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Abstract 
 
    The prediction of the yield outcome in a non close 
loop manufacturing process can be achieved by 
visualizing the historical data pattern generated from 
the inspection machine, transform the data pattern and 
map it into machine learning algorithm for training, in 
order to automatically generate a prediction model 
without the visual interpretation needs to be done by 
human. Anyhow, the nature of manufacturing process 
dataset for the bad yield outcome is highly skewed 
where the majority class of good yield extremely 
outnumbers the minority class of bad yield. Comparison 
between the undersampling, over- sampling and 
SMOTE + VDM sampling technique indicates that the 
combination of SMOTE + VDM and undersampled 
dataset produced a robust classifier performance 
capable of handling better with different batches of 
prediction test data sets. Furtherance, suitable distance 
function for SMOTE is needed to improve class recall 
and minimize overfitting whilst different approach on 
the majority class sampling is required to improve the 
class precision due to information loss by the 
undersampling. 
 
1. Introduction 
 
   Typically, [1] manufacturing processes such as hard 
disk media industries implementing process control 
through sampling rather than close loop system in each 
of its process equipment. The yield outcome of the 
manufacturing process will be determined by the 
inspection machine at the end of the process before they 
are packed and shipped.  
    In our previous work, [1] we introduced the approach 
to transform inspection machine generated numerical 
data from the nature that the data only can be used to 
learn the inspection machine behavior into a binary 
polynominal discretized data that will be able to be 

trained to predict “one step ahead” of the manufacturing 
yield outcome, whether it will be good or bad yield. As 
suggested by [2] shows that the proactive type of 
predictive maintenance method improves the efficiency 
of the maintenance, optimizes the maintenance 
planning and reduces the usage of resources such as 
labor and materials. 
 
    The result from our previous work [1] indicates that 
the combination of KStar learning algorithm with 12 bit 
binary     polynominal decretized datasets giving the 
best result of class precision and recall compare to 
LWL, IBk learning algorithm and other discretized bit 
value of 4,6,8,10,14 and 16. However, even though 
KStar produced the best prediction accuracy result 
compare to other algorithm, we saw that the class recall 
for the BAD yield still not achieving significant 
improvement, not able to surplus 30% accuracy even 
with higher bit value discretized datasets. 
    Thus, combination with [3] SMOTE (Synthetic 
Minority Over Sampling Technique), [4] [5] random 
over sampling minority class and random under 
sampling majority class technique will be applied in 
this paper to improve the Bad yield class recall 
drawback issue without significantly affecting the class 
precision and overfitting issue. 
 
2. Related work 
 
    What actually occurred with our previous work had 
been explained by [6] where a classifier induced from 
an imbalanced data set has typically a low error rate for 
the majority class and an unacceptable error rate for the 
minority class. The problem occurs when the 
misclassification cost for the minority class is much 
higher than the misclassification cost for the majority 
class.      
    Random over-sampling that randomly replicates the 
minority class and the random under-sampling that 
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removes majority class instances was applied by [4] [5] 
in order to obtain a balanced distribution. However, as 
mentioned by [4] [5] [10], random under-sampling did 
not provide significant improvement over the original 
data set whereby random over-sampling was able to 
reduce significantly the FN rate, but it also increased 
the FP rate. Both have known drawbacks because 
under-sampling will cause lost of potentially valuable 
information from the removed instances where else 
over-sampling will increase the likelihood of over 
fitting issue due to the methods of making exact copies 
of the minority class examples. 
    However, despite of its limitation, [4] emphasized 
that over-sampling technique have the advantage 
because there is no information loss incur as what will 
potentially occur from under-sampling technique but in 
contrast with higher computational cost. Furthermore, 
[4] also highlighted that the over-sampling and under-
sampling combination did not provide significant 
improvement if compare to the over-sampling alone. 
    In order to apply the advantage and minimize the 
disadvantage of over-sampling technique in handling 
with imbalance dataset, [3] [6] [7] proposed the 
SMOTE method which is an over-sampling technique 
by synthetically creates the instances rather replicates 
the exact copies from the minority class examples. The 
SMOTE and combination of SMOTE and under-
sampling as proposed by [3] which are performed using 
C4.5, Ripper and a Naive Bayes classifier, performs 
better over other previous re-sampling method. SMOTE 
forces a bias towards the minority class because the 
synthetically generated instances cause the classifier to 
create generalize and less specific decision regions as 
compare to the replication of minority instances which 
creates a very specific decision region and leading to 
overfitting issue. 
    SMOTE over-sampling [3] application claimed to 
yield results by obtained the lowest FN rate, 2.50%, but 
also the highest FP rate, 15.24%. Compare with random 
oversampling, which present a 200% improvement in 
FN rate, with an increase of the FP rate in 
approximately 21%.  
 
