
 i

AUTOMATING THE PROCESS OF MEASURING COMPLEXITY

OF JAVA PROGRAMMING ASSIGNMENT

MAWARNY BINTI MD. REJAB

ROHAIDA ROMLI

FACULTY OF INFORMATION TECHNOLOGY

UNIVERSITI UTARA MALAYSIA

2005

 ii

PENGAKUAN TANGGUNGJAWAB (DISCLAIMER)

Kami, dengan ini, mengaku bertanggungjawab di atas ketepatan semua pandangan,

komen teknikal, laporan fakta, data, gambarajah, illustrasi, dan gambar foto yang telah

diutarakan di dalam laporan ini. Kami bertanggungjawab sepenuhnya bahawa bahan

yang diserahkan ini telah disemak dari aspek hakcipta dan hak keempunyaan. Universiti

Utara Malaysia tidak bertanggungan terhadap ketepatan mana-mana komen, laporan, dan

maklumat teknikal dan fakta lain, dan terhadap tuntutan hakcipta dan juga hak

keempunyaan.

We are responsible for the accuracy of all opinions, technical comments, factual reports,

data, figures, illustrations and photographs in this report. We bear full responsibility

for the checking whether material submitted is subject to copyright or ownership right.

UUM does not accept any liability for the accuracy of such comments, reports and other

technical and factual information and the copyright or ownership rights claims.

PROJECT LEADER:

……………………………………

Name: Mawarny Md. Rejab

MEMBER:

……………………………………….

Name: Rohaida Romli

 iii

ACKNOWLEDGEMENT

The authors wish to express their gratitude to the Faculty of Information Technology for

the financial support given to undertake this research project. We also would like to

thank to all our colleagues and individuals for their support and assistance.

 iv

ABSTRACT

Programming is a complex intellectual activity and a core skill for first year IT students.

Several researches have shown that most students often write programs without

considering the quality of the program. Due to this matter, an automatic assessment

system has become one of the most important tools to evaluate and grade programming

assignment including judgments of the quality of programming solutions. Besides

considering the correctness of the output program, the automatic assessment system also

focuses on the complexity factor in ensuring the consistency and accuracy of the hand-

marking programming assignments and improve the quality of students’ programming

solution. This study is proposed as an effort to assist lecturers of the Introductory Java

Programming course in evaluating and grading program assignments by considering the

complexity factor. Besides selected traditional software metrics such Lines Of Code and

Cyclomatic Complexity, several object-oriented metrics are adopted to measure the

program complexity namely, Respond For a Class (RFC), Number of properties (SIZE2),

Number of classes (NCL), Operation Complexity (OpCom), Operation Argument

Complexity (OAC) and Attributes Complexity (AC). Specific score and weight will be

given for each selected metric as a measurement of the program complexity. The

summary of report that contains a complexity analysis and complexity mark awarded to

the student will be generated automatically using a developed prototype. Thus, this

approach will be implemented to provide a tool in order to improve the process of

evaluating the Introductory of Java programming assignment for the Faculty of

Information Technology.

 v

TABLE OF CONTENTS

PENGAKUAN TANGGUNGJAWAB (DISCLAIMER) ... ii

ACKNOWLEDGEMENT .. iii

ABSTRACT ... iv

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

CHAPTER ONE .. 1

INTRODUCTION.. 1
1.1 An overview of the research study ...1

1.2 Problem Statement ...3

1.3 Objective ..4

1.4 Scope of the Study ...4

1.5 Significance of the Study ...4

1.6 Conclusion ...5

CHAPTER TWO ... 6

LITERATURE REVIEW ... 6
2.1 Software Complexity ...6

2.2 Static Analysis ...7

2.3 Software Complexity Metrics ..9

2.3.1 Traditional software complexity metrics ..10

2.3.2 Object-oriented software complexity metrics ...11

2.4 Related Work on Assessment of Program Complexity16

2.5 Conclusion ...18

CHAPTER THREE ... 19

METHODOLOGY AND PROTOTYPE DESIGN... 19
3.1 Construct a Conceptual Issue ...19

3.1.1 Requirements Gathering ...19

3.1.2 Requirements Analysis ...20

3.2 Prototype Design ...24

3.2.1 Program Complexity Measurement Design ..26

3.2.2 Program Specification ...31

3.3 Conclusion ..31

CHAPTER FOUR .. 32

DEVELOPMENT AND TESTING .. 32
4.1 Prototype Development ..32

4.1.1 Description of JCoM Prototype ..33

4.1.2 JCoM Interfaces ..34

4.2 Prototype Testing ..38

 vi

4.2.1 Testing Approach ...39

4.4.2 Static Analysis of Complexity Result ..42

4.5 Testing Results and Conclusion ...51

CHAPTER FIVE ... 52

CONCLUSION .. 52
5.1 Result Findings ...52

5.2 Future Works ..53

5.3 Conclusion ..54

REFERENCES ... 55

APPENDIX ... 58

 vii

LIST OF FIGURES

Figure 3.1: Use Case Diagram ... 21

Figure 3.2: Sequence Diagram for Set Weight Value of Metric Use Case 25

Figure 3.3: Sequence Diagram for Manage Program Complexity Use Case 25

Figure 3.4: Overview of Complexity Checking Process.. 29

Figure 4.1: Set Weight Value of Metric Interface ... 34

Figure 4.2: Manage Program Complexity Interface .. 35

Figure 4.3: Set Number of Class Interface ... 36

Figure 4.4: Open File Interface .. 37

Figure 4.5: Program Schema .. 44

Figure 4.6: Student’s Program ... 45

Figure 4.7: Program Schema .. 49

Figure 4.8: Student’s Program ... 50

 viii

LIST OF TABLES

Table 2.1: Range Of Cyclomatic Complexity ... 11

Table 2.2: Key Object-Oriented Terms for Metric ... 13

Table 2.3: SATC Metrics for Object-Oriented Systems ... 15

Table 3.1: Use Case Description for Set Weight Value of Metric Use Case 22

Table 3.2: Use Case Description for Manage Program Complexity Use Case 23

Table 3.3: Attribute/Argument Value ... 26

Table 3.4: Operation Complexity Value ... 27

Table 3.5: The Schema of Given Score and Weight for Selected Metric 30

Table 4.1: Software Tools ... 32

Table 4.2: Description of Required Software.. 38

Table 4.3: Testing Script for Set Weight Value of Metrics Use Case 40

Table 4.4: Testing Script for Manage Program Complexity Use Case 41

Table 4.5: Expected Result of Similar Programs .. 46

Table 4.6: Weight Value of Software Metrics .. 47

Table 4.7: Expected Result of Different Programs ... 50

 1

CHAPTER ONE

INTRODUCTION

This chapter consists of an overview of the research study, problem statement, objective,

scope and significance of the study.

1.1 An overview of the research study

Measurement of software complexity has been of great interest to several researchers in

software engineering. Software complexity has been shown to be one of the major

contributing factors in developing software. According to the Lake and Cook (1994),

software complexity is defined as an objective measure of how difficult it may be for a

programmer to perform common programming tasks, such as understanding, testing, or

maintaining, on a piece of software. Measurement of software complexity does not

measure the complexity itself, but instead measures the degree to which those

characteristics though to lead complexity exist within the code. For example, a program

may be considered complex to test if it has complicated control flows and many different

execution paths. Hence, a possible complexity measure will be the number of conditional

and looping statements.

Ideally, complexity measures should have both descriptive and prescriptive

components (Watson and McCab, 1996). Descriptive measures identify software that is

error-prone, hard to understand, hard to modify, hard to test, and so on. Prescriptive

 2

measures identify operational steps to help control software, for example splitting

complex modules into several simpler ones, or indicating the amount of testing that

should be performed on given modules.

A large number of software metrics have been proposed over the last decade for

measuring the complexity of programs. Hundreds of traditional software complexity

metrics and a large number of proposed object-oriented programming metrics have been

defined in measuring complexity of software. As discussed by Lake and Cook (1994),

traditional software complexity metrics are usually divided into classes namely, lines of

code (LOC), data structures metrics, control flow metric (cyclomatic complexity),

information flow metric, and software science metric (based on four parameters: number

of unique operators, number of unique operands, total number of operators, total number

of operands).

Meanwhile, an Object-Oriented (OO) complexity metrics can be divided into

several categories such as class related metrics, method related metrics, inheritance

metrics, metrics measure coupling and metrics measure general (system) software

production characteristics (Xenos et. al, 2000). Measurement of OO system complexity

requires the understanding of several constructs and the relationships between those

constructs. According to Tegarden and Sheetz (1992), a model of OO system complexity

consists of the system complexity, structural complexity, and perceptual complexity

constructs.

