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Abstract 

The construction of a range restricted 
bivariate C

2 
interpolant to scattered data is  

considered in which the interpolant is positive 
everywhere if the original data are positive. 
Sufficient conditions are derived on Bézier points 
in order to ensure that surfaces comprising quintic 
Bézier triangular patches are always positive and 
satisfy C

2 
continuity conditions. The first and 

second derivatives at the data sites are then 
calculated (and modified if necessary) to ensure 
that these conditions are satisfied.  Its construction 
is local and easily extended to include as upper and 
lower constraints to the interpolating surfaces of 
the form z = C(x,y) where C is a polynomial of 
degree less or equal to 5. A number of examples 
are presented.  
 
 
1.  Introduction 
 

Various methods concerning with visualization 
of surface data to preserve positivity using bivariate 
functions such as in [1], [2], [9], [11] and [12] 
concentrate only on generating the resulting C1 
smooth surfaces. As far as we know, very little 
effort or no attempt has been made to extend the 
various schemes to enable interested parties to 
visualize C2 surfaces from scattered data. 
Motivated our previous work in [12] and the 
second author’s work in [13], this paper will 
propose sufficient conditions be derived on Bézier 
points in order to ensure that surfaces comprising 
quintic Bézier triangular patches are always 
positive and satisfy C2 continuity conditions. Each 
triangular patch of the interpolating surface is 
formed as a convex combination of three quintic 
Bézier triangular patches (as in [3]) and thus 
require inputs up to the second-order partial 
derivatives at vertices of the triangles. Initial values 
of inner Bézier ordinates will be estimated using 
cross boundary derivatives and C2 continuity 
conditions across shared edge of adjacent triangles.  

We begin by deriving sufficient conditions on 
Bézier ordinates which ensure the positivity of 
quintic Bézier patches in section 2. An outline of 
the surface construction is given in section 3, while 
section 4 presents the implementation of range-
restricted interpolation. Examples and comparison 

in term of mean and maximum absolute errors with 
previous results in [13] are presented in section 5. 
Finally, the conclusion will be given in Section 6.  
 
2. Sufficient Positivity Conditions for a 
Quintic Bézier Triangular Patch 
 

Consider a triangle T (as in Figure 1), with 
vertices V1(x1, y1), V2(x2 ,y2), V3(x3, y3), and 
barycentric coordinates u,v,w such that any point 
V(x, y) on the triangle can be expressed as V =   uV1  
+ vV2 +  wV3 , where  u + v + w = 1 and u v,w ≥ 0. 

 

V1

V2
 

  V3
 

e2
e3

e1

Figure 1 : Triangle T 
 
A quintic Bézier triangular patch P on T is defined 
as 
     P(u,v,w) = ijk ijk

i j k
i , j ,k

b B ( u,v,w )
+ + =
≥ ≥ ≥

∑ 5

5
0 0 0

                  (1)    

where     i j k
ijk

!B ( u,v,w ) u v w
i! j ! k !

=5 5   and bijk are 

the Bézier ordinates or control points of P. 
           
Let the Bézier ordinates at vertices be strictly 
positive, i.e. b500, b050, b005 > 0. Sufficient 
conditions on the remaining Bézier ordinates shall 
be derived to ensure the entire Bézier patch to be  
positive. For simplicity in writing the Bézier 
ordinates at vertices, let A = b500, B = b050, and C = 
b005. Our approach is to find the lowest bound on 
the remaining Bézier ordinates, such that if all the 
Bézier ordinates apart from A, B, C, have this 
value, then P(u,v,w) = 0. We thus assume that, the 
remaining Bézier ordinates have the same value -r 
(where r > 0). So,  (1) can now be written as, 
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P(u, v,w) = Au5 + Bv5+Cw5 -  (2)                                                                                                                              .),,(

5,5,5
5

5∑
≠≠≠

=++
kji

kji
ijk wvurB

Since  = 1, then ijk
i j k
i , j ,k

B ( u,v,w )
+ + =
≥ ≥ ≥

∑ 5

5
0 0 0

ijk
i j k
i , j ,k

B ( u,v,w )
+ + =
≠ ≠ ≠

∑ 5

5
5 5 5

 + u5 +v5 + w5 = 1. 

