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ABSTRACT 

Most Refineries historically models are deterministic, that is, they use nominal parameter values without taking into 
consideration the uncertainty in process, demands, refinery parameters, etc. And as a consequence, they are unable 
to perform risk management. In this paper a variety of methodologies for financial risk management in engineering 
decision have been already developed. We follow the approach presented by Barbaro and Bagajewicz (2004), who 
used two-stage stochastic programming model and you, can find all other approaches analyzed and discussed. The 
problem addressed here is that of determining the crude oil to purchase and decide on the production level of 
different products given predicts of demands. The profit is maximized taking into account revenues, crude oil costs, 
inventory costs, and lost demand costs. The model was tested using data from the Refinery owned by the State Oil 
Marketing Organization (SOMO) Company, Iraq. The results show that the stochastic model can forecast higher 
expected profit and lower risk compared to the deterministic model.  

Keywords: refinery operations, petroleum, crude transportation, stochastic model. 

INTRODUCTION 

Previously Refineries have had to use a tool to determine the performance and economics of existing 
operating units and/or planned new units. Most commercial models (PIMS, RPMS, PETRO) perform 
refinery planning under deterministic conditions, that is, they do not consider uncertainty in process, 
refinery parameters, demands, etc. Aspen PIMS facilitates enterprise-wide planning through optimized 
feedstock evaluation, product slate optimization, plant design, and operational execution that enables 
refineries and petrochemical plants to run at maximum efficiency. The scalable single- or multi-user 
solution models linear and non-linear problems and interfaces to rigorous simulator models. Aspen PIMS 
is a core element of AspenTech’s aspenONE® Planning and Scheduling applications. And as a result, 
they are unable to perform risk management. Aspen PIMS. (2004).  

Although risk management is attractive to refinery planning operators, its development has been 
considered hard because it entails the extension of these deterministic models, complex as they are 
already, to present optimization under uncertainty and manage risk. The extension never posed conceptual 
problems, just possible computational problems (memory, running time, etc) and eventually business will 
to pursue this on the part of software vendors. We developed a model which is similar to several existing 
ones in the literature: 

Lee et al. (1996), Jia et al. (2003), Wenkai et al. (2002) , Göthe- Lundgren et al. (2002), Moro et al. 
(1998), Pinto and Moro (2000), Pinto et al. (2000), Joly et al. (2002), Moro and Pinto (2004), Jia and 
Ierapetritou (2003), Zhang and Zhu (2000), among others. Stochastic cases have been considered by Bopp 
et al. (1996), Guldmann and Wang (1999), Escudero et al. (1999), Hsieh and Chiang (2001), Neiro and 
Pinto (2003), Lababidi et al. (2004). We use the two-stage stochastic programming approach for process 
planning under uncertainty (Liu and Sahinidis,1996). Barbaro and Bagajewicz (2003, 2004) presented a 
methodology for financial risk management in the framework of two-stage stochastic programming for 
planning under uncertainty, also they presented computational challenges and if implemented 
commercially would require changes in the available commercial code. 
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Based on this description, some of the theoretical expressions were developed, providing new insights on 
the trade-offs between risk and profitability. Therefore, the cumulative risk management curves were 
found to be very suitable to visualize the risk behaviour of different alternatives. Aseeri and Bagajewicz 
(2004) introduced new procedures and measures to manage financial risk. The concept of Value at Risk 
and Upside Potential as means to weigh opportunity loss versus risk reduction as well as an area ratio 
were used in this article and, in addition, upper and lower bounds for risk curves corresponding to the 
optimal stochastic solutions were developed. In the end, we introduced a new measure to evaluate risk. 
The method can be take advantage of the sampling average algorithm. The methodology that proposed by 
Aseeri and Bagajewicz  (2004) was applied to refinery planning by Pongsadki et al.(2006), who used a 
linear programming model as the main deterministic planning solver. 

In this paper, a model was developed for the production planning. We implement the strategy outlined by 
the aforementioned previous work using a commercial planner. PIMS used as engine to resolve the 
stochastic model and write computational routines to do it and manage financial risk. The results show 
that the procedure found solutions with very high expected value compared with those suggested by the 
deterministic model.  

PROBLEM STATEMENT 

The aim of the PIMS model is maximize the profit taking into account revenues, inventory costs and oil 
costs. The process units are modelled as vector - base, delta – base, mixers and splitters.  Automatically 
the distillations units are modelled by sub models using crude oil assay data, and send directly the 
properties of the run products to the PIMS blending. The stochastic model formulated by using discrete 
scenarios. For the decision variables we consider are crude purchase decisions, process units internal 
flows and operation parameters, blending over time periods and inventory management. The uncertain 
parameters are: products demand, crude cost and prices. We assume that this information is a predict and 
it is available a probability density function. 