 3

Complexity measures are also important in the assessment of students programs.

The complexity measures in program assessment can provide a way to assist lecturers in

ensuring the consistency and accuracy of handmarking programming assignments and

improve the quality of students programming solutions. Nowadays, automatic

assessment systems focus not just on the correctness of a program’s output, but also

analyze the output, the style of writing, the complexity and other factors that depend on

the scheme of the program (Zarina, 1999). This study is proposed as an effort to assist

lecturers of introductory Java programming course in improving the consistency and

accuracy of the marking standard.

1.2 Problem Statement

Programming is a complex intellectual activity and a core skill for first year IT students.

Research has shown that most students are able to write programs; however, their

programs are often poorly constructed because they do not consider different solutions to

a program (Truong et. al, 2004). Novice students often try to solve as quickly as possible

without thinking about the quality of their programs (Vizcaino et. al, 2000). Thus, this

research attempts to solve the difficulties in ensuring consistency and accuracy of the

marking standard in terms of measuring the complexity of students’ program. Besides,

this study is also an effort to enhance a previous study by Rohaida et.al (2004), which

did not include the complexity factor in the students’ program assessment. Furthermore,

there is no proper tool to automate the process of measuring the complexity of students’

Java programming assignments in the faculty of Information Technology, Universiti

Utara Malaysia. Thus, as an effort to underlying this situation, an automation of

measuring the complexity for the students’ Java programming assignments is proposed.

 4

1.3 Objective

The objective of this study is to automate the process of measuring the complexity for

students’ Java programming assignments in maintaining a uniform marking standard.

1.4 Scope of the Study

This study focuses on the measurement of complexity of the students’ programming

assignments of a course, Introduction To Programming (TIA 1013). This measurement

contributes an important part in the assessment of students’ Java programs. The

measurement of a program complexity focuses on the area of basic object-oriented

programming concepts. Based on a preliminary study shown in Appendix A, selected

traditional software metrics such as Lines Of Code and Cyclomatic Complexity and

several object-oriented metrics are used namely, Respond For a Class (RFC), Number of

properties (SIZE2), Number of classes (NCL), Operation Complexity (OpCom),

Operation Argument Complexity (OAC) and Attributes Complexity (AC).

1.5 Significance of the Study

This study will improve consistency in evaluating the complexity of the students’ Java

programming assignments. The complexity analysis based on different program

abstraction levels can provide a way to maintain the marking standard.

 5

1.6 Conclusion

This chapter gives an overview of the study including the problem statement, objective,

scope and significance of the study. The following chapter will review on the

background of software complexity and related studies on the program complexity

measurement.

 6

CHAPTER TWO

LITERATURE REVIEW

This chapter will focus on reviews on software complexity, static analysis, software

complexity metrics, and related work on assessment of program complexity.

2.1 Software Complexity

Software complexity has been defined and interpreted in many ways over the years.

Basili (1980) defines the term software complexity as “ ….a measure of the resources

expended by another system while interacting with a piece of software. If the interacting

system is people, the measures are concerned with human efforts to comprehend, to

maintain, to change, to test, etc, that software”. Ramamoorthy (1985) pointed out the

definition of software complexity as the degree of difficulty in analysis, design,

implementation and testing of software.

 Curtis (1979) has suggested a definition of complexity that refers to the

characteristic of a software, which makes it difficult to understand or work with. In the

development phase, complexity strongly influences the effort required to debug and test

the program modules and subsystems. In the maintenance phase, complexity determines

how difficult it will be located and corrected undetected implementation errors, and also

how much effort will be required to modify programs modules to incorporate

specification changes (Curtis, 1985). According to Zuse (1991), software complexity is

 7

the difficulty to maintain, to change and understand software. It primarily deals with the

characteristics of software that affect the program performance.

 Programming behaviors are very complex and can be influenced by the

experience and ability of the programmer and the programming environment. Referring

to Yourdan (1979), most problems in programming occur because human beings make

mistakes without considering the limitation of the complexity capacity.

 Based on several definitions, complexity is defined by the difficulty of

performing tasks such as coding, debugging, testing or modifying the software. The

term software complexity is a measure of difficulty of performing tasks that have been

applied to the interaction between a program and programmer.

2.2 Static Analysis

There is a strong connection between software complexity and testing. Complexity is a

common source of error in software. The term software complexity is used to identify

software that is error-prone, hard to understand, hard to modify, and so on. As such

static analysis has been selected as a testing approach for the assessment of program

complexity.

 Referring to Coward (1988), static analysis is a testing technique that does not

involve the execution of the software with data. The program source code structure and

syntax are inspected so as to highlight static errors and produce statistical information for

the programmer. Based on Truong et.al (2004), static analysis is a process of examining

 8

source code without executing the program. It is used to locate problems in code

including potential bugs, unnecessary complexity and high maintenance areas.

 According to Sommerville (2004), static analysis is an automated technique of

program analysis where the program is analyzed in detail to find potentially errorness

conditions. The stages involved in static analysis include:

a) Control flow analysis – This stage identifies and highlights loops with multiple

exits or entry points and unreachable codes. An unreachable code is a code that

is surrounded by unconditional goto statements or that is in a branch of a

conditional statement where the guarding condition can never be true.

b) Data use analysis – This stage highlights how variables in the program are used.

It detects variables that are used without previous initialization, variables that are

written twice without an intervening assignment and variables that are declared

but never used. Data use analysis also discovers ineffective tests where the test

condition is redundant. Redundant conditions are conditions that are either

always true or always false.

c) Interface analysis- This analysis checks the consistency of routine and procedure

declarations and their use. Interface analysis can also detect functions and

procedures that are declared and never called or function results that are never

used.

 9

d) Information flow analysis – This phase of the analysis identifies the dependencies

between input and output variables. While it does not detect anomalies, it shows

how the value of each program variable is derived from other variable values.

e) Path analysis – This phase of semantic analysis identifies all possible paths

through the program and sets out the statements executed in that path. It

essentially unravels the program’s control and allows each possible predicate to

be analyzed individually.

 In this study, an automated tool has been developed to examine the source code

without executing the program in order to measure the value that will be used by the

software complexity metrics.

2.3 Software Complexity Metrics

Software metrics are a well-known way to measure the quality of programs. Software

complexity metrics have been developed to identify parts of program that are likely to be

difficult to test, understand, or error-prone. A large number of software complexity

metrics have been proposed over the last decade for measuring the complexity of

programs. Hundreds of traditional software complexity metrics and the large number of

proposed object-oriented software complexity metrics have been defined in measuring

the complexity of software.

 10

2.3.1 Traditional software complexity metrics

There are several traditional software complexity metrics that have been proposed by

some researchers since 1976 such as Cyclomatic Complexity, Lines of Code, Software

Science Metric and so on. However, in this study, only two traditional software

complexity metrics are adopted in measuring the program complexity, namely:

a) Lines of code

According to Conte (1986), a line of code is defined as any line of program text that is

not a comment or blank line, regardless of the number of statements or fragments of

statements on the line. This specifically includes all lines containing program headers,

declarations, and executable and non-executable statements. This metrics quantifies the

size of program, which does not take the coding style into account. The larger size of

program, the more paths it contains and hence the more difficult it will be to work or to

understand.

b) Cyclomatic Complexity

Referring to Mc Cabe (1976), cyclomatic complexity is a measure of module control

flow complexity based on control flow graph. Control flow graphs describe structure of

software modules, which the module corresponds to a single function or method. Each

method or function can be represented into a flow graph that consists of nodes and edges.

The nodes represent computational statements or expressions and the edge represent

transfer of control between nodes. Based on the nodes and edges, the cyclomatic

complexity calculation is defined as below:

 v(G) = e – n + p

 11

 Based on the formula of cyclomatic complexity above, e is the number of edges,

n is the number of nodes, and p is the number of connected components. Referring to

Tegarden et.al (1992), connected components are the nodes in the module that can be

reached from outside the graph or that can transfer control outside the graph. This

corresponds to the number of entry and exit points for the module.

 According to Rosenberg (1998), a method with a low cyclomatic complexity is

generally better, although it may mean that decisions are differed through message

passing, not that the method is not complex. The greater the cyclomatic complexity is

the more execution paths there are through the method, and the harder to understand the

method. Table 2.1 depicts the range of cyclomatic complexity value.

