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1. Introduction
A starting point in the study of econometrics is the classical linear regression model (CLRM).

The term “regression model” refers to a functional relationship between a dependent variable
and explanatory variable(s).

The term “linear” refers to a regression model that is linear in parameters (not nccessarily lincar
in explanatory variables).

The tertn “classical” refers to a set of basic assumptions that must hold in order for ordinary
least squares (OLS) estimator to be considered as the best estimator in a regression model.

If onc or more of these classical assumptions are violated or relaxed, OLS may no longer be the
best (1.e. other estimators may prove to be superior to OLS).

For this reason, it’s important for us to determine whether the classical assumptions hold for any
regression models that we want to estimate.

We'll start with a multiple ltnear regression model, where the term “multiple” refers to the
number of explanatory variables.

2. Multiple Linear Regression Model

A multiple linear regression model can be written as follows,
(D) vy, =0 +px, +Bx, +..+ P.x, +E,
where

1 = index of observations 1= 1,2, ..., N);
%, = k" explanatory variable (k = 2, ..., K);
B, = intercept term

B, = cocfficient of x,; and

€ = error term (or disturbance term).

1

Note: i could denote individuals or time; usually t denotes a time index.
Given the model in Eq.(1), the assumptions of the CLRM are as follows:
A1) The regression model is linear in parameters, [3’s.

This assumption allows us to obtain the analytical solution of OLS estimator.
A2) The regression model 1s correctly specified (no specification error).

This assumption means that all of the relevant variables have been included and the functional
form used is correct.

A3) The expected value of each error term conditional on x is zero,
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(3) E@€lx) =0 forallfs

= Each explanatory variable, x,, is not correlated with €.
= The expected value of y is not affected by €.

—The marginal effect of x, on y is not affected by €.
A4) The variance of each error term is constant,

(4) Var(e) = 0" forallt’s

That s, the individual values of y are spread around their mean value, E(y/|x), with the same
variance.

If this assumption is violated, then we’ll have heteroskedasticity problem.
A5) The error terms arc not correlated with each other,

(5) Cov(g,g) =0for1#]

That s, there’s no systematic relationship between any two crror terms.
I this assumption is violated, then we’ll have autocorrelation problem.
A6) There’s no exact/petfect collinearity between/among x’s.

Consider the regression model,
(6) E(.Vi|x2i’x3i ) =B + B,x,; + Bix,,

No exact collinearity means that x, cannot be expressed as an cxact linear function of x, (or vice
versa).

E.g If x,, = 3 + 2x;, or x,, = 4x,, then the two variables are collinear.

Suppose x,, = 4x,. Then, substituting this into Eq.(6) yields

le'»x}f)z B+ b, (4x3,)+ Bix,;
=B +(4p +B)x, =B +Ax,, ——————— (7)

| N

A

E(y,

Eq.(7) is a simplc (not multiple) lincar regression model. If we estimate Eq.(7) and obtain an
estimate for A, therc’s no way we can get estimates for 3, and ;.

Hence, we cannot assess the individual cffect of x, and x, on the conditional mean of y.
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In practice, we seldom encounter the case of exact/perfect collinearity. However, there’re
numerous cases of high yet imperfect collinearity.

A7) The error term follows the normal distribution with zero mean and constant variance,
® & ~N0,0?)

It’s important to note that assumption (A7) is made for the purpose of hypothesis testing, not
for the derivation of OLS estimators.

Q: Why bother with these classical assumptions?

The answer to this question is given by the so-called Gauss-Markov theorem:

Given the classical assumptions (A1) — (AG), it can be shown that the OLS estimator for B,
(where k = 1, 2, ..., K) 1s the best, linear unbiased estimator (or BLUE).

The term “linear’” means that the OLS estimator is a linear function of Y.

The term “unbiased” means that, in repeated sampling, the OLS estimator is identical to the true
population parameter.

©) ElB)=B, forj=012...k

The term “best” means that the OLS estimator has the minimum variance among the class of
lincar, unbiased estimators.

