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ABSTRACT

Minimum cost flow (MCF) problem is a typical example of network flow
problems, for which an additional constraint of cost is added to each
flow. Conventional MCF problems consider the cost constraints as linear
functions of flow. In this paper, we extend the MCF problem to cover
cost functions as strictly convex and differentiable, and refer to the
problem as convex cost f!ow problem. To address this problem, we derive the
optimality conditions for minimising convex and differentiable cost
functions, and devise an algorithm based on the primal-dual algorithm
commonly used in linear programming. The proposed algotithm
minimises the total cost of flow by incrementing the network flow along
augmenting paths of minimum cost. Simulation results are provided to
demonstrate the efficacy of the proposed algorithm.

Key words: Minimum cost flow problem, convex cost functions, primal-dual
algorithm, network flow.

1.0 INTRODUCTION

, etwork flows are of fundamental importance in computer science,
communication networks, industrial engineeting, operations research,
and many other areas. One exhaustive reference on the subject is by

Ahuja ef al, (1993). Similar to the shortest path problem and maximum flow
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problem, minimum cost flow (MCF) problem is a central problem in network
flows. The MCF problem arises naturally in many contexts, including traffic
flow routing in communication networks, VLSI layout (Klein et al, 1994),
production scheduling, and transportation (Kennington and Wang, 1991).
Cousequently, the MCF problem has been studied extensively in the literature,
for example (Busacker and Gowen, 1961; Kapoor and Vaidya, 1986; Leighton
and Rao, 1988).

Iy the conventional MCF problem, the cost associated to each arc is normally a
lmear function of the flow catried by the arc. A large number of methods have
een proposed for solving this MCF problem. Among the most popular
alyorithms are the primal simplex method, primal-dual method, and the out-of-
kilter method (Aashtiani and Magnanti, 1976; Ahuja e 4/, 1993; Fulkerson,
1961; Klein 1967). Recently, Vygen (2002) proposed a new dual algorithm,
which 1s a variant of the dual network simplex algorithm, to address the MCF
problem. The algorithm can work directly with the capacitated network and
thus it is applicable to more general problems (like those with sub-modular
fxw). Goldfarb and Lin (2002) designed combinatorial interior point methods
for the generalised minimum cost flow (flow with losses and gains) based on
the combinatorial interior point method for the MCF problem by Wallacher
aud Zimmermann (1992).  Wayne (2002) developed fast combinatotial
alporithms for the generalised mintmum cost flow problem, which directly
mranipulate the undetlying network.

‘We consider in this paper a directed flow network with two distinguished
“ertices—source s and sink 7 —and non-negative flow capacities on its edges.

1he MCF problem associates with each arc an additional parameterk,,

where k; can be the cost of sending a unit of flow along arc (i, j) . Considering
the cost incurred by the network flows allows us to transport any given units of
flow across a network from s to ¢ such that the cost incurred is minimised.
This has a practical usage in many network problems, and the unit cost incurred
may vary from arc to arc, depending on the nature of the applications. In
practice, the cost is often a nonlinear functon of its flow, rather than a linear
function like the convendonal MFC problem. Hence, we investigate in this
paper the MCF problem with strictly convex and differentiable cost functions.

The extension of the MCF problem to the convex cost flow problem can be

used in a wide variety of useful applications, where the cost functions ate not
often linear. An application example can be found in computer network, where
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a group of computing devices are connected together by cables. The network
can be modeled as a graph, in which each vertex represents a computing device
and each network arc represents a cable (Bertsekas and Gallager, 1992; Jewell,
1958). A central problem of this computer network is on how to transfer data
{trom one device to another while satisfying a given flow condition. For
FYampIe when a unit of data is transferred through the network, one may need

a.minimise the total loss probability, which can be formulated as the total cost
of flow along the network arcs. Other arc attributes, such as transmission
bahdwidth (arc capacity) and cost can also be taken into account to satisfy
different network constraints. This networking problem can be formulated as a
convex cost flow problem.