Table 2.1: Range Of Cyclomatic Complexity

Cyclomatic Complexity Risk Evaluation

1-10

11-20

21 – 51

greater than 50

a simple program, without much risk

more complex, moderate risk

complex, high risk program

very high risk, untestable program

2.3.2 Object-oriented software complexity metrics

The object-oriented paradigm for software development is different with the traditional

procedural paradigm. As a result,, some researchers and practitioners suggest that

traditional software metrics are inappropriate for measuring object-oriented

programming complexity. There are several object-oriented concepts such as

polymorphism, inheritance, and encapsulation that fail to be captured using traditional

 12

metrics. Moreau and Dominick (1989) point out that many existing software metrics that

have been utilized within conventional programming environments are inappropriate for

evaluating object-oriented systems in certain circumstances.

 On the other hand, some researchers suggest that several traditional software

metrics can still be used for object-oriented paradigms. A valid reason for applying

traditional software metrics is that most traditional metrics have been widely used, well

understood, and have become accepted as a “standard” for traditional functional or

procedural programs. As a result, Software Assurance Technology Center (SATC) at

NASA Goddard Space Flight Center suggests only three traditional software metrics that

are applicable to object-oriented programs namely, cyclomatic Complexity (McCabe),

Lines of code (LOC), and Comment Percentage.

According to Chidamber and Kemerer (1995), six object-oriented metrics have

been defined which are Weight Methods per Class (WMC), Response For Class (RFC),

Lack Of Cohesion (LCOM), Coupling Between Object Classes (CBO), Depth of

Inheritance Tree (DIT) and Number of Children (NOC). Furthermore, Li et. al (1995)

defined ten metrics which include five out of six metrics that have been defined by

Chidamber and Kemerer with addition of five more metrics: Message-Passing Coupling

(MPC), data Abstraction Coupling (DAC), Number Of Methods (NOM), Number of

Semicolons (SIZE1) dan Number of Propeties (SIZE 2).

Moreau and Dominick (1989) defined three metrics which are Message

Vocabulary Size (MVS), Inheritance Complexity (IC) and Message Domain Size

(MDS). According to Chen and Lu (1993), a new set of metrics has been proposed for

 13

object-oriented design namely operation complexity, operation argument complexity,

attribute complexity, operation coupling, and cohesion metrics.

Many researchers such as Henderson-Sellers and Brito e Abreu classify the

object-oriented metrics based on different dimensions. The selected object-oriented

metrics are primarily applied to the concepts of classes, coupling and inheritance and

based on the levels of a software system. A brief description of object oriented terms for

metrics is given in Table 2.2.

Table 2.2: Key Object-Oriented Terms for Metric

Term Description

Attribute Define the structural properties of classes, unique within a class,

generally a noun

Class A set of objects that share a common structure and common behavior

manifested by asset of methods, the set serves as a template from

which an object can be instantiated (created)

Cohesion The degree to which the methods within a class are related to one

another.

Coupling Object X is coupled to object Y if and only if X sends a message to Y.

Inheritance A relationship among classes, wherein an object in a class acquires

characteristic from one or more other classes.

Instantiation The process of creating an instance of the object and binding or adding

the specific data.

Message A request that an object makes of another object to perform an

operation.

Method An operation upon on object, defined as part of the declaration of a

class.

Object An instantiation of some class which is able to a save a state

(information) and which offers a number of operations to examine or

effect this state.

 14

According to Tegarden (1992), the complexity of object-oriented systems can be

represented by a set of measures defined at different levels. The levels are variable level,

method level, object level and system level.

 The variable level is associated with the definition and use of variables

throughout the system. The method level refers to the defined operation of a class. At

this level, the control flow graph model can be used to represent the control flow in a

method. The object level combines variable and method complexity. On the other hand,

the system level is associated with the classes in the system, object hierarchy,

inheritance, message passing and methods defined in the system.

Even thought, several researchers and practitioners have proposed hundreds of

software metrics, only selected metrics are applied to extend the selected concept in

object-oriented and based on the levels of a software system. For example, Software

Assurance Technology Center (SATC) applied both traditional metrics and object-

oriented metrics for the object oriented system. Table 2.3 presents an overview of

metrics applied by the SATC for object-oriented systems. The first three metrics in

Table 2.3 are examples of traditional metrics and the next six metrics are especially

applied to object-oriented system.

 15

Table 2.3: SATC Metrics for Object-Oriented Systems

Source Metric Object-oriented

construct

Traditional Cyclomatic Complexity Method

Traditional Lines Of Code (LOC) Method

Traditional Comment Percentage (CP) Method

Object-oriented Weighted Method per class (WMC) Class/Method

Object-oriented Response for a class (RFC) Class/Message

Object-oriented Lack of cohesion of methods

(LCOM)

Class/Cohesion

Object-oriented Coupling between objects (CBO) Coupling

Object-oriented Depth of inheritance tree (DIT) Inheritance

Object-oriented Number of Children (NOC) Inheritance

 In this study, several object – oriented complexity software metrics are adopted in

measuring software complexity namely Operation Complexity (OP), Attribute

Complexity (AC), Operation Arguments Complexity (OAC), Number of Properties and

Response For Class (RFC). All these software metrics are applied to measure the

program complexity based on selected concepts in object-oriented, which are attribute,

class, message, method and object. This measurement has been defined at the variable

level, method level and object level of software systems. The detailed explanation of

selected metrics will be discussed later in chapter 3.

 16

2.4 Related Work on Assessment of Program Complexity

There are several studies done on automation program assessment that take into

consideration on the complexity factor. The automatic assessment system focuses not on

the correctness of the output program, but analyses the output, the style of writing, the

complexity and other factors depending on the scheme of the program (Zarina, 1999).

Some of researchers focus on one factor of the software quality, whereas others consider

several combinations of quality factors. Referring to Jackson (1996), the University of

Liverpool developed an automatic grading system, which measures the quality of

students’ program in five main areas, namely correctness, style, efficiency, complexity,

and test data coverage. For complexity assessment, the system applied McCabe’s metric

in order to determine the value of cyclomatic complexity.

 Zin and Foxley (1991) built an automatic assessment system, called analyse, to

mark students’ program in an introductory or intermediate programming course. There

are five main components used in analyse to compute the score for program quality,

which are maintainability, structural weakness, dynamic correctness, dynamic efficiency,

and program complexity. Measurement of program complexity includes static analysis

for the occurrence frequency of gotos, reserved words, operators, loop, conditional

statements, assignment statements, function calls, complexity of expression, and methods

of types.

 17

 Hung et.al (1993) developed ASSESS to mark factors in development effort,

reliability, style, execution efficiency, and complexity. Hung’s evaluation of a student’s

performance in programming is based on the use of four software metrics, which are

programming skills, complexity, programming style, and programming efficiency.

 Furthermore, Mengel and Yerramilli (1999) used the Verilog Logiscope

WinViewer program, to automate static analysis of a student’s program. This system

was used to calculate values for a series of selected metrics such as McCabe Cyclomatic

complexity, and number of function. The quality of the programs was primarily defined

as the conformance to the requirements of the program assignment with a small program

size, small complexity, and high modularity.

 The Learning Technology Research (LTR) group at Nottingham University

developed a coursework system, called Ceilidh. Ceilidh is designed for the assessment

of a student’s coursework in Computer Science and the administration of the

corresponding courses. In order to identify the marking standard, several metrics were

adopted including complexity metrics.

 According to Foxley et.al (1996), Ceilidh was used widely with around 15

different programming languages, Ceilidh ran on a UNIX operating system and required

knowledgeable system staff to install and maintain. Several limitations occurred in

Ceilidh due to difficulties to understand, maintain, and support. At the end, Ceilidh was

redesigned using object-oriented methods and re-implemented to come out with a new

system, called CourseMaster.

 18

 Truong et.al (2004) introduced a static analysis framework which can be used to

give novice students practice in writing better quality Java programs and to assist

teaching staff in the marking process. This framework is integrated into the

Environment for Learning to Program (ELP). ELP is an online , active, collaborative

and constructive environment for learning to program, which provides functions for

automatic assessment of students work in Java. In order to measure the quality of

programs, cyclomatic complexity is adopted in the framework because it provides useful

information about the structure of a program.

2.5 Conclusion

In brief, this chapter has highlighted the concepts of software complexity, the

relationship between software complexity and static analysis and reviewed in detail

aspects of software complexity metrics. Besides, the related works of program

complexity assessment have also been discussed. The following chapter will explain the

methodology used for this study.

