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Abstract 
The Keller box method has been employed  for free convection over a vertical plate subjected to a step change in 
surface temperature in micropolar fluid. Numerical results presented include the reduced angular velocity  profiles, 
development of wall shear stress or skin friction and development of the rate of change of the gyration component at the 
wall for various values of Prandtl numbers and temperature ratios. The study shows that the present results obtained in 
micropolar fluids, when temperature ratio , agree very well with the previous study without temperature 
change.
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1. Introduction 
Free convection or (natural convection) is a process whereby the fluid motion is induced by buoyancy forces within the 
fluid. The mechanism of free or natural convection flow is a buoyancy-induced motion due to the presence of a fluid 
density gradient and a body force that is proportional to density. The phenomenon is of great importance in industries 
and the environment, such as materials processing and solar energy system. 
Since the first successful experimental and theoretical study of a flat plate with uniform wall temperature by Schmidt 
and Beckmann, free convection heat transfer from a vertical flat plate in a quiescent medium has been studied by many 
investigators (Lee &Yovanovich,1987a). Ostrach (1953) solved laminar boundary layer equations through similarity 
methods for the case of uniform wall temperature for various Prandtl numbers. Similarity solutions to boundary layer 
equations have been further extended by Sparrow and Gregg (1958). They have documented the results for the cases of 
surface temperature variations of the power-law and exponential form. 
The above cited literature and many others deal with similarity problems with continuous and well-behaved boundary 
conditions at the wall. However, most practical problems in application often involve wall conditions that are arbitrary 
and unknown. The study of non-similar free convection heat transfer from a vertical flat plate with arbitrarily varying 
thermal conditions at the wall is a tedious investigation. The problem has attracted a great deal of interest over the past 
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years in several technological applications, particularly in the thermal design of microelectronic circuit boards and in 
the consideration of system behaviour under conditions where the usual mode of heat transfer fails. 
To understand and solve problems involving general non-similar conditions at the wall, it is useful to investigate 
problems subjected to a step change in wall temperature (Lee &Yovanovich,1987b). The problems impose a 
mathematical singularity and severe non-similar conditions at the wall.  
2. Governing Equations
We consider a semi-infinite vertical heated plate with a discontinuous temperature variation immersed in a micropolar 
fluid. It is well known that the full equations governing the steady laminar free convection flow of an incompressible 
micropolar fluid subject to Boussinesq approximation may be written in the form 

        

                                                                                              (1) 

              (2) 

                                            (3)  

                     (4) 

                                                                         

(5) 

where   are the velocity components along the  axes; T,  and  are the temperature, pressure and  

the component of the gyration vector normal to the - plane;  g is the acceleration due to gravity;  and 
 are the fluid density, viscosity, thermal diffusity and coefficient of cubical expansion of the fluid;  and are 

the micro inertia density, vortex viscosity and spin gradient viscosity. Also,  is the kinematic viscosity. The spin 

gradient viscosity is given by the constant 

.                                                                                           
(6) 

The governing equations are subject to the following boundary conditions: 

        

(7) 
It is worth mentioning that in (7), we have followed [1] for temperature condition.  
Equations 1-5 may be written dimensionless by introducing the non-dimensional variables: 

        

                                                                                              (8) 

where  is the length scale for l and .                                                          

So, the governing equations 1-5, after being rendered dimensionless are as follows 
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(13)               

where  is the material parameter,  is the Grashof number and  is the Prandtl number. 

The dimensionless governing equations are subjected to the following boundary conditions: 

(14) 
Next, we set the boundary layer variables 

              (15) 
where  is the stream function defined in such a way that equation (9) is identically satisfied.  

Hence, we substitute the variables in (15) into equations 10-13 and formally let the Grashof number become 
asymptotically large ( ). 
The set of governing equation, after introducing the boundary layer variables is 

              
             (16) 

                                                 
(17) 

              
             (18) 

subjected to the boundary conditions in (14) that have been reduced to 

                                                    (19) 
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The standard similarity form of  Polhausen (1921)  may be used to derive the non-similar boundary-layer equations. 
Therefore, we set  

                                                     

(20) 
Thus, the governing equations for boundary-layer flows become 

                                         (21)        

        

(22) 

        

 (23) 
with the boundary conditions 

        

(24) 
Equations 21-23 subject to (24) should be solved for different values of  with n in the range of  using the 

Keller-Box scheme. Before that, we need to introduce , so that the equations can be written as 

                       (25) 

     (26) 

        

                                                                                         (27) 

The reason is that the factor  will cause large errors at the beginning of computation. 