Thus, 
 P(u,v, w) = Au5 + Bv5 + Cw5- r (1- u5-v5-w5 )     (3) 
 
Clearly P(u, v, w) > 0, when r = 0. We are 
interested to find the value of r = r0 when the 
minimum value of P(u, v, w) = 0. The partial 
derivatives of P in (3) with respect to u, v and w are 
given by, 

P P( A r )u , ( B r )v ,
u v
P ( C r )w .
w

∂ ∂ ⎫= + = + ⎪⎪∂ ∂
⎬∂ ⎪= +
⎪∂ ⎭

4 4

4

5 5

5
              (4) 

At the minimum value of P, 

0and0 =
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

w
P

u
P

v
P

u
P . Thus, 

      
w
P

v
P

u
P

∂
∂

=
∂
∂

=
∂
∂ .           (5) 

Using (4) and (5), we have 
 

     andu B r u C r .
A r Av w

+ +
= =

+ +

4 4

4 4 r
                

Hence, 

u :v :w : :
A r B r C r

=
+ + +

4 4 4 1 1 1   

or 

( ) ( ) ( )
u :v:w : : .

A r B r C r
=

+ + +
1 1
4 4

1 1 1
1
4

 

 
Since u + v + w = 1, we obtain 

( A r )u ,

( A r ) ( B r ) ( C r )

+
=

+ +
+ + +

1
4

1 1
4 4

1

1 1 1

From the above and (3), the minimum value of  
P(u,v,w) is 

minP ( u,v,w )
r r.

A B C( r ) ( r ) ( r )
r r r

=

−
⎛ ⎞
⎜ ⎟
⎜ ⎟+ +
⎜ ⎟+ + +⎜ ⎟
⎝ ⎠

4

1 1 1
4 4 4

1 1 1
         (6)    

                        
We now need to choose a value of r = r0  so that 
this minimum value is zero. From (6), Pmin (u,v,w) 
= 0 when  

.+
A B C
r r r

+ =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 1 1
4 4 4

1 1 1 1

1 1 1

          (7)                             

Let s = 
r
1  and  

( ) ( ) ( )
G( s )

As Bs Cs
= + +

+ + +
1 1
4 4

1 1 1

1 1
1
4

1

,  

then 
                  G(s) = 1, s ≥ 0.                      (8) 
 

Now, we describe the method to determine the 

value of s0 = 
r0

1  for each triangular patch. 

Recalling that A, B, C > 0, it is easy to show that 
for s ≥ 0, G’ (s) < 0 and G’’(s) > 0. Let M =  
max(A,B,C) and N = min(A,B,C), then clearly                            

G( s ) .
( Ms ) ( Ns )

≤ ≤
+ +

1
4 4

3

1 1
1

3  In particular, we 

get   G
M

⎛ ⎞ ≥⎜ ⎟
⎝ ⎠

80 1 and G . 
N

⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

80 1

Figure 2 shows the form of G(s), s ≥ 0 with relative 
locations of 80/M, 80/N and s0. 

1
4

    

( B r )v

( A r ) ( B r ) ( C r )

+
=

+ +
+ + +

1
4

1 1
4 4

1

1 1 1
1
4

 and           

( C r )w .  

0

1

3

G(s)

80/M s0 s 80/N 
 

( A r ) ( B r ) ( C r )

+
=

+ +
+ + +

1
4

1 1 1
4 4 4

1

1 1 1

Figure 2.   Function G(s) for s ≥ 0 
 
To obtain the value of s0 for given values of A, B 
and C, we need to calculate the root of (7)  that will 
give a lower bound on the remaining Bézier 
ordinates, i.e. r0 = 1/s0. We can use a simple 
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iterative scheme which must ensure one-sided 
convergence, i.e. that s0 is approached from above. 
The convexity of G(s) means that this can be 
achieved using the method of false-position as in 
[13] (see [4] for further details). An initial estimate 
for the root will be the value of s for which the line 
joining 80/N and 80/M has the value 1 as shown in 
Figure 2. Thus, we obtain the following 
Proposition. 
 
