 

F-test or the t-test are known to be sensitive to certain assumptions.  In particular, non-

normality and variance heterogeneity tend to disrupt the Type I error control and the 

power to detect differences between the central tendency measures. Other alternative 

methods namely the nonparametric procedures are known to be less powerful.   

In this study, a test statistics for testing the equality of central tendency measures 

was proposed. The procedure is the T1 statistic by itself, not in the adaptive manner as 

originally introduced by Babu et al. (1999).  T1 is a statistic suitable to be used when the 

distributions are symmetric. In its original state, T1 statistics used trimmed mean as the 

central tendency measure.  In this study, we proposed that the trimmed mean for T1 is 

obtained via three types of trimming method; (i) automatic trimming strategy which the 

amount of trimming is determined by the characteristics of the sample data, (ii) 

predetermined asymmetric trimming based upon hinge estimators and (iii) fix amount of 

trimming. The automatic trimming strategy was based upon trimming criteria using 

robust scale estimators, MADn, Tn and LMSn. These estimators were recommended by 

Rousseeuw and Croux (1993) due to their highest breakdown value (0.5) and bounded 

influence function.  In addition, these estimators are simple and easy to compute. The fix 

amount of trimming, 15% symmetric trimming (


) was used as a benchmark in this 
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study. This study also included t-test and ANOVA and also nonparametric methods, 

such as Mann-Whitney and Kruskal Wallis. 

Altogether, seven procedures were proposed.  The modified procedures under the 

T1 statistic are T1 statistic with automatic trimming using robust scale estimators, MADn, 

Tn and LMSn, the T1 statistic with predetermined asymmetric trimming. The T1 with 


, 

t-test or ANOVA and Mann-Whitney or Kruskal Wallis procedures were considered in 

this study for comparison purposes. 

Each of the proposed procedures was then tested for the effect of non-normality 

and heteroscedasticity on the Type I error and power of test.  To accomplish the tests, 

three types of distributional shapes representing different levels of skewness were used 

to test the non-normality effect and the unequal variances of 1:36 ratio were used for the 

heteroscedasticity effect.  In addition other variables such as the number of groups 

(varying from two to four), and the nature of pairings of group sizes and group variances 

(positive and negative pairing) were also included as these variables were also proven to 

have some effect on the rates of Type I error and power of test (Othman et al., 2004).   

For the purpose of comparison, Type I error rates were also collected for the balanced 

design consisting of equal sample sizes and equal group variances. 

Data from the g- and h- distributions representing different level of skewness and 

kurtosis were used to test the nonnormality effect. The normal distribution is represented 

by the distribution of g = 0.0 and h = 0.0, the skewed normal-tailed is represented by the 

g = 0.5 and h = 0.0 distribution, while the g = 0.5 and h = 0.5 represents the skewed 

leptokurtic (extremely skewed) distribution. Each procedure was simulated 5000 times 

and then bootstrapped 599 times.  Due to the intractability of the sampling distributions 

of the statistics, the bootstrap percentile method was used to test the hypothesis. 
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The rates of Type I error for each procedure were determined and compared.  In 

searching for the best procedure/s, comparisons were made between the modified 

procedures versus the original procedures, and also within the modified procedures.  The 

best procedure will produce the empirical Type I error rate nearest to the nominal value 

of 0.05.  The robustness of the procedures was also examined.  By adopting Bradley’s 

(1978) liberal criterion of robustness, a procedure is considered robust if its empirical 

rate of Type I error, is within the interval 0.025 and 0.075 for a 0.05 significance level. 

 

5.2 The new T1 procedures 

5.2.1 Case of two groups 

Under ideal condition (equal sample sizes, homogeneous variance, and normal 

distribution), the conventional (t-test and Mann-Whitney), the original (


), and the HQ1 

produced robust Type I error rates.  Tn also showed robustness, but under larger sample 

size.   The performance of the conventional, original and HQ1 maintain even under 

skewed distributions, but none of the automatic trimming procedures achieved 

robustness.  

When variances are heterogenous and sample sizes are equal, most of the 

procedures under normal distribution are robust especially for larger sample size.  

However, for both sample sizes, the Mann-Whitney procedure is not robust.  Under 

skewed distribution, the proposed automatic trimming procedures become better except 

for LMSn.   

Under unequal sample sizes with homogeneous variances, the conventional and 

original procedures have good control of Type I error rates for both total sample sizes.  

The proposed asymmetric trimming, HQ1 performs as good as the conventional and 
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original procedures, but not when the distribution is extremely skewed.  Even though fail 

to perform under smaller sample size, the automatic trimming procedures namely MADn 

and Tn improved when the sample size increased.   

In the case of unequal sample sizes and heterogenous variances, the HQ1 

performs as good as the original procedure where all the Type I error are within the 

robust criterion.  The Type I error rates for MADn and Tn are also within the robust 

criterion under normal and mildly skewed.  In general under this case, most of the Type 

I error rates of the conventional procedures are not within the robust interval with values 

as large as 0.1540 for t-test and 0.1244 for Mann-Whitney.   