3. Approach Technique 
 
3.1 Random Under-sampling and Over-
sampling 
 
    The implementation of these non-heuristic 
approaches is very simple. We generated new dataset 
for training from original dataset by randomly pickup 
instances for under-sampling the majority class 
instances, over-sampling the minority class instances 

and combination of both under-sampling and over-
sampling with specified level of sampling percentage.  
 
3.2 SMOTE with VDM technique 
 
    SMOTE technique [3] was proposed to over-sample 
the minority class by selecting k minority class nearest 
neighbor instances and producing synthetic instances. 
Depending on the percentage of over-sampling 
required, neighbors from the k nearest neighbors are 
randomly chosen and the synthetic instances were 
generated by calculating the nearest neighbor numerical 
dataset with Euclidean distance function.   
   Since in our study that we are dealing only with 
nominal  
value dataset generated by our novel data transform 
technique [1], we applied SMOTE over-sampling 
technique with modified Value Distance Metric (VDM) 
distance function as suggested by [3] to measure and 
obtain the k nearest neighbor instances. In our case we 
are using k=5 and  to k=1, meaning that we were 
selecting 5 and 1 nearest neighbor instances from 
minority class dataset to generate a synthetic instance. 
Total numbers of synthetic instances were generated 
according to the number of over-sampling percentage 
required in our experiment.  
    The Value Difference Metric (VDM) distance δ, [6] 
between two corresponding feature values is defined as 
follows. 

 
 
Above equation indicates that, V1 and V2 are the two 
feature values. C1 is the total number of occurrences of 
feature value V1, and C1i is the number occurrence of 
feature value V1 for classes i. C2 is the total number of 
occurrences of feature value V2, and C2i is the number 
occurrence of feature value V2 for classes i. k is a 
constant, normally set to 1. The equation is used to 
calculate the value differences for each nominal feature 
in the given set of feature vectors.  
    As in our study, SMOTE-VDM was not used for 
classification purposes, i is equal to 1 because we only 
focus on minority class instances to produce new 
synthetic instances. To generate new minority class 
instances, [3] proposed to create new set instances 
values by taking the majority vote of the feature vector 
in consideration from its k nearest neighbors. Below 
shows an example of creating a synthetic instance by 
majority vote proposed. 
    Let F1 = P234 P1112 P3345 P975 P335 be the 
instance under consideration and let its 5 nearest 
neighbors be:- 

(1)
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    F2 = P675   P678    P2341  P1234 P2334 
    F3 = P234   P789    P2242  P3345 P2334 
    F4 = P776   P456    P3456  P987   P567 
    F5 = P1234 P3567  P1112  P3345 P453 
    F6 = P234   P1112  P3345  P765   P777 
 
The application of SMOTE-Nominal would create the 
following instance: 
 
    FS = P234 P1112 P3345 P3345 P2334 
 
However, since we are dealing with polynominal data 
value and not with normal nominal value, the 
polynominal value which was discretized by 12 bit 
number producing 4096 possibility of nominal value for 
each attribute. Hence, there is a possibility that the 
majority vote technique to generate the synthetic value 
may not be feasible. This potentially was due to the 
high possibilities that there were no redundant pattern 
available for voting from the selected k nearest 
neighbors. Thus, we included an option in the VDM 
distance function by calculating the average of those 5 
nearest neighbor selected in the instances attributes by 
converting the polynominal pattern into integer and 
then transform the calculated average number back to 
polynominal value. Anyhow, in the case of k equal to 1, 
the synthetic instances were generated directly from the 
selected nearest neighbor instances. 
    The threshold for VDM distance value in this study 
is 0.1. The VDM distance algorithm generates k nearest 
instance if the distance between two feature vectors 
which was randomly selected is less than 0.1. Zero is 
the ideal distance for similarity feature vector value but 
it is computationally expensive.  
 
3.3 Performance Measure 
  
    As proposed by [4] we used F-measure to measure 
the overall performance of the sampled datasets studied. 
F-measure is a harmonic mean between recall and 
precision defined as:- 
 

 
 
The F-measure becomes zero if either R or P is zero 
and it will become 1 when both R and P are 1. R is 
recall and P is precision. Recall and precision are define 
as:- 
 

 

 

 
 
CP is the number of instances that are correctly 
predicted as positive and TP is the number of actual 
positive instances, where PP is total number instances 
predicted as positive. 
 