Arnumber of existing solutions can be applied to this convex cost flow
problem. One possible way is to reduce the problem to a typical linear cost
flow problem using piecewise lineatisation of the arc cost functions (Meyer,
1579; Kamesam and Meyer, 1984). This approach assumes that each of the
convex functions 1s linear between successive integers, and then introduces a
separate arc for each linear segment. In this way, the convex cost flow problem
is wransformed into the conventional MCF problem, and solved by the existing
MCF algorithms. The convex cost flow problem has also been addressed
by'Karzanov and McCormick (1997) with two approaches: (i) the minimum
mean cycle cancelling method, and (ii) the cancel-and-tighten method for the
MCF problem, based on work by Goldberg and Tarjan (1988), that proceeds by
sciiding flows along negative cost cycles.

i this paper, we present a new algorithm based on a primal-dual algorithm
dsed in linear programming to address this convex cost flow problem. We
aiodify the optimality condition in the ptimal-dual algorithm so that it can be
applied to convex and differentiable cost functions. In particular, we show that
by using the new optimality condition, we can minimise the total cost of flow
by incrementing the network flow along the augmenting paths of minimum
cost.

The rest of the paper is organised as follows. Section 2 formulates the problem
of minimum cost flow problem in which the cost functions are strictly convex
and differentiable. In Sections 3 and 4, we present the optimality conditions
and a primal-dual algorithm based on the optimality conditions for this
minimum convex cost flow problem, respectively. Section 5 reports the
simulation results, while Section 6 provides the concluding remarks and future
work.
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2.0 PROBLEM FORMULATION

We consider a directed graph G(X,E) with the vertex set X and the arc setE .
The vertex set X consists of N vertces denoted by 1.2, , , while the arc set
E consists of all the arcs (i, /) connecting vertices / and j, whete i,je X .
We denote the flow of arc (i, /) by f, . Given a directed graph associated with

a=flow network, the convex cost flow problem can then be formulated as
tiading the flow f that minimises the total cost function

2= Y k() ¢y
(i.j)E
subject to
0< f, Su; Y, e E, 2
> fi- Y fi=b VieXx, 3)
BUgEE B el

where k;(f;) is convex and differentiable cost functions of flow Jy» u, 1s the
capacity associated with arc (i, f), and b, is the source strength of vertex i
defined as the difference between the flows out and in of vertex i . Depending
2n whether it is greater or less than zero, the source strength b, indicates

Wwhether vertex { is a source or a sink node.

We assume that there exists a feasible solution for the above convex cost flow
Droblem. In fact, the existence of a feasible solution can be determined by
solving a maximum flow problem (Ford and Fulkerson, 1956) as follows: (i)
Introduce a source s and a sink t; for each vertex i with b, >0, add a source
arc (s,i) with capacity b, and for each vertes i with b <0, add a sink arc
(i,1) with capacity —b,. (ii) Solve the maximum flow problem from s to t;if
the maximum flow saturates all the source arcs, there exists a feasible solution

for the convex cost flow problem of concern. Such 2 solution also indicates the
conservation of the flow; that is

S b+Yb=0 or ¥ b=0 @

b >0 b <0 X
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For simplicity and without lost of generality, we assume that there is at most
one arc associated with each ordered pair of vertices (i, /), and that all arc costs

are non-negative. In addition, we consider only the case where the cost
fenctions k,(f;) are convex and differentiable. Mathematically,

ky(Ax+(1=A)y) £ Ak, (x)+ (1= A)k, (»), VAe[0,1]} (5)

Benoting the right-hand and the left-hand derivatives of k;(x) by k;(x) and
£(x), respectively, two useful properties of the convex cost functions of

nterest are stated as follows:

Lemma 1. If the cost function k,(x) is differendable at every point in
Witich it is defined, then & (x) =k, (x) .

Lemma 2. Since condition (2) needs to be satisfied, the cost function
k.(x) is defined only with positive x . The point x, minimises k,(x) if and only

if J&; (x,)2 0 and k; (x,) <0 forx, >0, and k;(x,)20 forx, =0.

2.0 OPTIMALITY CONDITIONS

11 this section, we describe the optimality conditions for the convex cost flow
broblem. The conditions are extended according to the primal-dual method of
linear programming and modified to suit the case of convex and differentiable
cost functions. In the primal-dual method, a variable known as the dua/ variabie
is associated with each constraint, and optimality conditions for these dual
variables are established to make the flow optimum (Dantzig, 1963; Trustrum,
1971). In our approach, we assign a price P to each vertex /. We shall show
that an optimal solution for the convex cost flow problem can be found based
on the optimality conditions as shown in the following theorem.