 19

CHAPTER THREE

METHODOLOGY AND PROTOTYPE DESIGN

This chapter introduces the methodology that was used throughout the study and

discusses the prototype design. After considering several aspects in choosing a suitable

methodology for this study, the Customized System Development Research

Methodology, recommended by Nunamaker et.al (1991) was adopted. Four main phases

were involved in this study, namely:

i. Constructing a conceptual issue

ii. Prototype design

iii. Prototype development

iv. Prototype testing

3.1 Construct a Conceptual Issue

This initial phase involved two main activities, namely:

3.1.1 Requirements Gathering

A preliminary study was conducted in order to gather and capture all related

requirements of the study. The preliminary study consists of a set of questions that was

distributed among experienced programming lecturers. The study was meant to gauge to

what extent lecturers teach introductory programming course such as Pengaturcaraan

Awalan (TIA1013) evaluate the program source code in marking the Java programming

 20

assignment. In addition, the preliminary study provides a better understanding on the

development of a prototype by identifying the following items:

 Evaluation items for program source code such as lines of code, number of

classes, and data types of variables in order to identify suitable software metrics.

 Marking schema for each evaluation items.

A sample of the preliminary study is shown in the Appendix A.

3.1.2 Requirements Analysis

Based on the result analysis of preliminary study shown in the Appendix B, all the

captured requirements are represented by using the Unified Modeling Language (UML).

UML is a graphical language for visualizing, specifying, constructing and documenting

the deliverables of software product (Booch,1998). The modeling language of UML is

used in representing the outcome of this phase. Use case diagram and use case

specifications have been produced in representing the captured requirements.

In this study, several use cases were defined. Each use case shows how the actor

interacts with the system and what the system does. The use case has a set of sequence

actions and performs observable results to a particular actor, who interacts with the

system. The use cases that have been defined in this study are:

 Set weight value of metrics

 Manage program complexity

Figure 3.1 depicts the use case diagram for this study. As shown, there is only

one actor involved in this study, namely the lecturer. Lecturer is a person who teaches

Java programming course and plays an important role in preparing and managing the

 21

source needed in processing the Java program assessment, such as student’s Java

programming assignment, program schema, and weight value for measuring the

complexity of program.

Figure 3.1: Use Case Diagram

In addition, use case specifications are also identified in order to provide a

description of the interaction between actors and use case. The use case specification for

Set Weight Value of Software Metrics is depicted in Table 3.1 and Table 3.2 depicts the

use case specification of Manage Program Complexity.

set weight value of metrics

Manage program complexity

Lecturer

 22

Table 3.1: Use Case Description for Set Weight Value of Metric Use Case

Use case name Set weight value of metrics

Primary actor Lecturer

Brief description This use case enables the lecturer to set weight value of selected

software metrics that have been adopted in this study in order to

measure the complexity of the student’s Java programming

assignment.

Pre-condition None

Flow of events Step Actor Action System Response

 1.

This use case begins when the

lecturer presses on the ‘set weight

value of metric’ button on the main

menu.

Menu ‘Set weight

value of metric’ will

be displayed.

2. The lecturer will set the weight

value between range 1 to 5 for the

following software metrics:

 Lines of Code (LOC)

 Number of Classes

 Number of Attributes

 Number of Methods

 Cyclomatic Complexity

 Value of Arguments

 Value of Attributes

 Respond for Class

The system will

save the selected

value for each

software metric in

order to use them as

a weight of

measuring the

program

complexity.

3. This use case end when the lecturer

presses OK button.

 23

Table 3.2: Use Case Description for Manage Program Complexity Use Case

Use case name Manage program complexity

Primary actor Lecturer

Brief

description

This use case enables the lecturer to access student’s programming

assignment and program schema in order to measure the program

complexity and grade the assignment in considering the complexity

factor.

Pre-condition Student’s java programming assignment and program schema

must be up loaded into a specific directory on the PC.

 Weight values are set.

Flow of events Step Actor Action System Response

 1.

This use case begins when the

lecturer presses the ‘check

program complexity’ button on

the main menu.

Menu ‘Check program

complexity’ will be

displayed.

2. The actor will select the

number of classes and press

‘OK’ button.

Based on the number of

classes given, the system

will display the list of files

that will be downloaded.

3. The actor will select and

download the following files

based on the defined number

of classes:

a) student’s Java file

(user-defined class)

b) student’s Java file

(testing class)

c) Schema file (user-

defined class)

d) Schema file (testing

class)

 24

4. The actor will press the

“Analyze complexity” button.

 The system shall

measure the

complexity value for

the program schema

and the student’s

program.

 The system shall

display the complexity

analysis of the

program schema and

the student’s program.

 The system shall

provide the score for

each software metric

given and display total

mark of the

complexity aspect

after comparing the

complexity value for

the program schema

with the student ‘s

program.

3.2 Prototype Design

During this phase, sequence diagrams were produced and the complexity checking

process, the program complexity measurement, and the program specification were

designed. A sequence diagram is a graphical view of the scenario that can be seen as a

detailed specification of the use case. It depicts the objects and classes involved in the

scenario and the sequence of messages exchanged between the objects needed to carry

 25

out the functionality of the scenario (Quatranit, 2000). The sequence diagram for set

weight value of metric use case is depicted in figure 3.2 and figure 3.3 illustrated the

sequence diagram for Manage program complexity use case.

Figure 3.2: Sequence Diagram for Set Weight Value of Metric Use Case

Figure 3.3: Sequence Diagram for Manage Program Complexity Use Case

 : lecturer

Main Panel Program

Complexity Panel

Program

Controller

File

1: press "Manage program complexity"

2: send

3: display

4: define no of class

5: send

6: display

7: select file

8: press "analyse complexity"
9: send

10: calculate complexity

11: compare result

12: save

13: display complexity analysis

14: display score mark

program schema

and student's

program
calculate

score mark

 : lecturer
set weight of

metric panel

program controller FileMain Panel

1: press "Set weight of metric"

2: send

3: display

4: select metric value

8 defined metrics, namely: lines of

code, no of class, no of attributes, no

of methods, cyclomatic complexity,

value of arguments, value of attributes,

and response for class.

5: send

6: save

 26

3.2.1 Program Complexity Measurement Design

In this study, the complexity of a student’s program is measured by using selected

software metrics (Abounader and Lamb, 1997; Xenos et al, 2000), namely:

i) Number of classes (NCL) metric

- This metric is proposed by Sheetz, Tegarden and Monarchi. NCL metric

measures all the number of classes.

ii) Number of properties (SIZE2) metric

- This metric is proposed by Moreau and Dominick. SIZE2 metric counts

the number of attributes plus the number of local methods.

iii) Attributes Complexity (AC) metric

- This metric is proposed by Chen and Lu. AC metric defined as R(i),

where R(i) is the value of each attribute in the class. Summing all R(i) in

the class gives this metric value. The value of each attribute is evaluated

based on values in Table 3.3.

Table 3.3: Attribute/Argument Value

Type Value

Boolean and integer 1

Char 1

Real (Float, double) 2

Array 3 – 4

Object 6 – 9

 27

iv) Cyclomatic Complexity metric

- This metric is proposed by McCabe’s. Cyclomatic complexity metric

measures the amount of decision logic in a single software module.

Cyclomatic complexity is defined to be e – n + 2, where e and n are the

number of edges and nodes in the control flow graph, respectively. This

cyclomatic complexity is measured for each method in class.

v) Operation Complexity (OpCom) of a class metric

- This metric is proposed by Chen and Lu. The definition for operation

complexity is O(i), where O(i) is operation i’s complex value.

Summing up the O(i) in for each operation i in the class gives their metric

value. The operation complexity value is evaluated based on values in

Table 3.4.

Table 3.4: Operation Complexity Value

Rating Complexity Value

Null 0

Very Low 1-10

Low 11-20

Nominal 21-40

High 41-60

Very High 61-80

Extra Hight 81-100

 28

vi) Operation Argument Complexity (OAC) metric

- This metric is proposed by Chen and Lu. OAC metric defined as P(i),

where P(i) is the value of each argument i in each operation in the class.

The value of each argument is also evaluated based on values in Table

3.4.

vii) Respond For Class (RFC) metric

- This metric is proposed by Chidamber and Kemerer. RFC metric is the

number of methods in the set of all methods that can be invoked in

response to a message sent to an object of a class.

viii) Lines Of Code (LOC) metric

- This metric is a traditional software metric. LOC metric measures the size

of a module: which is the number of statements including comments

(Xenos et. al, 2000).

The process of measuring program complexity is done by implementing a static analysis

of the program complexity for a student’s program and program schema. Then, the

process of analysis and comparison complexity values of student’s program and program

schema will be done to identify the equivalence of complexity values between both

programs. The weight value and score will be given for each selected metric and

calculation will be done to define the complexity mark awarded for the student’s

program. Figure 3.4 depicts an overview of the complexity checking process.

