
Teaching Object-Oriented Systems Analysis to Non-IT
Students: A Practical Experience

Nor Iadah Yusop
Faculty of Information Technology

Universiti Utara Malaysia
Sintok, Kedah, MALAYSIA

noriadah@uum.edu.my

Abstract

Teaching software development course is not easy

even to people with computer science qualification, let
alone to those without such background. However, the
author personal experience has proven that this is not
impossible. This paper aims at sharing the method
adopted in teaching object-oriented systems analysis to
postgraduate students without academic qualification
or experience in information technology or computer
science. Most of them are merely end-users to a
number of ubiquitous applications software such as
word processors. For the said course, three aspects
were given special emphasis: concepts and theories
familiarization, application of the theories, and
familiarization of technical contents. In view of their
background, with respect to the aspects addressed, the
author would suggest that the method applied in the
teaching of systems analysis is considerably successful
for they manage to produce the deliverables required
with acceptable quality.

1. Introduction

Currently, Faculty of Information Technology
(FIT), Universiti Utara Malaysia (UUM) offers two
bachelor programs: Bachelor of Information
Technology with Honours and Bachelor of Multimedia
with Honours, and we are in the process of offering the
Bachelor of Computer Science with Honours. On top
of these undergraduate programs, FIT also offers
programs at postgraduate levels namely the Master of
Science in Information Technology [MSc. (IT)],
Master of Science in Information and Communication
Technology [MSc. (ICT)], Master of Science in
Intelligent System [MSc. (Int. Sys.)], and Master of
Science in Technopreneurship. Except for MSc. (IT)
which is also available by research, all other
postgraduate programs are conducted by coursework.
However, students are required to complete a final

project in order to successfully graduate with the
degree. All undergraduate and postgraduate programs
are also offered to international students. The medium
of instruction for all programs is English. Thus,
English proficiency is mandatory.

Besides English proficiency and other basic
requirements, candidates for all postgraduate programs
other than the MSc. (ICT) are required to hold bachelor
degree in information technology, computer science or
equivalent areas. MSc. (ICT) program on the other
hand, is opened only to candidates with bachelor
degree from fields other than information technology
or computer science. The candidates must possess at
least 2.5 for their cumulative grade point average
(CGPA) or must have at least three years of working
experience in order to be eligible for the program.
Candidates with degree in ICT discipline or related
area are not allowed to enroll for MSc. (ICT) program
[1]. Despite many programs offered by FIT, in this
paper the author will only focus on MSc. (ICT).

Students enrolled for this program must
successfully fulfill the minimum of 33 credit hours
comprising of nine courses and one final project. Each
course carries three credit hours and the project is of
six credit hours. Core courses weight 18 credit hours
including Research Methodology subject, and nine
hours of electives. Other than the Research
Methodology, the core courses these students must
take include Principles and Techniques in
Programming, Database Application Development,
Computer Systems and Networks, Internet
Technology, and Information Systems Development.
The objects of the discussion in this paper are the
Information Systems Development (ISD) course and
the ISD students for semester ending April, 2006.

Brief background information about the faculty and
its programs are described in this section. Section 2
focuses mainly on the ISD course’s background as well
as the corresponding students enrolling for the course.
Succeeding section describes the approach adopted in

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/12117318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

teaching the course. While presenting the challenges
faced in accomplishing the course objectives, Section 4
also shares some of the success stories. Concluding
remarks and recommendations follows in Section 5.

2. Background

This section provides some insight about the
students enrolled for the ISD course for semester
ending April 2006, and also the ISD course itself.

The author had been very fortunate to have a small
class comprising of fourteen students. Though small,
their academic qualifications and experiences differ
very much. Since the program is also offered to
international students, it has attracted the interest of
students from other countries too. Table 1 summarizes
the class composition in terms of their qualifications
and country of origin.

Table 1. Class composition

Country of Origin Academic Qualifications
Malaysia Education (3)

Library Science (1)
Financial Accounting (1)
Business Administration (1)

Libya Electrical Engineering (2)
English Language (1)
Business Administration (4)

Thailand Business Administration (1)

More than half of the class is international students.

All of them are without academic qualification in
information technology or computer science. With
regard to working experience, only four out of fourteen
(28.6%) has at least or more than three years of
working experience while others are fresh graduates.
Being locals or foreigners, their knowledge about the
concepts in information technology (IT) or computer
science is considerably low although some of them
have been using computers mainly for word
processing. Thus the main challenge is to make them
familiar with the IT concepts.