10y Varl,)<varlB.) for j=012. .k

If we add assumption (A7), then it can be shown that the OLS ecstimator is also notmally
distributed with certain mean and variance.

1) B ~N() for j=0]2,...k
Accordingly, hypothesis testing based on normal distribution can be readily applied.
3. Interpretation of Estimated Coefficients

a) The Standard Linear Model

In the standard linear model, each of the parameters is interpreted as the marginal effect of a
given explanatory variable, x;, on the expected value of y,.

To 1llustrate, consider the model:

(12) y, = X,B +& = 181 + ﬂz“"iz +...t ﬂl\"xil\' + £
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If we assume that x’s are exogenous (l.e. E(€i|x,.)= 0), then the expected value of y, conditional

on X, 1s given by a lincar combination of x,’s only:
(13) E(yilxi): x:B =B+ By, +ot By

Given Eq.(13), the impact of a change in a given explanatory variable, x,, on the expected value
of y, 1s given by its corresponding coefficient:

gy 2l

a\ = 'B.i

i

Looscly speaking, the partial derivative in Eq.(14) can be interpreted as a change in the expected
(or average) value of y, if x, changes by one unit, holding other variables constant.'

In economics, this partial derivative is more commonly referred to as the marginal effect of x, on
the expected value of y, holding other variables constant.

It’s important to realize that the phrase ho/ding other variables constant, more popularly known as
ceteris paribus, implies the #ef marginal effect of x, on y,.

Sometimes, this ceteris paritbus assumption is hard to maintain as two (or more) explanatory
variables tend to move together, either positively or negatively.

To illustrate, consider the wage regression model again:

(15) v, =P, + Box, + Bix;s +.. €,

If x, = age and x, = experience, then the ceteris paribus assumption is unlikely to hold as older
> g 3 p > P P y
people tend to have more experience.

Consequently, it’s not possible to assess the #es marginal effect of x,, on y,, and vice versa.

Sometimes, this ceteris paribus assumption is deliberately violated as the same explanatory
variable appears in various powers.

To 1illustrate, consider the wage regression model again:
2
(16) y; =B+ foxy + foxiy +.. 4 €,

. . 2 . . . - .
Again, if x, = age, then x; = age-squared. It’s obvious that the ceteris paribus assumption is

violated as changes in age is automatically accompanied by changes in age-squared.

Fortunately, the violation of this assumption is beneficial because it allows us to determine
whether the marginal effect of age on wage 1s nonlinear.

! Strictly speaking, the partial derivative in 1:q.(3) 1s interpreted as a change in the expected (or average) value of v, if
x, changes by an infiuitesivral amomir, holding other variables constant. Although the term an infinitesimal anonnt is
more accurate, we'll make use of the term one 4nif in this course, for simplicity.
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Formally, the marginal effect of x, on y, is given by

(I)

i2

(l 7) - 162 + 21637(,'3

Eq.(17) indicates that the marginal effect is a function of the value of age; unless this value is
specified, we can’t calculate the marginal effect (ME).

Given the value of age, the ME of x, on y, may be positive or negative. If the ME is
positive/negative, then wage is an increasing/decreasing function of age.

Now, if we differentiate this ME, we’ll obtain

(Ia)

12

(18) =2/,

Eq.(18) indicates the rate of change in the ME. If ME > 0 and B, > 0, then wage increases at an
increasing rate with respect to age (1.e. as age rises, wage rises at an increasing rate).

If ME > 0 and B, < 0, then wage increases at a decreasing rate with respect to age (i.e. as age
rises, wage rises at a decreasing rate). This is more common.

Note: If the estimate of B3, is insignificant, then its sign conveys little meaning. In this case, if the
estimate of [3, is significant, then we conclude that the ME of age on wage is linear.

b) Alternative Functional Forms

Sometimes we’re not interested in finding the marginal effect of x; on the expected value of y,
(L.e. absolute Ay, duc to a given absolute Ax,).

Instcad, we’re interested in finding the clasticity of y, with respect to x; (i.c. relative Ay, due to a
given relative Ax,).