 

5.2.2 Case of four groups 

For conditions of equal sample sizes, homogeneous variance, and normal 

distribution, the conventional (ANOVA and Kruskal Wallis), the original (


), and the 

HQ1 produced robust Type I error rates.  The performance of the conventional, original 

and HQ1 maintain even under skewed distributions, but none of the automatic trimming 

procedures achieved robustness.  

Under equal sample sizes and variances are heterogenous, the original, Kruskal 

Wallis and the HQ1 procedures maintain their performances regardless of distributions. 

LMSn also showed robustness for mild skewed distribution. MADn and Tn also produced 

robust Type I error under larger sample size.    

When variances are homogeneous and sample sizes are unequal, the 

conventional and original procedures have good control of Type I error rates for both 

total sample sizes.  The proposed asymmetric trimming, HQ1 performs as good as the 

conventional and original procedures, but not when the distribution is extremely skewed.  
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In the case of unequal sample sizes and heterogenous variances, the HQ1 

performs as good as the original procedure where all the Type I error are within the 

robust criterion except for smaller sample sizes under extremely skewed distribution.  

The Type I error rates for MADn, Tn and LMSn are also within the robust criterion under 

mildly skewed distribution with negative pairing especially for larger sample sizes.  In 

general under this case, the Type I error rates of the conventional procedures are fell 

within the robust interval only for positive pairing for all type of distribution for Kruskal 

Wallis. 

 

5.3 Implications 

Our goal is to search for some alternative methods in testing the equality of 

location measures for skewed distributions.  In this final chapter, we would like to share 

some of the advances that emerged from this study. Modifications made on the T1 

statistic successfully improved the performance of the statistic in terms of Type I error 

and power.   

It is our impression that applied researchers would prefer a method that 

compared treatment performance across groups with a measure for the typical score 

which was based on as much as the original data as possible.   T1 statistic with 

asymmetric trimming HQ1 will be the best choice for this purpose because when 

working with the T1 with HQ1 procedures, the researchers can work with the original 

data without having to worry about shape of the distribution.   

These modified methods may serve as alternatives to some other robust statistical 

methods which are unable to handle either the problem of non-normality, variance 

heterogeneity or unbalanced design.  This study may generate ideas for future research 
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in robust methods simultaneously contributes to filling the gaps in the literature in this 

field. 

 

5.4 Suggestion for Future Research 

As stated in the earlier chapter, what is desired in this study is an inference 

procedure which in some sense performs almost as well as possible if the assumption is 

true, but does not perform much worse within a range of alternatives to the assumption.  

We have proved that some of the modified methods in this study were robust and 

performed remarkably well under violated assumptions, but when the assumption is true, 

such as under symmetric balanced design, the procedures failed to show robustness.  

Since we were able to improve the original methods by substituting the scale estimators 

used in the methods with some of the most robust scale estimators, this study should be 

continued with some other robust scale estimators in order to find solutions to the 

conservative Type I error rates and smaller power rates for the balanced design.  

Rousseeuw and Croux (1993) suggested plenty of alternatives that is worthy of 

consideration.   

As accomplished in this study, by respectively substituting trimmed means and 

Winsorized variances (using trimmed mean) in place of usual means and variances, into 

T1 statistic (Babu et al., 1999), robustness to both nonnormality and variance 

heterogeneity can be achieved, even if the sample sizes are unequal. 

To empirically determine how much trimming is really needed is difficult and 

not always obvious. However, if the data need to be trimmed, the trimming has to be 

done meticulously in order to avoid unnecessary trimming.  This can be achieved by 

using the new trimming strategies with automatic trimming or asymmetric trimming 
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proposed in this study.  By using this approach, we do not trim a fixed amount of data. 

Othman et al. (2002) in their study reported from the theoretical considerations that 

when data are said to be skewed to the right, then in order to achieve robustness to 

nonnormality and greater sensitivity to detect effects, one should trim data just from the 

upper tail of the data distribution.  

In this study, our main concern is about the trimming methods and how much 

trimming need to be done to avoid loss of important information when nonnormality and 

variance heterogeneity exist. In dealing with these problems, a few new trimming 

strategies were proposed. These trimming strategies will ensure that the aforementioned 

problems will be adequately addressed.  

To improve the performance of the T1 procedures, we used bootstrapping method 

to test the hypotheses.  The reason of using bootstrapping method was due to the fact 

that the sampling distributions for the statistics used were intractable.  Certainly, further 

research is required in arriving at the sampling distributions. Too much reliance on 

resampling techniques to come up with a pseudo sampling distribution goes against the 

grain of traditional mathematical statistics whereby a sampling distribution or an 

asymptotic sampling distribution is always preferable. 
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