Boundary layer equations 25-27 subject to the boundary conditions (24) are solved numerically using the Keller-box 
method. In this method, the governing equations are first reduced to first order equation. We use the Newton’s method 
to linearise the resulting nonlinear equations and finally, we obtain the solutiond using the block elimination methods  
3. Numerical Solution 
The results obtained by using Keller box method for the problem considered are presented here in. Comparison between 
present results and the existing solution in the literature is also included. The new results obtained by using Keller box 
method include the reduced angular velocity profiles, development of wall shear stress or skin friction and development 
of the rate of change of the gyration component at the wall for various values of . To assess the accuracy of the 
present results, comparisons between the present results and previously published data reported by Rees & Pop (1997) 
are made. 
4. Conclusion 
From this study we can draw the following conclusions: 

In the cases of fixed  and , the reduced angular velocity increases then decreases with increasing Prandtl 
number and eventually tends to zero.  
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For fixed  and , wall shear stress decreases then increases and eventually tends to zero with an increase in 
Prandtl number. 

For fixed  and  the rate of heat transfer increases then decreases and increases again and eventually tends to 
zero with an increase in Prandtl number. 
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Table 1. Comparison between Rees & Pop (1998) and the present method for variation of  

   

 Rees & Pop 
(1998) 

Current Rees & Pop 
(1998) 

Current Rees & Pop 
(1998) 

Current 

0.1 - 1.21505 - 1.21511 0.71152 0.71160 - 0.16274 - 0.16272 
0.2 - 1.13288 - 1.13301 0.63528 0.63542 - 0.21772 - 0.21771 
0.5 - 1.00855 - 1.00866 0.52277 0.52282 - 0.31195 - 0.31195 
0.7 - 0.96012 - 0.96022 0.48000 0.48007 - 0.35321 - 0.35321 
1.0 - 0.90819 - 0.90827 0.43495 0.43501 - 0.40103 - 0.40105 
2.0 - 0.80789 - 0.80794 0.35117 0.35121 - 0.50662 - 0.50666 
5.0 - 0.68135 - 0.68140 0.25424 0.25427 - 0.67458 - 0.67470 
6.7 - 0.64312 - 0.64316 0.22741 0.22745 - 0.73597 - 0.73613 

10.0 - 0.59283 - 0.59287 0.19411 0.19415 - 0.82684 - 0.82709 

Table 1 shows that the solution obtained using the present method is remarkably close to the existing solution by Rees 
& Pop (1997). 
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Figure 1. Comparison between Rees & Pop (1998) and the 
present method for  profiles of the reduced angular 

velocity as a function of  for different values of 
 when  and . 

As we can see from the Figure 1, it is shown that the agreement between present results and those obtained by Rees & 
Pop are very good. Therefore, we confident that the present results are accurate. Hence, this is an encouragement to 
further study this problem. 

Figure 2. Profiles of the reduced angular velocity h as a 
function of  for different values of  

when ,  and =0.5. 

0 1 2 3 4 5 6 7 8
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

h

Pr = 10

Pr = 5

Pr = 2

Pr = 1

Pr = 0.5

Pr = 0.2

Pr = 0.1

-------- Rees & Pop (1998)

         Present (2007)

h

Pr 0K 1n

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

6

8

10
x 10

-3

h

 Pr = 0.1
 Pr = 0.5

Pr = 1

Pr = 2

Pr = 10

Pr = 5

Pr

1K 0n 2w



Vol. 3, No. 1                                                                  Modern Applied Science

28

Figure 3. Profiles of the reduced angular velocity h
as a function of  for different values of  

when ,  and = 2. 

Figure 4. Profiles of the reduced angular velocity h as a function of  for 
different values of  when ,  and = 0. 

In Figures 2-4, we have shown some graphs of the characteristics of angular velocity profile as a function of    at 
different streamwise locations for .  Figures 2-4 show that initially increases then decreases 
and eventually tends to zero with an increase in .  
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Figure 5. Profiles of the shear stress  as a function of for different 
values of  when ,  and = 0.5. 

Figure 6. Profiles of the shear stress  as a function of  for different 
values of  when ,  and = 2.
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Figure 7. Profiles of the shear stress  as a function of for different values 
of  when ,  and = 0. 

Figure 8. Profiles of rate of heat transfer  as a function of for different values 
of  when ,  and = 0.5. 
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Figure 9. Profiles of rate of heat transfer  as a function of for different 
values of  when ,  and = 2. 

Figure 10. Profiles of rate of heat transfer  as a function of  for 
different values of  when ,  and = 0. 

From Figures 5-10, we now consider the variation of the shear stress (or skin friction) and the rate of change of gyration 
component at the solid boundary with .  From Figure 4 and Figure 7, we show  as a function of    at 
different streamwise locations for . Figures 4-7 show that decreases then increases and 
eventually tends to zero with an increase in . Otherwise, Figures 8-10 show increases then decreases and 
increases again and eventually tends to zero. 
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