Proposition. Consider the quintic Bézier 
triangular patch P(u, v, w)  with b500 = A, b050 = B, 
b005 = C, where A, B, C > 0.  If bijk ≥ -r0 = -1/s0 ,  
(i,j,k) ≠ (5,0,0), (0,5,0) and (0,0,5), where s0  is the 
unique solution of 

1
1

1
1

1
1

444 +
+

+
+

+ CsBsAs
= 1 then P(u,v,w) 

≥ 0, ∀ u, v, w ≥ 0,  u + v + w = 1. 

           b500 

 
 b050

 
b005  

b410 

b320 

b401 

b302 b311 

b104 

b041 

b230 

b140 

b032 b023 b014 

b203 b221 b212 

b131 b122 b113 

 
Note that, in practice, if any of the values of A, B, 
or C are zero (i.e. the given data are not strictly 
positive), we will assign the value zero to r0 for that 
triangle. 
 
3. Construction of C2 positivity-
preserving interpolating surface 
 

We want to construct a C2 positivity-
preserving surface F(x,y) which interpolates given 
scattered data, (xi, yi ,zi ), i=1,2,…,N, where zi > 0.  
The surface comprises quintic Bézier triangular 
patches, each of which is guaranteed to remain 
positive. We use Delaunay triangulation to 
triangulate the convex hull of the data points (xi,yi). 
Estimation of first order partial derivatives of F 
will be obtained by using the method proposed in 
[7]. For second order partial derivatives estimation, 
we will use the quadratic approximation of least 
squares method i.e.  

(∑ −+++++
i

iiiiiii zfeydxcyybxax
222min )  

where a, b, c, d, e and f are the coefficients to be 
determined. The second order partial derivatives at 
vertex Vi can then be estimated by Fxx= 2a, Fxy=b, 
Fyy=2c. We will refer to b500, b050, b005 as Bézier 
ordinates at vertices, b410, b401, b140, b041, b014, b104, 
b320, b302, b230, b032, b023, b203 as boundary Bézier 
ordinates and b311, b131, b113, b122, b212, b221 as inner  
Bézier ordinates respectively (see Figure 3).  From 
given data, F(Vi )and estimated partial derivatives 
Fx, Fy, Fxx, Fyy, Fxy at vertex Vi, we can determine 
all the control points bijk  except for the three inner 
control points b122, b221, b212. For instance (refer to 
Figures 1 and 3), at vertex V1, we shall obtain the 
following six control points: 

)( 1500 VFb =  , 5/)( 13500410 VDbb e+= ,  
5/)( 12500401 VDbb e−= , 

 

Figure 3. Control points of quintic triangular patch 
 

]4/)()(2[
5
1

1
2

3313500320 VDVDbb eee ++= ,  

]4/)()(2[
5
1

1
2

2212500302 VDVDbb eee −−=  and 

]4/)()()([
5
1

1
2

321213500311 VDVDVDbb eeee −−+=   

where  
)()()()()( 11211213 VFyyVFxxVD yxe −+−=  
)()()()()( 13113112 VFyyVFxxVD yxe −+−=  

)()()())((2

)()()(

1
2

1211212

1
2

121
2

33

VFyyVFyyxx

VFxxVD

yyxy

xxee

−+−−

+−=
 

)()()())((2

)()()(

1
2

3113131

1
2

311
2

22

VFyyVFyyxx

VFxxVD

yyxy

xxee

−+−−

+−=
 

   