ISD aims at providing students with necessary
theories and practice of systems development. Students
are required to carry out a software development
project in groups. However, the project mainly focused
on the software analysis and design phase using object-
oriented technique. At the end of the semester, they
have to submit a full report of their projects. They are
also exposed to Rational Rose as tool to assist them in
their analysis and design. Upon completion of the
course, the students are expected to possess certain
levels of understanding on methods and techniques of
systems analysis and design, and to models the

requirements using computer-aided software
engineering tool.

However, this paper focuses only on the teaching
methods applied to accomplish the earlier part of the
syllabus that is the systems analysis including the
modeling. The later part, i.e. the design part, applies
similar teaching method.

3. Teaching methods

As mentioned in the earlier section, the students
have considerably low knowledge even about the basic
concepts of IT. Making matters worse, pre-requisite of
IT-related subject for the said course in the current
course structure is nil. However, some of the students
do take IT-related subjects such as Principles and
Techniques in Programming, Internet Technology or
other core or electives courses concurrently. Apart
from providing them the knowledge about the what’s
and how’s of systems development, the main challenge
is to familiarize them with concepts related to
information systems such as system, software or
information system to name a few. In addition,
familiarization with the basic concepts and theories of
software and software development, as well as the
technical contents of the subject matter, and the
application of the theories to the software development
itself, need to be given. The rest of this section
describes the teaching methods adopted to achieve
these. These methods were applied throughout the
semester.

3.1. Concepts and theories familiarization

At the beginning, getting grasp of the concepts is

important because they are being used over and over
throughout the duration of the course. During the first
two weeks, using lectures, the relevant concepts are
made known to them. Questions were asked to ensure
that they get good grab of the introduced concepts.
Sadly to say, many of them were grappling in
familiarizing themselves with the concepts. However,
repetition is impossible for there is a list of topics
scheduled for the whole semester to be covered.
Nonetheless, during the subsequent lectures on theories
of software development, the definitions of the
concepts are reiterated when necessary. Meanwhile,
questions were asked to make sure that they are with
the rest of the class. As time goes by, the author found
that their familiarity increases for there is no more
puzzled faces when the concepts were mentioned in the
class.

Once the concepts and theories of software
development are familiarized, they are ready for the

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

application of it. To begin with, the students have to
have an information systems project to work on.
Specifically, they are required to work on software
development project. Following subsection describes
the processes and methods the author took in
facilitating the students in their groups’ projects.

3.2. Application of the theories

Software development theories provided to the

students were put into application in information
systems development projects. The nature of the
projects varies, but they started from scratch.The
project was carried out in groups of three to four
students. They were instructed to form their own
group. To ensure their interest on the project, each
group was asked to agree upon an information system
they “wish to have” and produced a description of the
system. The reason for the “wish to have” feature will
be described later in this section. In total, four projects
were proposed.

Having had the “wish to have” systems, the groups
are required to present their descriptions. The author,
playing a role of a facilitator, evaluated each
description to see its viability. Among the
characteristics looked into is the size of the system
which is measured based on the number of expected
main functionalities that the system may have. The
floor put on was four and ceiling was six. The author
considers more than six as reasonably complex for
novices. This is important to ascertain that the
complexity of the system they want to have is medium.
Too simple would not make the learning “fun” and
they may not learn as much. However, too complex
would make learning difficult as this course is not easy
in the first place.

In practice, usually users do not develop their own
information systems. They commonly outsource it to
other parties. As mentioned in many software
engineering books [2, 3], the developers ought to
develop software that meets the user (client)
requirements. Therefore, to make the students feel that
they were working on real projects, they have to play
the roles of developers and clients. For the purpose of
the projects, each group played both roles, i.e. there are
moments when they will play the roles of clients, as
well as developers. However, in this course, the
students are not required to do the implementation part
(programming). Instead, their tasks end at the design
stage. In this case, they mainly played the role of the
analysts.

The mechanism used in switching the roles is by
assigning the development of the “wish to have”
system to other group, i.e. developer group. The owner

of the “wish to have” system will become the client to
the developer group and they are assumed to know
what they want the system to provide. This is very
important because the developer groups will be
consulting them for “approval” on the continuation of
the project to the next stage. However, the facilitator
was there to assist them in making such decisions.
Hence, in this case, each group would not develop its
information system itself; instead others would do it
for them. Figure 1 depicts the groups’ “wish to have
projects” and the projects that they were responsible
for developing. Mutual exchanged were not planned.
Once the roles and the projects’ assignments were
settled, the analysis phase begins.