 29

Figure 3.4: Overview of Complexity Checking Process

The measurement of the program complexity was made by assigning appropriate

weight and score for each selected software metric. Each metric is given the same score

with a value of ‘10’ in order to simplify the process of calculation complexity mark. The

weight value for each metric is given on a scale value of 1 to 5. Therefore, the lecturer

can choose the specified value according to a level of prioritizing the importance of each

metric in the evaluation criteria. The value of ‘1’ is a low priority , whereas the value of

‘5’ is a high priority. The purpose of selecting a scale value of 1 to 5 is to determine less

range value of accuracy. The schema of the given scores and weights for each metric for

this study is depicted in Table 3.5.

student’s
program

weight &
score

Complexity
Value of
Program
Schema

Dynamic

testing

Complexity
checking

analysis &
comparison Complexity

checking

program
schema

Report
Analysis

Calculation
Complexity Mark

Complexity
Value of
Student’s
Program

 30

Table 3.5: The Schema of Given Score and Weight for Selected Metric

Selected Metric Weight value Score value

i) NCL

Selection of integer values

between 1 to 5

10

ii) SIZE2

iii) AC

iv) Cyclomatic

Complexity

v) OpCom

vi) OAC

vii) RFC

viii) LOC

The complexity mark of a student’s program is calculated by adding the total

marks, which are acquired for each metric defined in Table 3.5. The complexity mark is

presented in the format of percentage value. The formula for the complexity mark

calculation is shown as follows:

m

Complexity Mark =
n
 Weight value Score value

 __________________________________ 100 %

m
 Weight value Score value

where,

 m = number of selected metric

 n = number of metrics that meets schema

 of output, and n m

i=1

i=1

 31

3.2.2 Program Specification

In order to ensure all the selected software metrics will be measured correctly, there are

several program specifications that should be followed as stated below:

 The main method should be declared separately with user-defined classes.

 The program should not contain the blank lines.

 The condition statement should not have more than two conditional operators in

single statement.

 The access modifier should be used for all methods and variables in class.

 The instructions of program solving should be defined clearly, in terms of input

and output, number of classes, number of attributes, number of methods, control

statements that will be used and the arguments used in a method.

3.3 Conclusion

This chapter explained the methodology and how it was used to develop the prototype

for the study. This study involved four phases, namely construct a conceptual issue,

design the prototype, build the prototype and evaluate the prototype. The UML technique

was adopted to analyze the prototype requirement. Besides that, this chapter also

discussed prototype design including the complexity checking process, program

complexity measurement, and program specification. The next chapter will discuss on

the prototype development and testing phase.

 32

CHAPTER FOUR

DEVELOPMENT AND TESTING

This chapter discusses on prototype development and testing phase. The development

section will discuss on the related topics of prototype development meanwhile, the

testing section will discuss on the prototype testing including an approach for testing

used in this study and the static analysis of complexity result.

4.1 Prototype Development

In the implementation phase, a prototype was developed to automate the process of

measuring the complexity of a student’s program. The Java complexity measurement

prototype developed is referred to as JCoM (Java Complexity Measurement). During

this phase, the system architecture defined in the design phase is transformed into codes

using selected software. The software tools are depicted in Table 4.1.

Table 4.1: Software Tools

Type of software Purpose

Kawa version 3.22 Editor for prototype development

Jdk 1.3 Java Compiler

NotePad Text File

 33

4.1.1 Description of JCoM Prototype

JCoM is developed to provide an environment to assist lecturers of Introduction to

Programming course to automate the process of measuring the complexity of a student’s

Java programming assignments. Besides providing lecturers with an environment to

implement the complexity checking of student’s programs, JCoM also provides another

two functions, namely:

 Calculate the complexity mark of a student’s program

 Produce comments of an analysis complexity that has been generated.

JCoM is also developed as a support tool to improve the process of evaluating

correctness of the Java programming assignments proposed by Rohaida et. al (2004).

The lecturer who is the main user of JCoM should assign a weight value for each

selected metric before checking the complexity of a student’s program. These values will

be stored in the text file and which will be used in the process of measuring the program

complexity. There are three sub processes, which will be done sequentially during the

implementation of measuring program complexity, namely:

 Checking the complexity of student’s program and program schema. The

produced complexity values for both programs will be stored into a text file.

 Analysis and comparison of complexity values of student’s program and program

schema are implemented by using the complexity values produced in the previous

process.

 Calculation of complexity mark for student’s program is done by using weight

value and score that have been defined.

 34

A report that consists of the complexity analysis and the complexity mark of student’s

program will be generated as a final output for this prototype.

4.1.2 JCoM Interfaces

Interfaces of JCoM prototype are produced based on the use cases that have been

defined at the initial phase. As mentioned in section 3.1, there are two use cases defined

for this study, namely:

 Set Weight Value of Metrics

 Manage Program Complexity

There are two main interfaces in JCoM prototype, namely:

a. Set Weight Value of Metric Interface

The interface of Set Weight Value of Metric is depicted in Figure 4.1.

Figure 4.1: Set Weight Value of Metric Interface

 35

Set Weight Value of Metric interface is used by a lecturer to assign a weight

value for each metric that is listed in the interface. The value given is based on the level

of the importance of each metric in the evaluation criteria. The weight value is given in a

scale value from 1 to 5. The selection of weight value can be done by choosing one of

the values that are listed in the combo box. All the weight values will be stored into the

text file after the user presses the ‘OK’ button. These weight values will be used in the

process of calculating the complexity mark for a student’s program.

b. Manage Program Complexity Interface

The interface of Manage Program Complexity is depicted in Figure 4.2.

Figure 4.2: Manage Program Complexity Interface

 36

The Manage Program Complexity interface is used to implement the process of

the static analysis of program complexity for both student’s program and program

schema. The lecturer will select and download the student’s program and program

schema that consist of user-defined class and testing class. The Testing class is referred

as a main class. Therefore, the user should define the number of user-defined class

involved in the program schema before the process of static analysis of the program

complexity can be implemented. The Set Number of Class interface is used to insert the

number of user-defined class needed in the solution of program. The maximum number

of user-defined class for this prototype was limited to three classes. When a user presses

the ‘OK’ button, the Manage Program Complexity interface will be displayed. The

interface of Set Number of Class is depicted in Figure 4.3.

Figure 4.3: Set Number of Class Interface

Referring to the Manage Program Complexity interface, the files of the student’s

program and program schema will be accessed from the current directory by pressing the

‘Browse’ button. Right after pressing this button, the interface of open current files will

be displayed. This interface is depicted in Figure 4.4.

 37

Figure 4.4: Open File Interface

All the classes involved in the solution of a program assignment should be

accessed from current directories in order to implement the process of static analysis of

the program complexity. The complexity analysis for the student’s program and program

schema will be stored into different text files. These complexity values will be used in

the process of analysis and comparison between the student’s program and the program

schema in order to determine the equivalence of their complexity values. This process

can be done by pressing the ‘Analysis complexity’ button. The results of the complexity

checking for both student’s program and program schema also will be displayed in the

text areas that are contained in the interface. Furthermore, the details of the analysis

complexity and complexity mark for student’s program will be also displayed in the text

area on this interface. The analysis report of the complexity checking is presented in the

format of listing of comments.

 38

4.2 Prototype Testing

After the implementation phase, the prototype will be tested in order to validate how well

the prototype performs. The test conducted focused on the requirements that have been

defined during the analysis phase. In conducting the testing process, the following

hardware and software must be prepared:

a. Hardware preparation

The testing will be executed using desktop computers in windows operating system

environment.

b. Software preparation

JCoM prototype is used during the testing phase. The description of required software is

depicted in Table 4.2.

Table 4.2: Description of Required Software

No. Item Description

1. JDK 1.3 To compile Java program

2. Notepad Files

 39

4.2.1 Testing Approach

JCoM is used to examine the Java program source code without executing the program.

As mentioned in the previous chapter, static analysis is selected as a testing approach for

assessment of program complexity. This approach involves a process of examining a

program without executing it. In this study, the testing activity is conducted based on the

defined use cases. Therefore, a testing script is used to describe all the necessary steps to

conduct a particular test.

The testing script for Set Weight Value of Metrics use case is depicted in Table

4.3 and Table 4.4 depicts the testing script for the Manage Program Complexity use case.

 40

Table 4.3: Testing Script for Set Weight Value of Metrics Use Case

No. Use Case Description

1 Set weight value of

metrics

This use case enables the lecturer to set the weight of the

selected software metrics that has been adopted in this

study in order to measure the complexity of the student’s

Java programming assignment.

Pre-conditions None

Post-conditions Weight values of selected software metrics have been

defined.