).())((

)])(())([(
)())(()(

11231

31121231

112311
2

23

VFyyyy

Fyyxxyyxx
VFxxxxVD

yy

xy

xxee

−−

+−−+−−
+−−=

 
Similarly, the other 12 Bezier ordinates can be 
obtained using input data at vertices V2 and V3, 
respectively. However, initial estimates of the 
above ordinates may not satisfy the positivity 
condition for P. With regard to our Proposition, we 
need these Bézier ordinates to be greater or equal to 
-r0. If they are not, then the magnitudes of Fx, Fy, 
Fxx, Fyy and Fxy  at the vertices  need to be reduced 
so that the condition is satisfied. The modification 
of these partial derivatives at vertex Vi, is achieved 
by multiplying each derivative at that vertex, by a 
scaling factor 0 <αi < 1, i = 1, 2, 3. The smallest 
value of αi is obtained by considering all triangles 
Tt, t = 1, …, k that meet at vertex O, which satisfy 
the positivity condition of all these triangles (see 
Figure 4). Determination of scaling factor αi for 
each vertex is done as follows: Consider say, a 
triangle T1 of a triangulation domain with vertices 
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O, A and B. Let O =V1, B =V2, C =V3. At vertex 
V1, scalar 5...,2,1, =jjβ are defined as follows: 

1.   If , then   010 5/)( rDVF e −<+

1001 /))()((5 ei DVFr +−=β , otherwise ,11 =β  
2.   if , then  020 5/)( rDVF e −<−

2002 /))((5 eDVFr +=β , otherwise β2 = 1, 
3. if /5 < - r+)( 0VF 1C 0 
then 1003 /))((5 CVFr +=β , otherwise β3 = 1,                    
 4.  if   then 020 5/)( rCVF −<−

2004 /))()((5 CVFr i +=β , otherwise β4 = 1 and         
5. if then 030 5/)( rCVF −<+
     3005 /))()((5 CVFr i +−=β , otherwise β5 = 1 

where C1= , C]4/)()(2[ 0
2

1101 VDVD eee + 2 = 

 and C]4/)()(2[ 0
2

2202 VDVD eee − 3 =    

.     ]4/)()()([ 0
2

220201 VDVDVD eeee −+
Then we define ),,,,(min 543211 βββββγ = at 
vertex V0 of T1. We can obtain all ,tγ t = 2, 3, . . ., 
k using similar steps as above. Finally, in order for 
all five Bezier ordinates adjacent to V0 to fulfill the 
positivity condition in the Proposition, we will 
choose ).,..,,(min 211 kγγγα = . The above 
process is then repeated at all Vi of the triangulation 
in order to obtain all the scaling factors αi, i = 1,2,3. 
The adjusted Bézier ordinates except for b122, b221, 
b212 of the whole triangular patches that satisfy  the 
Proposition can then be calculated.  
For each triangle, the inner Bézier ordinates b122, 
b221, b212  remain to be calculated, in such a way to 
guarantee preservation of positivity and to ensure 
C2 continuity across patch boundaries. We shall use 
similar method as in [3] to determine initial 
estimates of  these ordinates. A local scheme Pi, i = 
1,2, 3 is defined by replacing b122, b221, b212 with 

, ,  respectively which will satisfy Cib122
ib212

ib221
2 

conditions across boundary ei. Ordinates , 

,  are obtained using cross boundary 
derivatives on edges e

1
122b

2
212b 3

221b
1, e2, e3 respectively. These 

ordinates will then be used to estimate the 
remaining local ordinates i.e. , , , 

, ,  (see [3] for further details). Initial 
estimates of these Bézier ordinates in each triangle 
may not satisfy the positivity condition of P(u,v,w) 
as stated in the Proposition. Now, we shall describe 
a method to adjust , ,  for each local 
scheme in order to satisfy the Proposition. Let  T

1
212b 1

221b 2
122b

2
221b 3

122b 3
212b

ib122
ib212

ib221

A 
and TB be two adjacent quintic Bézier triangular 
patches with a common boundary curve (see Figure 
4). In order to achieve C2 continuity along shared 
edge, the conditions involving ordinates to be 
adjusted are given as follows [6]: 

1
122032023

1
122 wbvbubc ++=                                 (9) 

)( 1
212

1
122113

1
122131

1
221 wbvbubwvcucc ++++=   (10)               

  (11) )( 1
221131

1
122113

1
122

1
212 wbvbubwvcucc ++++=

where (u,v,w) is barycentric coordinates of W1 with 
respect to triangle TA.  
    