A
o) F =Y _ Ay x Ay x
y

Ax/x  y Av E

Note: Ay/Axis essentially the marginal effect of x on y; hence, the concepts of elasticity and
marginal effect are closely related.

It turns out that this measure of clasticity can be obtained by specifying a log-linear model (i.e. 2
model where both y, and x; appear in logarithms):

20) Iny,=(Inx,)f+& =B+ BInx, +..+¢

In this model, the coefficient of the log of a given explanatory variable can be shown to be a
measure of clasticity:
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ay, X;
1) 5’2%7
i

To verify this, let’s define v, =Iny, and ,\ =Inx;. Then, Eq.(20) can be rewritten as

22) v, = (x )'ﬂ+€,- =B, + fx, +..+E,

Hence, B, can be derived by partially differentiating v, with respect to A; :

8

=p,

Since y; =Iny, and A; =Inx,;, then ayf/ax; can be solved by the chain rule to be

* * a
(24) v, : _ % W %
ox av ax ax

i

Since y; =Iny,, then By:/ayi =1/y,.Also, since A” =Inx,, then ax;. /axi, = l/x!.f. Hence, Eq.(24)

becomes

ay.*__lav —aix_’/

G I

0 i :
dax; ax dx;

(25)

Eq.(25) confirms that [3, is a measure of elasticity.

Ex/ Consider the log-lincar version of the wage regression model,
26) Iny, =4+, Inx,, + B, Inx,, +¢,

where y is the houtly wage rate, x, is education (measured by years of schooling), and x, is
experience (measured by years of working experience).

Using the same data for a sample of N = 3294 individuals in the U.S., we estimate Eq.(26) by
OLS and obtain the following results:

26y lny —1 905+1 172lnA, +0. 3091nA3

(-10.18)) (17.31)

Q: How do we interpret the results?

1.172 = If education increases by 1%, then wage rate is expected to increase by about 1.17%,
ceteris paribus.

0.309 = If experience increases by 1%, then wage rate 1s expected to increase by about 0.31%,
ceterts paribus.
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Somectimes we’re intetested in finding the quasi-elasticity of y, with respect to x, (i.c. relative Ay,
duc to a given absolute Ax,).

on £, 2Ny _ v 1 M1
¢ Ax vy Ax Axy

This measure of quasi-elasticity can be obtained by specifying a log-lin model (i.e. a model where
y, appeats in logs but x, appears in levels):

(28) Iny, =x;',5+€,. =0+ [x,+. . +E

In this model, the coefficient of a given explanatory variable can be shown to be a measure of
quasi-elasticity:

P 1
ox, y

i i

@) B, =

To verify this, let’s define y, =1In y,. Then, Eq.(28) can be rewritten as

B0) v =x,f+& =P+ Box, +..t &

Hence, B, can be derived by partially differentiating y; with respect to Xy

!
3) =0,
oy 5-=4

y

Since y,.* =lny,, then ay:/axij can be solved by the chain rule to be

Vi* _a.Vi* ayi

d
62 5

x; dv;, ox;

Since y; =Iny,, then dv; [dy, =1/y,. Hence, Eq.(32) becomes

(33) a_v’ — a}},‘ ayl l

1
I, v, ox, ox, y,

i if i

Eq.(33) confirms that B, is 2 measure of quasi-elasticity.

Ex/ Consider the log-lin version of the wage regression model,

(34 Iny, = +,Bzx2i +:B3x3i +¢
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where all variables are as defined before. Using the same data, we estimate Eq.(23) by OLS and
obtain the following results:

(34 Ty, ==0.096+0.116x,, +0041x,

-1.08)) (1836) (9.01)
Q: How do we imnterpret the results?

0.116 = If education increases by 1 year, then wage rate is expected to increase by about 11.6%,
ceterls paribus.

0.041 = If experience increases by 1 year, then wage rate is expected to increase by about 4.1%,
ceteris paribus.

Sometimes we’re interested in finding the reciprocal of quasi-elasticity of y, with respect to x; (i.c.
an absolute Ay, due to a given relative Ax,).