CASE STUDY 

The model PVOLSAMP was applied to the PIMS sample. PVOLSAMP model is a volume based multi-
period refinery model and has the following process units: three operational modes units  and two 
atmospheric distillation(CDU1 and CDU2 ), a naphtha hydrotreater (NHT) and one naphtha splitter 
(NSP), one kerosene (KHT) and a distillate, one low-press reformer (LPR) hydrotreater (DHT), one cat 
cracking unit (CCU), one butane isomerization (IS4), one sulfuric acid alkylation (SFA), one 
hydrocracker distillate, one delay coking (DLC), one delay coking multi path (DCX), one hydrogen plant 
(HYD), one plant fuel system (PFS), one amine sulfur removal unit (AMN), one sulfur recovery unit 
(SRU), one tail gas treater unit (TGT), one saturate gas plant (SGP), unsaturated gas plant (UGP), one 
utility generation unit and products blending. The goal of the refinery is make the following products: 
LPG, unleaded regular gasoline (URG), unleaded premium gasoline (UPR), leaded regular gasoline 
(LRG), kerosene/jet (JET), diesel (DSL), low sulfur fuel oil (LSF), high sulfur fuel oil (HSF), coke (coke) 
and crude atmospheric residue (ATB). The CDU1 and CDU2 can operate to obtain fuels, and the CDU2 
is operates to get lube. The blended products specifications are shown in table 1.  

Prefixes X and N refer to maximum and minimum values for the products qualities, respectively. The 
total capacity of the refinery is 100000 bbls/ day. The values of crude oil costs and product prices were 
taken from historical data published by the energy information administration webpage 
(http://www.eia.doe.gov/). The following data between parentheses indicate the maximum demand and 
standard deviation for products table 2. 
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Table 1: Blended Specifications. 

 Property URG UPR LRG GSO JET DSL LSF HSF CKE 
XRVI PVP Index 15.6 15.6 15.6       
NDON Road ON 87.0 91.0 88.0       
NCNX CNX ON   88.0       
XTEL TEL gms/gal   0.1       
XLET LET gms/gal   0.095       
NE16 Dist:%Evap@160F 15 15 15       
XE16 Dist:%Evap@160F 35 35 35       
XARO Aromatics, LV% 50 50 100 30 24     
XBNZ Benzene, LV% 2 2 100 5      
NE20 Dist:%Evap@200F 30 30 30       
XE20 Dist:%Evap@200F 70 70 70       
NE30 Dist:%Evap@300F 70 70 70       
NE40 Dist:%Evap@400F     10     
XSUL Sulfur, WT% 0.05 0.05 0.10  0.30 0.50 1.00 3.00 9.00 
XOLF Olefins, LV% 25 25 100       
XOXY Oxygen, WT% 3.7 3.7 100       
NSPG Specific Gravity 0.7000 0.7000   0.7750 0.8160    
XSPG Specific Gravity     0.8400 0.8760  0.9970  
NCTI Cetane Index      46.2    
NLUM Luminometer Number     40.0     
XPPI Pour Point Index      1.61 42.52   
NVII Visco Index @210F          
XVII Visco Index @210F       1.86 1.86  
XVAN Vanadium         1500 

Table 2: Maximum Demand and Standard Deviation for Products. 

product LRG URG UPG Kero/JET diesel HSF ATB 
maximum demand 5.00 45.00 200.00 10.00 22.00 5.50 1.20 
standard deviation 0.34 3.09 8.00 1.31 2.88 0.33 0.07 

 

RESULTS AND DISCUSSION 

The deterministic optimization model (2281 constraints and 2317 variables) was run using mean values. 
Results show a gross refinery margin of 301 US$M per three months period with less than 30 seconds of 
execution time on a workstation M65 (Intel Core 2, 2GHz, 2 GB RAM). We then solved the stochastic 
model using our procedure. To compare, we then take the deterministic solution and evaluate its 
performance over the 600 scenario used. Figure 1 shows the risk curves for the best stochastic solution 
and the performance of the deterministic solution and Table 3 summarizes the results. Results indicate 
that the stochastic solution has an expected GRM of $411 million, a significant increase over the 
deterministic value. When the decisions of the deterministic model are evaluated over the uncertainty 
space, the expected GRM is $397 Million. 

CONCLUSIONS 

We successfully implemented a stochastic programming methodology to a refinery planning problem 
using a commercial planner. Our methodology can be seemingly migrated to other commercial planners. 
The two-stage stochastic programming approach is shown to be far superior to plans obtained using 
deterministic models fed by expected values of parameters (36.5% increases in expected GRM for our 
case study). Less risky solutions were also identified. 
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