Figure 1. Projects’ Assignments

During the analysis phase, most frequently the

students worked in their groups. The groups have to be
closely supervised and monitored to keep them on
track. As facilitator, the author requested feedbacks
from each group at the end of the meeting sessions.
These feedbacks can either be in written, or oral
(presentation), or both. Through presentations, the
students’ progress and achievements can quickly be
ascertained. Meanwhile, the “clients” could also
confirm or “approve” whether their requirements were
correctly understood.

Pertaining to the project itself, the steps adopted
during the analysis phase adhere to the descriptions
provided in many software engineering [2, 3], and
systems analysis and design books [4, 5]. To begin
with, the developer groups gather the requirements of
their clients. The main technique used in requirement
gathering was interview. The first interview was made
during class where instructions were given and
monitoring was done. It was between the clients and
the developer groups. Basically what was done is that

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

the developer asked, and the clients answered
accordingly. Since there was not much time allocated
to the first session, the facilitator had to ensure that
they were really working on fact findings about the
clients’ “wish to have” system. The interview was
carried out to get the basic requirements of the system.
Further clarification of unclear or incomplete
requirements shall be referred to the clients in other
meetings and probably using other means. Other
meeting are left to the developer teams and their clients
to decide, and usually as the need arise.

After the requirements were gathered, the developer
groups must really understand the requirements stated
by their clients. To accomplish this, activity diagram
was used to graphically represent the gathered
requirements. This was the starting point for them in
using symbols to represent the requirements. For this
purpose, they were taught how to draw the diagram
and immediately applied to their project. It was not
easy and in fact the greatest challenge was to have
them to represent the requirements in graphical form.
However, learning by doing has proven to be effective
in this case though the students did not get the diagram
right for the first time. In subsequent sessions they
managed to show some improvement on the diagram.
After they had understood the requirements, they were
asked to classify the requirements into functional and
non-functional requirements [2, 4].

Activity diagram was not the only diagram or model
that they have to produce. With regards to systems
analysis, a bunch of other models need to be
developed. Prior to that, deep understanding on what’s
and how’s of modeling, i.e. the familiarization of the
technical contents of software development, is highly
desirable. This was another big challenge the facilitator
ought to face. Next sub-section addresses this issue.

3.3. Familiarization of technical contents

To start working with object-oriented systems
analysis (OOSA), it is desirable that the students have
at least some knowledge on object-oriented
programming language (OOPL). The reason is merely
that similar concepts are applied in OOSA.
Unfortunately, the students did not posses as such. The
hardest time is to make them understand the OOPL
concepts such as class, inheritance, and messages to
name a few, let alone the concepts to software
development itself such as the use case diagram, class
diagram, or state chart diagram. However, perhaps
because of the learning by doing method adopted in
teaching and learning, they manage to get grasp with
some of the concepts; at least the concepts necessary to
get their analysis part done.

Subsequently, apart from having them to classify
the functional and non-functional requirements, what
need to be done next is to have them to model the
functional requirements using the use case diagram.
The use case diagram and other diagrams produced are
then modeled using the Unified Modeling Language
(UML) of Rational Rose. At this point, they ought to
learn about how to create the necessary UML models
[6]. Besides, they also need to know how to document
or draw the models using the tool. Again, learning by
doing takes the lead.

Apart from the above aspects, others are fairly
comparable with other non-technical subjects.
Following section quotes some of the success stories
and highlights major challenges faced in delivering the
course contents successfully.

4. Success stories and challenges

Apart from the complexity of ISD, another big
challenge the author faced was the students’
proficiency of English is considerably low, spoken and
written even with English proficiency requirement is
stated in the admission requirement. Though not
everybody, the majority shows so. This increases the
difficulty levels in making the students get what they
need to get. However, the methods adopted shows that
it could be done. The students in fact find the class
interesting. This is shown in Table 2 on report by the
University Teaching and Learning Centre (UTLC) of
the university about course assessment.

Table 2. Assessment of teaching method
Assessed Items Value
Content is understandable 3.00
Interest in subject 3.15
Effective teaching aids 3.23
Opportunity to interact in class 3.23
Objectives were well explained 3.15
Encourage students to give opinions in
class

3.31

Encourage students to think in class 3.23
Monitoring of students’ understanding 3.38

Questionnaire about the course were given to all

students at the end of the semester. It was anonymous.
Among the items relevant to teaching methods adopted
asked were shown in the Table 2. Analysis was done
by the UTLC, and the report is given to individual
instructor as guide to improve his teaching method.