4. Study results 
 
4.1 Procedure 
  
   We were using the same data from our previous study 
[1] where data fields used for the study were ID, Total 
Yield Percentage, RankA, G-NG, R-NG, Ring, Hit, 
MP1, MP2, MP3, Q3MP3 and Yield class instance. 12 
bit polynominal discretized training data was used as 
the original dataset to generate the new training data 
with random under-sampling, oversampling, 
undersampling + oversampling, SMOTE oversampling 
and SMOTE oversampling + random undersampling.  
    For plain random undersampling training dataset, 
they were generated by 30%, 40%, 50%, 60%, 70% and 
80% from the original majority class dataset. We 
created 50%, 100%, 150%, 200%, 250% and 300% 
training datasets for random oversampling as well as 
SMOTE oversampling from the original minority class 
dataset. As for the combination sampling of random 
oversampling + undersampling and SMOTE + random 
undersampling datasets, the datasets were created by 
oversampling the original dataset minority class by 
50%, 100%, 150%, 200%, 250% and 300% and then 
randomly undersampling the original majority class 
instances until it is reached to the same number of 
oversampled instances, so that their distribution will be 
exactly balanced. 
 
    Training datasets been trained with KStar algorithm 
as recommended [1] for the learning process with 
confusion matrix and stratified 10-fold cross validation. 
Classifiers generated from the training data were then 
being used to be tested with test data from the same 
batch with training data for the prediction test. The 
classifiers once again been tested with another test data 
from different batches to test the robustness of the 
generated classifiers.  
    
4.2 Result analysis 
 
   Training result in table 4.1 shows that random 
undersampling the majority class instance was not 
giving significant improvement to the class recall and 
precision compare with original data set. Oversampling 

(2)

(3)

(4)
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results indicates that by oversampling the minority class 
instances randomly, the class recall increases 
proportionally with sampling percentage without 
significantly affecting the class precision. Hence, the F 
value shows significant improvement proportionally 
with higher number of the minority class instance 
oversampling. The combination of balance random over 
and undersampling result shows that the class recall 
increases proportionally with the number of sample but 
inconsistently affecting the precision. Even though the 
F value shows significant improvement compare to the 
original data set, oversampling minority class instances 
were producing the best result between these 3 
sampling method. 
    Table 4.2 shows the training result of proposed 
technique SMOTE+VDM with nearest neighbor k=5. 
The result indicates that the sampling method was not 
able to improve the class recall. The result was even 
worst than the original datasets training outcome. 
Combination SMOTE+VDM with k=5 and 
undersampling shows better performance. However, the 
result still not able to overwhelm the plain oversample 
and over + undersampling method outcome.  
    Anyhow, table 4.3 explained that the SMOTE+VDM 
with k=1 result indicates better than k=5 for both with 
or without undersampling the majority class instances. 
The SMOTE+VDM and k=1, with and without 
undersampling both shows better performance from 
each other at certain condition of sampling percentage. 
However, the result still  
underperforms the simple plain random oversampling 
method. 
    Table 4.4, 4.5 and 4.6 shows the result of the 
prediction test with classifiers generated by the training 
data. The results were based from the best performer 
classifiers selected from each sampling method. Table 
4.4 indicates the  
 

Table 4.1. Training result for undersampling, 
oversampling and its combination 

 
Data Sets  Performance 

  R P F 

Original data set 0.273 0.976 0.427 
Undersampling    
30% 0.273 0.990 0.428 
40% 0.265 0.975 0.417 
50% 0.274 0.922 0.422 
60% 0.281 0.945 0.434 
70% 0.257 0.887 0.399 

80% 0.282 0.777 0.414 

Oversampling    
50% 0.684 0.991 0.810 

100% 0.827 0.991 0.902 
150% 0.914 0.989 0.950 
200% 0.955 0.984 0.969 
250% 0.975 0.981 0.978 

300% 0.981 0.976 0.978 

Over+Undersampling    
50% 0.826 0.739 0.780 
100% 0.907 0.791 0.845 

150% 0.957 0.975 0.966 

200% 0.975 0.807 0.883 
250% 0.986 0.815 0.892 

300% 0.993 0.829 0.903 
 
 

Table 4.2. Training result of SMOTE-VDM with 
k=5 and combination with undersampling 

 
Data Sets  Performance 

  R P F 

SMOTE-VDM k=5    

50% 0.193 0.964 0.322 
100% 0.146 0.947 0.252 

150% 0.117 0.926 0.208 
200% 0.137 0.921 0.239 
250% 0.165 0.934 0.280 
300% 0.187 0.913 0.310 
SMOTE+VDM k=5 
and Undersampling    
50% 0.539 0.741 0.624 
100% 0.612 0.816 0.700 
150% 0.656 0.851 0.741 
200% 0.627 0.828 0.714 
250% 0.592 0.871 0.705 