Test Steps Test Scenarios Expected Output

1. The lecturer presses on ‘Set weight

value of metrics’ button in main menu.

Menu ‘Set weight of metric’

will be displayed.

2. The lecturer will set the weight value

between the range 1 to 5 for the

following software metrics:

 Lines of Code (LOC)

 Number of Classes

 Number of Attributes

 Number of Methods

 Cyclomatic Complexity

 Value of Arguments

 Value of Attributes

 Respond for Class

3. Press on ‘OK’ button.

 41

Table 4.4: Testing Script for Manage Program Complexity Use Case

No. Use Case Description

2 Manage Program

Complexity

This use case enables the lecturer to access student’s

programming assignment and program schema in order

to measure the program complexity and grade the

assignment in considering the complexity factor.

Pre-conditions Student’s Java programming assignment and program

schema must be up loaded into specific directory on PC.

Weight values are set.

Post-conditions The expected output consists of complexity analysis and

total mark will be displayed.

Test Steps Test Scenarios Expected Output

1. The lecturer presses ‘check

program complexity’ button on

the main menu.

Menu ‘Check program complexity’

will be displayed.

2. Select number of classes and

press ‘OK’ button.

Based on number of classes given, the

system will display the list of files

that will be downloaded.

3. Select and download the

following files based on the

defined number of classes:

 student’s Java file (user-

defined class)

 student’s Java file (testing

 42

class)

 Schema file (user-defined

class)

 Schema file (testing class)

4. Press on the “Analyze

complexity” button.

 The complexity analysis for

program schema and student’s

program will be displayed

separately in text field.

 Report of overall complexity

analysis result will be displayed.

 The total mark for the complexity

aspect will be displayed.

4.4.2 Static Analysis of Complexity Result

As mentioned in section 3.4.2, static analysis is used as a testing approach and the results

are based on the selected software metrics. JCoM is used to measure the complexity of

the program schema and student’s program. In this study, two sets of programs have

been chosen in order to figure out the complexity result as follows:

a) Set 1 consists of a student’s program that is exactly similar with the program

schema. Figure 4.5 and figure 4.6 depicts the program schema and the student’s

program respectively and both programs consist of user defined

classes and testing classes.

 43

b) Set 2 consists of a student’s program that differs with the program schema.

Figure 4.7 depicts the program schema and figure 4.8 depicts the student’s

program and both programs consist of the user defined class and the testing class.

The reason for choosing only two sets of program to be tested is because the

number of similar or dissimilar programs with the program schema does not affect the

process of static analysis and calculating the complexity mark, even though the result

produced is different.

 44

Import java.io.*;

public class UtamaSchema

{

 public static void main(String arg[]) throws IOException

 {

 int count=1;

 int bilSubject=0;

 String name;

 InputStreamReader read = new InputStreamReader (System.in);

 BufferedReader input = new BufferedReader(read);

 YuranSchema subject = new YuranSchema();

 System.out.println("**********SCORE A1 TUITION CENTRE*************");

 while(count==1)

 {

 System.out.print("Name:");

 name= input.readLine();

 System.out.print("Number of subject:");

 bilSubject = Integer.parseInt(input.readLine());

 subject.calculateFee1(bilSubject);

 subject.calculateFee2(bilSubject);

 System.out.print("Do you want to continue (press 1):");

 count= Integer.parseInt(input.readLine());

 System.out.println();

 }

 subject.printFee();

 }

}

public class YuranSchema

{

 private int bil, count=1, c, b, n ;

 private double registrationFee=100.00,fee=0.0, totalFee=0.0;

 public void calculateFee1(int bilSubject){

 bil = bilSubject;

 if (bil <3)

 fee= registrationFee + (bil *30.00);

 else

 fee = registrationFee +((bil * 30.00) *0.85);

 System.out.println("Fee: RM" + fee);

 totalFee +=fee;

 }

 public void calculateFee2(int bilSubject){

 bil = bilSubject;

 if (bil <3)

 fee= registrationFee + (bil *25.00);

 else

 fee = registrationFee +((bil * 25.00) *0.85);

 System.out.println("Fee: RM" + fee);

 totalFee +=fee;

 }

 public void printFee() {

 System.out.println("Total Fee: RM" + totalFee);

 }

 }

Figure 4.5: Program Schema

 45

import java.io.*;

public class Utama

{

 public static void main(String arg[]) throws IOException

 {

 int count=1;

 int bilSubject=0;

 String name;

 InputStreamReader read = new InputStreamReader (System.in);

 BufferedReader input = new BufferedReader(read);

 YuranSchema subject = new YuranSchema();

 System.out.println("**********SCORE A1 TUITION CENTRE*************");

 while(count==1)

 {

 System.out.print("Name:");

 name= input.readLine();

 System.out.print("Number of subject:");

 bilSubject = Integer.parseInt(input.readLine());

 subject.calculateFee1(bilSubject);

 subject.calculateFee2(bilSubject);

 System.out.print("Do you want to continue (press 1):");

 count= Integer.parseInt(input.readLine());

 System.out.println();

 }

 subject.printFee();

 }

}

public class Yuran

{

 private int bil, count=1, c, b, n ;

 private double registrationFee=100.00,fee=0.0, totalFee=0.0;

 public void calculateFee1(int bilSubject){

 bil = bilSubject;

 if (bil <3)

 fee= registrationFee + (bil *30.00);

 else

 fee = registrationFee +((bil * 30.00) *0.85);

 System.out.println("Fee: RM" + fee);

 totalFee +=fee;

 }

 public void calculateFee2(int bilSubject){

 bil = bilSubject;

 if (bil <3)

 fee= registrationFee + (bil *25.00);

 else

 fee = registrationFee +((bil * 25.00) *0.85);

 System.out.println("Fee: RM" + fee);

 totalFee +=fee;

 }

 public void printFee() {

 System.out.println("Total Fee: RM" + totalFee);

 }

 }

Figure 4.6: Student’s Program

 46

In the first set, both programs were examined and Table 4.5 depicts the expected result,

which consists of the complexity analysis and the rewarded mark. The rewarded mark is

based on the defined weight value of software metrics, which is depicted in Table 4.6.

Table 4.5: Expected Result of Similar Programs

Item Selected Metrics Expected Result

Complexity Analysis

(Program Schema)

 Lines Of Code

 Number of classes

 Number of properties

 Attributes Complexity

 Operation Arguments Complexity

 Cyclomatic Complexity

 Operation Complexity of classes

 Cyclomatic Complexity for testing

class

 Response for Class

26

1

11

11

2

5

very low

2

3

Complexity Analysis

(Student’s program)

 Lines Of Code

 Number of classes

 Number of properties

 Attributes Complexity

 Operation Arguments Complexity

 Cyclomatic Complexity

 Operation Complexity of classes

 Cyclomatic Complexity for testing

class

 Response for Class

26

1

11

11

2

5

very low

2

3

Total Mark Program Schema

 Student’s program

100%

100%

 47

Table 4.6: Weight Value of Software Metrics

Software metrics Weight Value

Line Of Codes

Number of Class

Number of Attributes

Number of Methods

Operation Complexity (Cyclomatic Complexity)

Value of Arguments

Value of Attributes

Respond for class (RFC)

2

4

3

4

4

3

4

4

 48

import java.io.*;

public class UtamaSchema

{

 public static void main(String arg[]) throws IOException

 {

 int count=1;

 int bilSubject=0;

 String name;

 InputStreamReader read = new InputStreamReader (System.in);

 BufferedReader input = new BufferedReader(read);

 YuranSchema subject = new YuranSchema();

 System.out.println("**********SCORE A1 TUITION CENTRE*************");

 while(count==1)

 {

 System.out.print("Name:");

 name= input.readLine();

 System.out.print("Number of subject:");

 bilSubject = Integer.parseInt(input.readLine());

 subject.calculateFee1(bilSubject);

 subject.calculateFee2(bilSubject);

 System.out.print("Do you want to continue (press 1):");

 count= Integer.parseInt(input.readLine());

 System.out.println();

 }

 subject.printFee();

 }

}

public class YuranSchema

{

 private int bil, count=1, c, b, n ;

 private double registrationFee=100.00,fee=0.0, totalFee=0.0;

 public void calculateFee1(int bilSubject){

 bil = bilSubject;

 if (bil <3)

 fee= registrationFee + (bil *30.00);

 else

 fee = registrationFee +((bil * 30.00) *0.85);

 System.out.println("Fee: RM" + fee);

 totalFee +=fee;

 }

 public void calculateFee2(int bilSubject){

 bil = bilSubject;

 if (bil <3)

 fee= registrationFee + (bil *25.00);

 else

 fee = registrationFee +((bil * 25.00) *0.85);