THEOREM 1. A flow {f,} in G(X,E) satisfying the condition

> -3 f.=b VieX (6)

el JIRE
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minimises the total cost

2f)= D, k() @)

(1.7l

wily convex: and differentiable cost function ky(f;) >0 if and only if there exists for each
wortex | a price ) for which the following conditions hold:

—B k() if f,=0 - (8)

k;(ﬁj)sg—ﬁsk;(m if f; >0 ©)
Proof:

ir Necessary condition: Let conditions (8) and (9) be satisfied for a flow
1y b - We will show that { £ is optimum; that is, it minimises the total cost of
flbw. A flow is not optimum if thete exists an arc (i, ) such that f, >0 and
Jw >0; this is because we can reduce the cost by setting f, = f, - f, and
J, =0, an adjustment that still preserves the conservation of flow requirement
at the vertex. We also impose f, =0 if arc (i, /) does not lie in G at all.
Hence, equation (6) can be rewritten as follows.

S4-3f=b  Viex. (10

J=1 J=

Smbstituting (10) into the total cost function (7), we have

Ehm)§ﬁ¢m+2m2n Y f.-b)

i, f=1 1y=1 1=1 J= J=1
N N N N V
=§ﬁgm+2€2ﬁ > By f,-Y Fb (11)
1, j=1 =l =1 =l pwl i=1

since indexes i and j have the same role in the summation 2 Pz - Ly -
Therefore,

N

fi= RZﬁ 2Py (12)

1 =1 1=1 ig=l

M=
p=

o
1

t

]

-
]
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Substituting (12) into (11), we have
N N N
2 k()= k() +(B=P)f,) =D Pb,. (13)
ij=l 1=1 =1
Sliice the flow ?u satisfies conditions (8) and (9), we have
ki JSP =B <k (‘fg) if 7, >0, (14)
B-P<k(G) if7,=0. (15)
Mereover, letting g, (f;) =k,(f,)+(F, = P)f,, we have
g (i) =k (f)+(E-P), (16)
g, (1) =k; (f)+(F = F). 17

Hence, we can see that g*(?y) >0 and g~ (?ﬂ_) <0 for ?U >0, and g* (?,,j_) =0
ror ?U =0. Obviously, because cost function k,(f,) is conves,
g, (f,)=k,(f;)+(F—P)f, 1s also convex. We can then apply Lemma 2 and

cenclude that the flow ?” makes the cost function g(f,) minimum for every
arg (i, 7). From (13), since z; Pb, is a constant, this indicates that the total

cost is minimized. Hence, the flow ?U , which satisfies conditions (8) and (9), is

optimum.,

2. Sufficient condition: Let 7:} be an optimum flow. We will show that there
exists a price set {£} that satisfies conditions (8) and (9). First, we assign an
appropriate price set as follows: Consider the sub-graph E(X E) of G(X,E)
which has the same set of vertices as G and the arc set
E= {67 k() =k (f,)= k’ff(?,y)} . Obviously, on every arc (i, ) of G the

flow f, >0, since f, =0 the left derivative & (f,) is not defined. Assume the
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graph G consists of a number of connected sub-graphs. We choose an
atbitrary vertex from each connected sub-graph, and assign the price 0. We
then assign the prices to all other vertices in the following manner: Let P be
the price already assigned to vertex i . We assign

B =B+k,(f) if 7,>0, (18)
P=P-k(f) i 7,>0. 19)

i

The price P, is said to be coordinated to j along the arc (i, j). Now, each

virtex has been provided with a price. We now show that in this way, the price
set assigned will satisfy conditions (8) and (9).

Assume thatin G there exists an arc (u,v) with fm? 0and P-P, # k’w‘(?m);

this violates condition (9). According to the way we assign the prices, the price
P, has been coordinated to u along a chain ( = )} and the price P. to

e? 17 *m

v along a chain(, = = ). Together with the arc (u,v) we obtain a

pr op=1* 2 m4l

sbordinated cycle (Figure 1):

H=adysennsdy, Sty =V,eni, =1,). (20

Fig. 1: Illustration of the u Coordinated Cycle

The flow going on each arc of u is always positive. Now, we modify the flows

on the arcs of u slightly in the following way: On the arcs of u” (arcs on

40



Journal of ICT, 3 (1), pp: 33-51

which the flow goes in the same direction as the orientation of y ), we increase
the flows by a value £ ; on the arcs of u~, we decrease the flows by the value

h. The flows on all the other arcs remain unchanged. Obviously, the vertex
condition (6) remains unaffected.