 

  V3=W2 
b005 = c050 

V2 =W3  
b050=c005 

  b014  c041 b203 

  b023 c032 b401 

b302 

TA TB 

b104 

  b032  c023 

 b041   c014 

b410 

b320 

b230 

b140 

c140 

c230 

c320 

c410 

c401 

c302 
c230 

c104 

b311 

b113 

1
212b  

1
122b  

1
221b  

b131 c113 

1
212c

c311 

1
122c

1
221c

c131 

  V1  
     b500 

  W1  
     c500 

Figure 4. Adjacent quintic triangular patches 
 

The modification of three local inner Bézier 
ordinates to satisfy the Proposition and C2 
continuity conditions is done as follows: It suffices 
to show adjustments to , , . , 

, , i=2,3 are adjusted accordingly using 
similar approach. Let e

1
122b 1

212b 1
221b ib122

ib212
ib221

1 be a common edge to two 
triangles as in Figure 4.  Let lower bounds of 
ordinates for TA, TB be denoted by  and  10 )(r−

20 )(r− , respectively. First, consider adjustments to  

 and . If ≥1
122b 1

122c 1
122b 10 )(r−  and <1

122c 20 )(r− , 

then is set to be 1
122c 20 )(r− and  is then 

adjusted according to (9). Similarly, if 
≥

1
122b

1
122c 20 )(r−  and <1

122b 20 )(r− , then  is set to 

be 

1
122b

10 )(r−  and  will be adjusted according to 

(9). If <

1
122c

1
122b 10 )(r− , < and < , 

then  will be reset as  and  is then 
adjusted according to (9). Similar approach will be 
done for the case of > . When e

1
122c 20 )(r− 1

122b 1
122c

1
122b 10 )(r− 1

122c

1
122b 1

122c 1 is on the 

boundary of the domain, and <  then  
is reset to equal to -r

1
122b 0r− 1

122b
0. Using adjusted value of  

 and , we can now adjust , ,  
and  to satisfy the Proposition and C

1
122b c1

122
1
212b 1

221c 1
221b

c1
212

2 
conditions in (10) and (11) respectively. For the 
boundary case, if  and  < –r1

212b 1
221c 0, we reset 

both ordinate values to be –r0. 
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     The final interpolating surface P is then defined 
as a convex combination of all local schemes in 
order for sufficient conditions on all sides of the 
triangles to be satisfied, i.e.  
  P(u,v,w) = c1P1(u,v,w) + c2P2(u,v,w) + c3P3(u,v,w)  
                  or        

        (12) 

)(30

),,(),,(

332211

1,2,2
,2,1,2
,2,2,1

,5

5

QcQcQcuvw

wvuBbwvuP

kji
kji
kji

kji
ijkijk

++

+= ∑

≠≠≠
≠≠≠
≠≠≠

=++

where 

uwvuvw
vwc

++
=1 ,  

uwvuvw
uwc

++
=2     

uwvuvw
vuc

++
=3 ,

i = 1,2,3 and u, v, w 
are barycentric coordinates. 

iii
i vwbuwbuvbQ 221212122 ++=

 
4.  Range-restricted interpolation    
 

In the previous section, we have described the 
construction of C2 interpolating surface which is 
constrained to lie above the plane z = 0. We shall 
extend our scheme to include a larger set of 
constraint surfaces that are of the form z = C(x, y)  
where C(x, y) is a constant, linear, quadratic, cubic  
quartic or quintic polynomial, i.e. 

fyxeyxd

yxcyxbyxayxC

m

mm
m

l

ll
l

k

kk
k

j

jj
j

i

ii
i

+++

++=

∑∑

∑∑∑

=

−

=

−

=

−

=

−

=

−

1

0

1
2

0

2

3

0

3
4

0

4
5

0

5),(

where ai, i=0,…,5, bj, j=0,. . .,4, ck, k=0,. . .,3, dl, 
l=0,…,2, em, m=0,1 and f are real numbers.  These 
surfaces are considered because they can be 
expressed as quintic Bézier triangular patches on 
each triangle of the triangular mesh. Thus, C2 
piecewise polynomial surfaces consisting of 
polynomial pieces of the form z = C(x , y) on the 
triangulation of data sites can also be treated as  
constraint surfaces.  