 System.out.println("Fee: RM" + fee);

 totalFee +=fee;

 }

public void printFee() {

 System.out.println("Total Fee: RM" + totalFee);

 49

 }

 }

Figure 4.7: Program Schema

import java.io.*;

public class Utama

{

 public static void main(String arg[]) throws IOException

 {

 int count=1, bilSubject;

 String name;

 InputStreamReader read = new InputStreamReader (System.in);

 BufferedReader input = new BufferedReader(read);

 Yuran subject = new Yuran();

 System.out.println("**********SCORE A1 TUITION CENTRE*************");

 while(count==1)

 {

 System.out.print("Name:");

 name= input.readLine();

 System.out.print("Number of subject:");

 bilSubject = Integer.parseInt(input.readLine());

 subject.calculateFee(bilSubject);

 System.out.print("Do you want to continue (press 1):");

 count= Integer.parseInt(input.readLine());

 System.out.println();

 }

 subject.printFee();

 }

}

public class Yuran

{

 private int bil, count=1 ;

 private double registrationFee=100.00,fee=0.0, totalFee=0.0;

 public void calculateFee(int bilSubject){

 bil = bilSubject;

 if (bil <3)

 fee= registrationFee + (bil *30.00);

 else

 fee = registrationFee +((bil * 30.00) *0.85);

 System.out.println("Fee: RM" + fee);

 totalFee +=fee;

 }

 public void printFee() {

 System.out.println("Total Fee: RM" + totalFee);

 }

 }

 50

Figure 4.8: Student’s Program

In the same manner, for the 2
nd

 set, both programs were examined by using JCoM and

the expected results consisted of the complexity analysis and rewarded marks were

produced and depicted in Table 4.7.

Table 4.7: Expected Result of Different Programs

Item Selected Metrics Expected Result

Complexity Analysis

(Program Schema)

 Lines Of Code

 Number of classes

 Number of properties

 Attributes Complexity

 Operation Arguments Complexity

 Cyclomatic Complexity

 Operation Complexity of classes

 Cyclomatic Complexity for testing

class

 Response for Class

26

1

11

11

2

5

very low

2

3

Complexity Analysis

(Student’s program)

 Lines Of Code

 Number of classes

 Number of properties

 Attributes Complexity

 Operation Arguments Complexity

 Cyclomatic Complexity

17

1

7

8

1

3

 51

 Operation Complexity of classes

 Cyclomatic Complexity for testing

class

 Response for Class

very low

2

2

Total Mark Program Schema

 Student’s program

100%

51.43%

4.5 Testing Results and Conclusion

Based on the implementation and prototype testing of JCoM, we have found that the

prototype is able to implement the following processes automatically:

 The static analysis of the program complexity for the tested program and the

program schema.

 The Process of analysis and comparison complexity values of the tested program

and program schema.

 The Complexity mark awarded for the tested program.

 The report analysis that consists of the complexity analysis and the complexity

mark of the tested program.

Due to JCoM’s tested and proven ability, it shows that the prototype developed has met

the requirements for this study.

 52

CHAPTER FIVE

CONCLUSION

This chapter explains the findings of this study. It also includes suggestions and

recommendations for future work.

5.1 Result Findings

This study is focused on the automation of measuring the complexity of Java

programming assignment in terms of maintaining a uniform marking standard for the

Introduction To Programming course. Results of this study shows that, the prototype

developed referred as JCoM is able to automate the process of measuring the complexity

of student’s Java programming assignment. However, the program specification defined

in section 3.2.2 should be followed to ensure all the selected metrics are measured

correctly.

 53

Furthermore, the selection of object-oriented metrics which are used to measure

the complexity of a student’s Java programming assignment for this study are mostly

covered by the basis evaluation items in the current manual assessment of the student’s

Java source code. This is indicated in the results of preliminary study that shown in

Appendix B.

This study is also provides an environment in the prototype to allow the lecturer

to select the appropriate scale of the weight value used to measure the complexity of

student’s program. It gives a choice to the lecturer in order to prioritize the weight value

based on the importance of selected metric in the evaluation criteria.

Meanwhile, the result analysis produced as a final output for this prototype can

provide an information guideline to the students in terms of identifying whether or not

their program followed the program requirement. However, there are a few limitations to

this study. These are:

 This study focused on only one of the maintainability quality factor, which is the

complexity.

 Selected object-oriented metrics used to measure program complexity did not

cover evaluation items for advanced object-oriented programming.

 The number of user-defined classes was limited for three classes only.

5.2 Future Works

 54

The following are several recommendations for future work due to the limitation

described in section 5.1:

 There is another factor of maintainability, which is typographic arrangement that

describes the way a program source code is presented and provides full

measuring of programming style of program source code.

 Others advanced object-oriented metrics such as class cohesion, coupling

between objects, class coupling, depth of inheritance tree, method inheritance

factor and polymorphism factor can be used to measure the program complexity

of advanced object-oriented programming.

 The user (lecturers) should have an authority to determine the distinct number of

user-defined class involved in the programming solution.

5.3 Conclusion

As a conclusion, the prototype developed is an initial effort to automate the process of

measuring the complexity of students’ Java programming assignments. Even though, this

prototype does not fully measure the complexity of advanced object-oriented

programming, the selected software metrics that has been adopted in this study mostly

covers the basic evaluation item in marking the “Introduction To Java Programming”

assignments. Furthermore, based on JCoM’s ability finding, it can improve consistency

and time in the marking process, in terms of the complexity measurement.

 55

REFERENCES

Abounader, J. R. & Lamb, D.A. 1997. A Data Model for Object-Oriented Design

Metrics. Retrieved May 26, 2005.

http://citeseer.ist.psu.edu/abounader97data.html

Basili, V.R. (1980). Qualitative Software Complexity Models: A summary in

Tutorial on Models and Methods for Software Management and

Engineering. IEEE Computer Society Press.

Booch, G., Jacobson, I. & Rumbaugh, J. (1998). The Unified Software

Development Process. Massachusetts. Addison Wesley.

Chen, J.Y. & Lu, J.F. (1993). A new metrics for Object-oriented design.

Information and Software Technology. 35 (4), 232-240.

Chidamber, S.R. & Kemerer, C.F. (1995). A Metrics suite for Object-Oriented

design. IEEE Transactions on Software Engineering..21(3), 265.

Conte, S.D., Dunsmore, H.E. & Shen, V.Y. (1986). Software Engineering Metrics

and Models. California :Benjamin /Cummings Publisher

Coward, P.D. (1988). A review of software testing. Information and Software

Technology. Vol 30, 187-197

Curtis, B. (1985). Tutorial: Human Factors in Software Development. IEEE

Computer Society.

Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A. and Love, T. Measuring the

psychological complexity of Software Maintenance Tasks with the

Healstead and McCabe metrics. IEEE Trans. Software Engineering, SE-5,

2, 96-104.

Foxley, E. Higgins, C, & Gibbon, C. (1996). The Ceild System. Retrieved May 26,

2005.

http://www.cs.nott.ac.uk/CourseMarker/more_info/html/Overview96.htm

George, J.F, Batra, D. & Valacich, J.S. & Hoffer, J.A. (2004). Object-oriented

Systems Analysis and Design. New Jersey: Prentice Hall

Hung, S., Kwok, L. & Chan, R. (1993). Automatic Program Assessment .

Computers and Education, Computer and Education,Vol 20, 183-190

Jackson, D. (1996). A Software System for Grading Student Computers Programs.

Computer Education. 27(3/4), 171-180.

Lake A. and Cook C., (1994). Use of Factor Analysis to Develop OOP Software

Complexity Metrics, Proceeding of the Sixth Annual Oregon Workshop

Software Metrics.

http://citeseer.ist.psu.edu/abounader97data.html
http://www.cs.nott.ac.uk/CourseMarker/more_info/html/Overview96.htm

 56

Li, W., Henry, S., Kafura, D. & Schulman, R. (1995). Measuring Object-Oriented

Design. Journal of Object-Oriented Programming. 48-55.

McCabe, T.J. (1976). A Complexity Measure. IEEE Transactions on Software

Engineering, 2, 308-320.

Mengel, S.A. & Yerramilli V. (1999). A Case Study of Static Analysis of the

Quality of Novice Student Programs. The proceddings of the 13 SIGCSE

Technical Symposium on Computer Science Education, Vol 31, 1

Moreau, D.R. & Dominick, W.D. (1989). Object-oriented graphical Information

Systems: Research plan and Evaluation Metrics. Journal of System and

Software. Vol 10, 23-28.