Consider the cost difference resulting between the old and the new flows

A= Y (G )-kF, D)+ X (kF)-k(F,-B) @D

(e’ (1)
Using the Taylor series, we obtain

A=k = X Kf)+ X KT, o). 22)

(i jrep’ (i jrep”

Ascording to the formation rules (18) and (19) for P, we can say that if there is
a fow from i to j, then {’,(f,)=P —F . Hence, equation (22) assumes the
foliowing form

A=h(P hPl +‘Fr!l _“'+P -1 _}Du _k’w(?ij)q_iov —Pm+2 +'"_Pfo)+0('h)

1 i m

=P~ P, =k’ w(f ) +o(h). (23)

For sufficiently small />0, however, this expression is certainly greater than
@ro if F,—F, >k"W(f,). Butif P.—F, <k'.(f,), we modify the flow in the
opposite way with the above; that is, on the arcs u*, we decrease the flow by
#; on that of u”, we increase it by 4. The resulting differenice can be obtained
in an analogous way. It is easy to see that by modifying the flow in this way, the
total cost of flow can be lower. However, this contradicts with the fact that f .
1s an optimum flow. Hence, we can conclude our assumption that there exists
an arc (u,v) with f >0 and P, -F #}’, is not true. In other words, the
price set we defined satisfies conditions (8) and (9). Thus, the theorem follows.

Taking the capacity u, of arc (i, f) into account when f, =0 or f, = u,, only

either the right-hand or left-hand derivative of k,(f}) exists; hence the cost

function k,(f,) is only differentiable for 0< f, <u, . From Lemma 1, we have
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k;(f;)=k;(f;) for 0<f, <u,. Consequently, we can state the optimal

conditions as follows.

FHEOREM 2. Let the cost functions be convex and differentiable, then a flow {f,} is
optimum if and only if there exists a price set {P} such that

P-P<ki(f) for f,=0, (24)
P—P=ki(f) for 0<f, <u, (25)
P-P2K(f) for [ =u, (26)

4.0 THE ALGORITHM

Ticcording to the optimal conditions obtained in the previous section, we can
fiow present the proposed primal dual algorithm for solving the convex cost
flbw problem as follows.

Hegin
Find a feasible flow;
While P. not satisfying optimality conditions Do
Begin
Build G(X,E) where £ ={(i, j) : k; (f,) =k, ()= k' ;(f;)}
Select a vertex u in every connected sub-graph in G and set P, =0;
Forevery vertex j of arc (i, /) that P is assigned Do
Begin
If f, >0 then P =F+I'(f,);
If f, >0 then P, =P —i',(f,);
End
Ifthere exist P, and P, not satisfying optimality conditions then
Begin
Find the coordinated cyele u that contains ¥ andv;
Modify the flow along u ;

End
End
End
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In the algorithm, we assign the price set according to ctitetia (18) and (19); that
is, the price of vertex j is assigned based on the price P of vertex i which has

i

previously been assigned. Price P, is then said to be coordinated with the
vertex j along the arc (i, j). If there exist vertices # and v such that P, and
F, do not satisfy the optimality conditions, we will find the coordinated
svaleft=(ys1s 5= s qu= > »,=,), Where P, is coordinated to i, along
the arc(i_,,i,) . The flow of p is modified to lower the total cost as follows.

On the arcs where the flow goes in the same (or opposite) direction as the
orfentation of i , the flow is increased (or reduced) by a value k. The value of

i Is found to minimise the cost incutted in the cycle i .

5.0 SIMULATION RESULTS

Two examples of simulation results are reported in this section to show the
efficacy of the proposed algorithm.

Cxample 1:

Lhis example is to show that our algorithm can be applied to simple minimum
cost flow problems, in which the cost functions are linear functions of the
Hows. Consider sending 4 units of data from vertex s to vertex ¢ in the
setwork shown in Figure 2, in which the flow at each vertex is conservative
cxtept at s and ¢, thatis b =0 for i#s,¢. On each arc (i, j) in the graph, we
indicate in a bracket its cost function of %, , followed by its capacity u, and the
comrent flow f .

Fig. 2: Sending 4 Units of Data from Vertex s to Vertex ¢

43



Journal of ICT, 3 (1), pp: 33-51

Let us start with the feasible solution as indicated in Figure 2. We form the sub-
graph  G(X,E) from  the  graph G with  the  edge
setE = §6,7) k() =k (f,)=k'3(f;)} . It can be seen that the sub-graph G
Consists of arcs(s,a), (a,¢), (b,c) and (c,7). Arcs (s,b) and (b,#) are not
tacluded, since k) (f,) and K, (f,) ate not defined. We define the price
starting with vertex s with price”, =0. The prices of other vertices are
avsigned according to the criteria (18) and (19) as shown in Figure 3.