The column ‘value’ in Table 2 represents the
students’ responses on the items asked. 1 indicates

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

strongly disagree, 2 disagree, 3 agree and 4 strongly
agree. Results have shown that in general the students
agree that the teaching methods used in delivering the
course content are helpful. Apart from creating their
interest and understanding in the subject matters, the
methods also encourage them to interact with fellow
friends during presentations and questions and answers
sessions. The author also found that their
communication skill do improve very much. Thinking
is also encouraged when they were asked to express
their ideas or to defend their decisions. Meanwhile they
also agreed that their understandings were always
monitored. Besides, they did show their understanding
of the subject matters when they were able to produce
the required documentation at an acceptable quality.

5. Conclusion and recommendations

In general, the main teaching methods adopted were
lectures and “learning by doing”. The author would
consider the “learning by doing” involved in this case
was not exactly an adapted version of Bucks Institute
Educations’ (BIE) Project-Based Learning (PBL) [7].
Though the aim is alike, that is to let the students
discover what they need to know themselves. The
reason is that it does not follow exactly the PBL
framework suggested by BIE. In fact, nothing about it
matches the BIE’s PBL. Contrasting to PBL which has
to be planned carefully, the method adopted was
accidentally implemented. although learning by doing
has been the major method adopted, lectures are still
important in which major concepts and theories were
taught and stressed. In the exercise, lectures and
learning by doing are complementing each other. The
major weakness in the method adopted however, was
the inexistence of proper evaluation or assessment
methods or rubrics. The actual students’ performance
on the global skills such as communication was not
adequately assessed. However, their performance on
the subject matter, i.e. mastery of the required skills
and theories, are sufficiently measured through
quizzes, examinations and written report.

Regarding the aspects emphasis as mentioned in
previous section, reiterations of concepts and theories
do help in increasing the students’ understandings
about the concepts. Immediate practice of theories
taught about the how to’s in systems analysis process
during the lecture sessions do help them in mastering
the skills they need to acquire. Interactivity between
the instructor and the students is highly recommended
and necessary. In addition, the ratio of computer to
students ought to be one-to-one because each of them
was taught to use the tool on personal basis. Once

everybody knows how to use the tool, then only they
were asked to work in their group.

The method adopted, though boosting up the
students’ interests and mastering of the subject matter,
it requires very high commitment of all parties
involved namely the instructor, students, and
administrators. The commitment of the instructor and
students is obvious. The administrator needs to give
full support in terms of scheduling and allocating the
time and place as well as ensuring the required
facilities being provided for the success of the method
or even the PBL implementations. Class duration need
to be considerably sufficient to ensure the flow of
instruction through practice is not interrupted and the
implementation is very time consuming.

As mentioned in previous sections, the students do
not have the basic in IT. To lessen the workload of the
instructor in making the students know and understand
the concepts in IT, and to increase the OOSA learning
curve, the students ought to be given some pre-
requisite courses. Though this will require restructuring
of the program, the author personally feels that this
would help the students as well as the instructors.
Teaching such students requires a lot of time and effort
of the instructors.

Anyone interested in implementing the method or
the PBL need to plan its implementation very carefully,
not only on the learning part but also the performance
measurements. For PBL, BIE does have a framework
of how to implement it. Perhaps, the learning by doing
or active learning could better if PBL framework is
suited accordingly. However, active learning alone
might not be sufficient, it should be complemented by
lectures or other conventional or modern teaching
methods.

6. References

[1] Postgraduate Academic Handbook 2005/2006 Session:
Universiti Utara Malaysia.

[2] I. Sommerville, Software Engineering, 7th ed: Pearson
Education limited, 2004.

[3] T. C. Lethbridge and R. Laganiere, Object-Oriented
Software Engineering: Practical Software Development
using UML and Java. England: McGraw-Hill Education,
2001.

[4] A. Dennis, B. H. Wixom, and D. Tergarden, Systems
Analysis and Design with UML Version 2.0: An Object-
Oriented Approach, 2nd ed: John Wiley & Sons, Inc., 2005.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

[5] S. Bennet, S. McRobb, and R. Farmer, Object-Oriented
Systems Analysis and Design using UML, 2nd ed. United
Kingdom: McGraw Hill International Editions, 2002.

[6] T. Quatrani, Visual Modeling with Rational Rose 2000
and UML. New Jersey: Addison-Wesley, 2000.

[7] "Buck Institute for Education."http://www.bie.org/.
(Retrieved: 21 June 2006).

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