We would like to generate a C2 interpolating 
surface z = F(x, y) through data points (xi, yi, zi) , i 
= 1, 2, . . ., N which lies either above or below the 
constraint surface or lie between both constraint 
surfaces. This problem can be easily reduced to the 
problem of positivity-preserving interpolation 
which we have considered earlier. Assume the data 
points lie above the constraint surface. The initial 
problem of constructing interpolation surface 
F(x,y) with respect to constraint surface C(x,y)  is 
similar to the construction of a function G(x,y) = 
F(x,y) – C(x,y) such that G is positive and C2 with           
G(xi,yi) = , where = z*

iz *
iz i – C(xi,yi) is a new set 

of data points. As described earlier, the positivity-
preserving interpolation surface F(x,y) is 

constructed piecewise as a single quintic  triangular 
patch, where G(x,y) is also a single piecewise 
quintic triangular patch. We can use a similar 
construction method if the data points lie below the 
constraint surface by writing G(x,y) as C(x,y) –
F(x,y).  The above construction method can be 
extended to describe the interpolating surface that 
lie between both the upper and lower constraint 
surfaces.  

 
5.  Examples 
 

Our first example taken from [9] consists of 63 
data points of a positive function, f in 
domain D ( , ) x( . , . ),= − −1 4 1 4 1 4 where 
f ( x, y ) ( x ) ( x ) ( y ) ( y ) , ( x, y ) D.= + − + − ∈2 2 2 21 1 1 1

The interpolating surface that does not preserve 
positivity of the original data is given in Figure 5 
where .0907.0),(min

),(
−=

∈
yxf

Dyx
 When our 

proposed positivity-preserving scheme is applied, 
the corresponding surface is shown in Figure 6 
where .0),(min

),(
=

∈
yxf

Dyx
 

  
Figure  5.  Surface does not preserve positivity 
 

 
Figure  6. Positivity-preserving surface 
 
The second example (from [10]) where 36 data 
points are obtained from a function g in domain 
D ( , ) x( , ),= 0 2 0 1  where    
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⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤−+−

+−+−

≥−≥−
≥−

=

.onelsewhere,0
16/1)5.0()5.1(if

),1)5.0()5.1(4(cos(5.0

0.0)(5.0if)(2
5.0)(if0.1

),(
22

22

D
yx

yx

xyxy
xy

yxg π

Note that g [ , ]∈ 0 1 in D. In this later example, we 
apply our range restricted method using lower and 
upper constraint planes, z = 0 and z = 1, 
respectively. The interpolating  surface without 
imposing these constraints is displayed in Figure 7. 
Clearly, the surface crosses both constraint planes 
with and

= 1.0866. After applying these constraints, the  
interpolating surface stays in between these two 
planes where and 

1087.0),(min
),(

−=
∈

yxg
Dyx

),(max
),(

yxg
Dyx ∈

0),(min
),(

=
∈

yxg
Dyx

),(max
),(

yxg
Dyx ∈

= 1  as shown in Figure 8. 

 
Figure 7. Unconstrained interpolating surface with 
constraint planes 

         
Figure 8. Constrained interpolating surface with 
constraint planes 
 
6.  Conclusion  
 
In this study, we have considered the generation of  
positivity-preserving interpolation using quintic 
triangular Bézier patches by imposing relaxed and 
simpler conditions on Bézier ordinates which was 
similarly done previously for C1 cubic triangular 
patches generated in [13]. We also extend the 
problem of C2 positivity-preserving interpolants to 
the case of range restricted scattered data by 

imposing lower and upper constraints on the 
generated final surface.  
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