4 Ay
(35) ER:__Ay_:ﬂi 2y,
Ax/x 1 Ax Ax

This reciprocal measure of quasi-elasticity can be obtained by specifying a lin-log model (1.e. a
model where y, appears in levels but x, appears in logs):

(36) y,=(Inx,) f+e,=f + B, Inx, +..+&

In this model, the coefficient of the log of a given explanatory variable can be shown to be the
reciprocal measurc of quasi-clasticity:

37 B, = gy, X

i
To verify this, we simply differentiate y, with respect to x,, and rearrange terms:

9y, 8 '
x(/ IB / ax[/' Y

-, - G¥)

Eq.(38) confirms that B is the reciprocal measure of quasi-clasticity.

Ex/ Consider the lin-log version of the wage regression model,
(39) v, =0+, Inx,, + B, Inx,, +¢,

where all variables are as defined before. Using the same data, we estimate Eq.(39) by OLS and
obtain the following results:

(B9 3, =-11321+5999Mnx, +1,189nx,

—11. 45)) (16.76)
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Q: How do we interpret the results?

5.999 = 6.0 = If education increases by 1%, then wage rate is expected to increase by about
$0.06/hout, cetetis paribus.

1.189 = 1.2 = If experence increases by 1%, then wage rate is expected to increase by about
$0.012/hout, cetetis paribus.

¢) Dummy Variables

Sometimes, we work with dummy, rather than the usual quantitative, vanables. In this case,
there’s a need for a special interpretation of the dummy parameters.

Why? It’s essentially because the parameter of a given dummy cannot be given the usual marginal
effect interpretation.

To illustrate, let’s revisit the wage regression model discussed in Chapter 2:

@0) ¥, =B+ Bx, + Byxy, + Bx, + €

where y 1is the wage rate, x, 1s the gender dummy (= 1 for male and 0 for female), x, 1s education,
and x, 1s experience.

Since x, is 2 dummy variable, it doesn’t make sense to interpret B, as “the expected change in the
wage rate if gender increases by 1 unit.”

Instead of making this absurd marginal effect interpretation, what we can do is evaluate the
expected value of y, for males and females:

Xy, :1): B+ B, + Bixy, + Bx,;

@) E(y,

(42) E(.Vi X = O) =B, + Bix;; + Byx,;

If we subtract Eq.(42) from Eq.(41), we’ll obtain

43) E(vx, =1)-E(yx,; =0)= 5,

Eq.(43) says that the difference in the expected/average wage rate between males and females is
B., ceteris paribus.

Ex/ The OLS estimation results were given as follows:

(40 3 =-3380+1 344x, +0.630x, +0.125x,
!

-7.269)  (12.485) 19.478) - 5253

Q: How do we interpret the results?
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1.344 = The difference in the average wage rate between males and females is about
$1.344/hout, ceteris paribus.

In other words, men are paid more than women by about $1.344/hour on average, ceteris
paribus.

0.639 = If education increases by 1 year, then wage rate is expected to increase by about
$0.64/hour, ceteris paribus.

In other words, the marginal effect of education on wage is $0.64/hour, regardless of gender and
experience.

0.125 = If experience increases by 1 year, then wage rate is expected to increase by about
$0.125/hout, ceteris paribus.

In other words, the marginal effect of experience on wage is $0.125/hour, regardless of gender
and education.

Q: What if we conjecture that the marginal effect of education (or experience) on wage is
different between men and women?

This conjecture can be tested by introducing an interactive term between a) gender and
education, and b) gender and experience:

(44) y, =06+ Boxy, + Boxy + Box, + :B:: (xz,' *x.z,')'*' IB()(xZi *“\"4,‘)'*' ¢

As before, we evaluate the expected value of y, for males and females:
(45) E(yi|x2i = l): (ﬂl + /5 )+ (/Bz + [ )“\‘3,' + (/B4 + 0, )xm‘

(46) E(y,. |x2i = 0) =P+ By + Baxy;
Eqgs.(45) and (46) suggest the following:

a) The ME of cducation on wage is (B, + Bs) for males, and B, for females. Hence, B; is the
difference in the ME of education on wage across gender.

b) The ME of experience on wage is (B, + B,) for males, and B, for females. Hence, [3, is the
difference in the ME of experience on wage across gender.