300% 0.731 0.897 0.805 
Table 4.3. Training result of SMOTE-VDM with 

k=1 and combination with undersampling 
 

Data Sets  Performance 

  R P F 

SMOTE+VDM k=1    
50% 0.211 0.967 0.346 
100% 0.438 0.992 0.608 
150% 0.729 0.965 0.831 
200% 0.663 0.977 0.790 
250% 0.822 0.957 0.884 
300% 0.846 0.958 0.898 
SMOTE+VDM k=1 
and Undersampling    
50% 0.798 0.790 0.794 
100% 0.881 0.773 0.823 
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150% 0.895 0.835 0.864 
200% 0.962 0.731 0.831 
250% 0.934 0.823 0.875 

300% 0.963 0.774 0.858 
 
 

Table 4.4. Prediction test result with same 
batch test data 

 

Data Sets  Performance 

  R P F 

Original data set 0.920 1.000 0.958 
Undersampling 60% 0.960 1.000 0.980 
Oversampling 300% 1.000 1.000 1.000 
Over+Undersampling 300% 1.000 0.481 0.649 
SMOTE+VDM k=1 300% 0.880 1.000 0.936 
SMOTE+VDM k=1 Undersampling 250% 1.000 0.532 0.694 
SMOTE+VDM k=5 50% 0.840 1.000 0.913 

SMOTE+VDM k=5 Undersampling 300% 0.960 0.686 0.800 
    
 
Table 4.5. Prediction test result with difference 

batch test data 
 

 

Data Sets  Performance 

  R P F 
Original data set 0.000 0.000 0.000 
Undersampling 60% 0.000 0.000 0.000 
Oversampling 300% 0.000 0.000 0.000 

Over+Undersampling 300% 0.571 0.281 0.376 

SMOTE+VDM k=1 300% 0.071 1.000 0.133 
SMOTE+VDM k=1 Undersampling 250% 0.500 0.286 0.364 
SMOTE+VDM k=5 50% 0.000 0.000 0.000 

SMOTE+VDM k=5 Undersampling 300% 0.536 0.333 0.411 
 
 
prediction test with the testing data from the same batch 
with training data. The result shows that oversampling 
perform the best result while the combination type of 
sampling method did not really perform better compare 
with other single type of sampling method. 

 
 

Table 4.6. Prediction test result with another 
difference batch test data 

 
Data Sets  Performance 

  R P F 
Original data set 0.000 0.000 0.000 
Undersampling 60% 0.000 0.000 0.000 

Oversampling 300% 0.000 0.000 0.000 
Over+Undersampling 300% 0.346 0.180 0.237 
SMOTE+VDM k=1 300% 0.000 0.000 0.000 
SMOTE+VDM k=1 Undersampling 250% 0.385 0.196 0.260 
SMOTE-VDM k=5 50% 0.000 0.000 0.000 
SMOTE+VDM k=5 Undersampling 300% 0.346 0.220 0.269 

 
 

    Both Table 4.5 and 4.6 result outcome were tested 
with data from different batch. From the result, 
indicates that sampling method that uses combination 
with oversampling and undersampling were capable of 
performing the prediction compare to the single type 
sampling method which were totally failed. 
SMOTE+VDM and undersampling method shows 
better result than plain over + undersampling method. 
 
5. Conclusion 
 
    From the training result, undersampling alone was 
not giving any significant improvement while 
oversampling method producing the best performance. 
Oversampling result outperformed our proposed 
SMOTE-VDM and SMOTE-VDM + undersampling. 
    However from the prediction test result indicates 
that, the combination undersampling and oversampling 
capable of handling wider range of data sets. 
SMOTE+VDM and undersampling produce robust 
classifier performance capable of handling better with 
all those 3 different batches of prediction test data. 
    From the result analysis, we can see that an exact 
balance of minority and majority classes are not the 
main concern to handle the imbalance data sets. The 
most important matter to focus is the balance 
distribution of relevant information carried by each 
class instances. Well balanced number of instances in 
the data set will produce robust classifier but further 
improvement on the performance is required.  
    The result analysis also shows that random 
undersampling has the potential of information loss 
which affecting the class precision, whilst oversampling 
method will improve the class recall with mild impact 
to the precision but carry the risk of overfitting. 
    Hence, we conclude that oversampling with 
appropriate synthetic minority instance is important to 
improve the class recall with minimum impact to 
overfitting. As VDM distance function not really 
suitable with our polynominal data set, distance 
functions such as entropy based distance function 
should be considered. On the other hand, because 
undersampling will cause the information loss and 
reducing the class precision, different approach on the 
majority class sampling is required for our future study. 
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