Fig. 3: Assigning According to the Criteria (18) and (19)

Apparently, the arc having the cost %k, =x and the flow f, =0 does not
satisfy the optimality conditions. The price difference on this arc should be less
ihan ky, (f,)=1, but in fact it is 2. It is possible to lower the total cost by
teducing the cost along the cycle p. On the arcs where the flow goes in the
same (or opposite) direction as the orientation of u, the flow is increased (or
reduced) by a value & . The new cost for this cycle will be 3(1-h)+(1+h)+h.
To satisfy the capacity conditions on all the arcs along u , the value 2 should

be equal or smaller than 1. Hence, the cost achieves minimum at #=1. Figure
4 shows the new flow and modified price set.

As can be seen, the total cost has been decreased from 22 to 21. Again, we see
that arc (s.5) does not satisfy the optimality conditions. The same steps
described above can be repeated until the optimal conditions are satisfied in all
sub-graphs. In the end, the total cost incurred by the optimum flow as shown
in Figure 5 is 20, which is 2 units less than the total cost of the beginning
feasible solution.
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Fig. 5: Total Cost Incurred by the Optimum Flow

Example 2:

This example utilises the same network as in Example 1, but the cost function
associated with each arc can be a convex and differentiable function. Consider
sending 2 units of data from vertex s to vertex ¢. Similar to Example 1, we
consider the case that the flow at each vertex is conservative exceptat s and 7,
that 1s b, =0 for i#s,t. On every atc of the graph shown in Figure 6, we
indicate in a bracket the cost function &, followed by the current flow f .
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a Br0p ¢

Fig. 6: Graph Comprising Cost Function and Current Flow

We start with a feasible solution by sending 2 units of data through the path
i%,b,ty . A sub-graph E(X ,E) 1s formed from the graph G with the edge set
T= (G0 k] (F) =k (f,)=K(f;)}- It can be seen that the sub-graph G
consists of only two arcs (s,6) and (b,f). Thus, there are 3 connected sub-
graphs in G: {s.b.t}, {a}, and {c}. We then assign a zero price to an arbitrary
vertex in each sub-connected graph. In this case, we assign P, P,, P. to be 0.

Lnt prices of other vertices are assigned based on criteria (18) and (19); that is
P =2 and F, =14 (see Figure 7).

Fig. 7: Vertices Assigned Based on Criteria (18) and (19)

Obviously, the arc having the cost function &, =x*/2 and the flow f, =0
does not satisfy the optimality conditions. The price difference on this arc
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should be less than &), (f,,) =0, but it turns out to be 2. Similat to Example 1,
the total cost can be lowered by reducing the cost along the cycle y . That is,
on the arcs where the flow goes in the same (or opposite) direction as the
oftentation of pt, the flow is increased {or reduced) by a value . The new cost
for this cycle is now A*+h*/2+2(2—h). This cost achieves minimum at
h=2/3 . Figure 8 shows the new flow and modified price set.

Fig. 8: New Flow and Price Set

2 h=2/3, the total cost has been decreased from 16 to 153. However, the arc
(€;7) has not yet satisfied the optimality conditions. The same steps described

above can be repeated until the optimal conditions are satisfied in all sub-
siaphs. In the end, the total cost incurred by the optimum flow as shown in

Figure 9 is 10+, which is a significant reduction from the initial total cost of 16.

Fig. 9: Cost Incurred by the Optimum Flow
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6.0 CONCLUDING REMARKS AND FUTURE WORK

We have presented an algorithm for the convex cost flow problem. This
algorithm is based on the primal-dual method extended from the conventional
MCF problem and optimality conditions modified for the case of convex and
differentiable cost functions. Experimental results show that the proposed
algorithm can find the minimum cost flows with both linear and convex cost
functions.

The proposed algorithm can be applied to solve practical network flow
problems of convex and differentiable cost functions. However, in practice, the
cost functions are even more complex than just either linear or convex and
differentiable to apply our approach directly. As an example, let us consider a
data network whose network attributes, such as delay, loss probability,
transmission cost, depend on the traffic load carried by each transmission link.
The goal 1s to select the link capacities (ot transmission bandwidths) in order to

minimise a linear cost 2 p;B, , subject to the constraint that the average

u.h
Gelay per packet should not exceed a given constant 7, where B, is the
Capacity of each link and p, is the cost per unit capacity. According to the

=etwork model (see Bertsekas and Gallager, 1992), we can express the average
delay constraint as

Is_ 4 . T, (27)

Vi By— 1, -

where ¥ is the total data arrival rate of the network. Intuitively, the constraint
can be satisfied as an equality to minimise the capacity cost. Let § be a
Lagrange multiplier of the following Lagrangian function.