Ex/ If we estimate Eq.(44) by OLS, we’ll obtain the following results:

! . = — — 9 g 9 9 * .. ] — ,* L
(44) 7, = 2,593 0.030A,,+91.56)1A3i+0(.142A4,+o(.l19§)2(A2i xy;) (();9“25)1(x2, X4)

-3.86) (~0.03) ~ 1.22 4.00)

Q: How do we interpret the results?

For the sake of exposition, let us ignore the statistical significance of the estimated cocfficients
for a moment in making the following interpretations.
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Having said this, note that the ME of education on wage is 0.561 + 0.132 = 0.693 for males and
the ME of experience on wage is 0.142 — 0.021 = 0.121 for males.

0.561 = If female education increases by 1 year, then wage rate is expected to increase by about
$0.56/hout, ceteris paribus.

0.693 = If male education increases by 1 year, then wage rate is expected to increase by about
$0.69/hout, cetetis paribus.

Hence, the matginal effect of education on wage is higher for males by about $0.13/hour.

0.142 = If female experience increases by 1 year, then wage rate 1s expected to increase by about
$0.14/hour, ceteris patibus.

0.121 = If male experience increases by 1 year, then wage rate is expected to increase by about
$0.12/hout, cetetis paribus.

Hence, the matginal effect of experience on wage is lower for males by about $0.021/hour.

Strictly speaking, however, we shouldn’t be making an interpretation about male experience
because the estimated coefficient, —0.021, is insignificant.

Now let’s convert the linear version of the wage regression model in Eq.(40) into a log-linear
one,

(47) Iny, = B+ Bx,, + B Inx,, + B, Inx,, + €

Since x, takes the value of 1 and 0 only, it’s not possible to take log of this gender dummy (log of
1 1s 0 and log of 0 is undefined).

Q: How do we interpret its coefficient?

On the surface, it seems that we can interpret its coefficient in the same manner we did with
parametets in the log-lin model (i.e. relative Ay, due to absolute Ax,).

However, since it doesn’t make sense to differentiate In y, with respect to x,, we need to come
up with an alternative, yet sensible interpretation.

As usual, let’s evaluate the expected value of y, for males and females. If we ignore x, and x,,
we’ll have

43) E(]nyi|x2i = 1)= B+ ﬂz
49) E(ln yi|x2i = O) =4

If we ignore the expected value operator and cxponentiate cach of the above equations, we’ll
have
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(50) w, = exp(ln yi|‘x2i = 1): exp(ﬁl + 5, ) = eXp(ﬁl )~exp(ﬁ2 )

(51) w, =exp(in y|x,, = 0)=exp(3))
where w, is male wages and w, is female wages.

If we subtract Eq.(51) from Eq.(50), we’ll obtain the difference between male and and female
wages:

(52) w—w, = exp(ﬂl ) CXp(,Bz ) - exp(ﬂ, )
= exp(ﬁl ).[CXp(,BZ )_ ! ] = w(r[exp(ﬂz ) - |]

If we divide both sides of Eq.(52) by w,, we’ll obtain the percentage difference between male and

female wages:

(53) S 10 = exp(,) -1

Wo
Ex/ If we estimate Eq.(47) by OLS, we’ll obtain the following results:

47y lny ——2 160+ 0.242x,. +1 257lnx1 +02701nx4

Siro) o (iiso) YT (1884)
Q: How do we interpret the result on gender dummy?
B, =0.242 = exp(0.242)-1=0.2738
0.2738 = The difference between male and female wages is about 27.38%.

In practice, researchers scldom calculate exp(B.) — 1. Instead, they appeal to a mathematical
property which stipulates that exp(a) = (1 + a) if a is close to 0.

In our case, a = 0.242; thus, exp(0.242) = 1.242, which means that the difference between male
and female wages 1s about 24.2%(which is very close to 27.38%).

Note that this interpretation is not the same as saying “if gender rises by 1 unit, then wage rate is
expected to rise by about 24.2%,” which is nonsense.