NunaMaker, J., Chen, M. & Purdin, T. (1991). System Development In

Information Systems Research. Journal of Information Systems, 7(3), 89-

106

Quatrani, T (2000). Visual Modeling with Rational Rose 2000 and UML. Canada

:Addison Wesley

Ramamoorthy, C.V., Tsai W.T, Yamaura T. & Bhide A. (1985). Metric Guided

Methodology. IEEE Trans. On Software Engineering. Vol SE-11 No.5.

Rohaida, R., Cik Fazilah, H. & Mazni, O. (2004). Correctness Assessment Of Java

Programming Assignment. Laporan Akhir Penyelidikan Geran Fakulti.

Universiti Utara Malaysia.

Rosenberg, L.H. & Hyatt, L.E. (1997). Software Quality Metrics for Object-

Oriented Enviroment. Retrieved Jun, 20, 2005, from

http://satc.qsfc.nasa.gov/support/CROSS_APR97/oocross.pdf

Rosenberg, L.H. (1998). Applying and Interprenting Object-Oriented Metrics.

 Retrieved Jun, 2, 2005, from

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Sommerville, I. (2004). Software Engineering. 7th Edition. England: Addison

Wesley

Tegarden, D.P., Sheetz, S.D. & Monarchi, D.E. (1992). Effectiveness of Traditional

Software Metrics for Object-oriented Systems. Proceedings of the Twenty-

fifth Hawaii International Conference. Vol 4, 359-368.

Truong, N., Roe, P. & Bancroft, P. (2004). Static Analysis of Student’s Java

Programs. Conference in Research and Practice in Information Technology,

Vol 30

Vizcaino A., Contreras J., Favela J. and Prieto M., (2000). An Adaptive,

Collaborative Environment to Develop Good Habits in Programming,

Proceeding of International Conference on Intelligent Tutoring System.

http://satc.qsfc.nasa.gov/support/CROSS_APR97/oocross.pdf
http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

 57

Watson A. H. and McCabe T. J. (1996). Structural Testing: A Testing Methodology

Using Cyclometic Complexity Metrics. Technical Report of NIST Special

Publication 500-235.

Xenos M., Starrinoudis D., Zikouli K. and Christtodoulakis D. (2000). Object-

Oriented Metrics – A Survey. Retrieved May 10, 2005, from

http://citeseer.ist.psu.edu/528212.html

Yourdan, E. & Constantine, L. (1979). Structured Design – Fundamentals of a

discipline of computer programs and design. Prentice Hall

Zarina, S. (1999). The Automatic Assessment of Z Specification. PhD Thesis.

University Nottigham.

Zin, A.M. & Foxley, E. (1994). Automatic Program Assessment System.

Retrieved May, 20, 2005, from

http://www.cs.nott.ac.uk/CouseMarker/more_info/html/ASQA.htm

Zuse, H. (1991). Software Complexity, Measures and Methods. Walter de Gruyter.

New York.

http://www.cs.nott.ac.uk/CouseMarker/more_info/html/ASQA.htm

 58

APPENDIX

APPENDIX A

A PRELIMINARY STUDY

 59

Universiti Utara Malaysia
Fakulti Teknologi Maklumat

7 June 2005

Sir/Madam

We are currently working on a study to automate the marking schema of the
measuring complexity for Java programming assignment. This preliminary study
is meant to gauge the extend to which those who are teaching the programming
course, especially for Pengaturcaraan Awalan (TA1013) and/or Pengaturcaraan
Lanjutan (TA1023) evaluate the program source code in marking the Java
programming assignment.

We would really appreciate it if you could spare a moment of your time to help us
fill in the form. Your cooperation is highly appreciated. Thank you.

Sincerely yours,

Mawarny Md. Rejab
Rohaida Romli

 60

PRELIMINARY STUDY OF MARKING SCHEMA FOR JAVA PROGRAMMING ASSIGNMENT

INSTRUCTION : Please tick the appropriate answer for each of the following:

SECTION A : TEACHING BACKGROUND

1. Teaching experience in Java programming.

 1 semester
 2 semester
 3 semester
 4 semester
 more than 4 semester, please indicate ___________________.

2. Java programming courses that have been taught.

 TA1013 (Pengaturcaraan Awalan)
 TA1023 (Pengaturcaraan Lanjutan)
 TA2023 (Struktur Data dan Analisis Algoritma)
 Others, please indicate ________________________________

SECTION B : MARKING SCHEMA OF JAVA PROGRAMMING ASSIGNMENT

1. Evaluation Items

 YES NO
1.1 Besides evaluating the program output, the program source

code is also considered in marking the student’s Java
programming assignment.
(If not, please proceed to item no. 3)

1.2 Evaluation items for program source code include:
 a) Lines of code
 b) Number of classes
 c) Number of variables/attributes
 d) Data types of variables/attributes
 e) Number of methods
 f) Number of arguments in each method
 g) Data types of arguments in each method
 h) Control flow statements in each method
 i) Declared method which is not invoked by any object
 j) Class coupling
 k) Cohesion
 l) Depth of inheritance
 m) If needed, please state others appropriate evaluation items which is not

 mentioned above.

 61

2. Marking schema for evaluation items

2.1 Using the scale provided, please prioritize each evaluation item.

Low priority moderate High priority

 1 2 3 4 5

 1 2 3 4 5
 a) Lines of code
 b) Number of classes
 c) Number of variables/attributes
 d) Data types of variables/attributes
 e) Number of methods
 f) Number of arguments in each method
 g) Data types of arguments in each

 method

 h) Control flow statements in each
 method

 i) Declared method which is not invoked
 by any object

 j) Class coupling
 k) Cohesion
 l) Depth of inheritance
 m) Recommended evaluation items

 stated in Section B (1.2)

2.2 Recommendation percentage for the program source code that should be
 contributed for the overall java programming assignment mark.

.
 10%
 20%
 30%
 40%
 50%
 Other, please indicate ______________________

3. Other suggestions/comments

 __

 62

APPENDIX B:

RESULT ANALYSIS OF PRELIMINARY STUDY

 63

Analysis Result for Preliminary Study in term of Marking Schema of Java

Programming Assignment

1. Considering of program source code as an evaluation item

Test Item Number of respondent

a. Yes 10

b. No 0

2. Current evaluation items for program source code

Test Item
Number of respondent

Yes No

a. LOC 1 9

b. NOC 9 1

c. Number of variables/attributes 5 5

d. Data types of variables/attributes 9 1

e. Number of methods 9 1

f. Number of arguments in each method 4 6

g. Data type of arguments in each method 9 1

h. Control flow statement in each method 8 2

i. Declared method which is invoke by

any object

5 5

j. Class coupling 4 6

k. Cohesion 3 7

l. Depth of inheritance 3 7

m. Others (programming style) 1 9

3. Suggestion of prioritizing an evaluation items

Test Item

Number of respondent

Scale

1 2 3 4 5

a. LOC 2 4 1 0 0

b. NOC 1 1 3 3 2

c. Number of variables/attributes 1 2 3 2 1

d. Data types of variables/attributes 0 0 2 4 3

e. Number of methods 0 2 2 3 2

f. Number of arguments in each method 1 3 2 3 1

g. Data type of arguments in each method 0 0 3 5 0

h. Control flow statement in each method 0 0 2 4 2

i. Declared method which is invoke by

any object

0 3 1 0 2

j. Class coupling 1 2 2 3 0

k. Cohesion 0 0 1 2 0

l. Depth of inheritance 0 0 1 2 0

 64

4. Recommendation percentage mark (percentage contribute to total

mark)

Test Item Number of respondent

a. 10 % 0

b. 20 % 1

c. 30 % 5

d. 40 % 1

e. 50 % 1

f. others 2

 65

Database:

SchemaProfile : Lecturer
Panel:Manage

SchemaPanel

Manager:

ManageSchemaManager
 : WebPC : Java Compiler

1: clickUploadFile()

3: assignMarks()

4: uploadFile() 3 Files:

1. Program Schema

2. Input Schema

3. Weight Schema

5: clickJanaOutput()

2: selectQuestioncode()

6: submitSchemaProfile()

7: runProgram()

8: verifyResults()

9: storeResults()

 : Lecturer
Panel:Assess

ProgramPanel

Manager:Assessment

Manager

Database:

AsessmentProfile
 : WebPC : Java Compiler

1: clickPengujianAturcaraPelajar()

2: selectQuestionCode()

4: readFile()

5: clickLaksanaPengujian()

6: submitStudentProgram ()

7: runProgram()

8: compareResults()

9: storeResults()

10: viewReport()

3: selectStudentID()