B_J;
L=Y|p,B,+5 . 28
U%{pu _+7By_fy] (28)

In accordance with the Lagrange multiplier technique, solving dL/dB, =0 gives

B, =f,+ }E& (29)
"N,
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From (27) and (29), we have

1y [2dy -
J—_TZ - (30)

.0

Substitute into the cost function, the optimal cost can be expressed as

2

Z(f):zpefj:.‘i +L{Z\u‘puflj ] : (31)
. I}’T (i)

“He cost function (31) has many local minima and is very difficult to minimize.

Tt1s a hard combinatorial problem. One possible future work is to extend the

peoposed algorithm, in conjunction with some heurstic methods suggested

(Dantzig, 1963; Trustrum, 1971), to solve this problem.

REFERENCES

Aashtiani, H. A., & Magnanti, T. L. (1976). Implementing primal-dual network flow
algorithms. Working Paper OR 055-76, Operations Research Center,
Massachusetts Inst. of Technology, Cambridge, Mass.

#huja, R, K., Magnant, T. L., & Otlin, J. B. (1993). Nemwork flows. Theory,
algorithms, and applications. Englewood Cliffs, N.].: Prentice Hall.

Bertsekas, D., & Gallager, R. (1992). Data nenworks. Prentice-Hall.

Busacker, R. G., & Gowen, P. J. (1961). A procedure for determining a family of
minimum-cost  network. flow patterns. Technical Report 15, Operations
Research Office, John Hopkins University.

Dantzig, G. B. (1963). Linear programming and extensions. New Jersey: Princeton
University Press.

Ford, I.. R., & Fulkerson, D. R. (1956). Maximum flow through a network.
Canadian Journal of Mathematics, 8, 399-404.

Fulkerson, D. R. (1961). An out-of-kilter method for minimal cost flow
problems. SLAM Journal, 9,13-27.

49



Journal of ICT, 3 (1), pp: 33-51

Goldberg, A. V., & Tarjan, R. E. (1988). Finding minimum-cost circulations by
canceling negative cycles. Journal of ACM, 36, 873-886.

Goldfarb, D., & Lin, Y. (2002). Combinatorial intetior point methods for
generalized network flow problem. Marbematical Programming, Serial A 93,
227-246.

Jéwell, W. S. (1958). Optimal flow through networks. Technical Report 8,
Operations Research Center, MIT.

iwamesam, P, V., & Meyer, R. R. (1984). Multipoint methods for separable
nonlinear networks. Mathematical Programming Study, 22, 185-205.

Kapoor, S., & Vaidya, P. M. (1986). Fast algorithms for convex quadratic
programming and multi-commodity flows. 1828 Annual ACM Symposinm
on Theory of Computing, 147-159.

Karzanov, A. V., & McCormick, S. T. (1997). Polynomial methods for
separable convex optimization in unmodular linear spaces with
applications. SLAM Journal on Computing, 4, 1245-1275.

Kennington, J. L., & Wang, Z. (1991). An empirical analysis of the dense
assignment problem: Sequential and parallel impletnentations. ORSA. J.
Computing, 3, 299-306.

Hlein, M. (1967). A primal method for minimal cost flows with applications to

the assighment and transportation problems. Management Science, 14, 205-
220.

Klein, P., Plotkin, S., Stein, C., & Tardos, E. (1994). Faster approximation
algorithms for the unit capacity concurrent flow problem with
applications to routing and finding sparse cuts. SLAM Journal on
Computing, 23(2), 466-487.

Leighton, T., & Rao, S. (1988). An approximate max-flow min-cut theorem for
uniform multi-commodity flow problems with applications to
approximation algorithms. 29¢h IEEE Annual Symposium on Foundations of
Computer Science, 422-431.

50



Journal of ICT, 3 (1), pp: 33-51

Meyer, R. R. (1979). Two-segment separable programming. Management Science,
25, 285-295.

Trustrum, I (1971). Linear programming. London: Routledge and Kegan Paul
Ltd.

Vygen, J. (2002). On dual minimum cost flow algorithms. Mathematical methods of
operations research, 56, 101-126.

Whallacher, C., & Zimmermann, U. (1992). A combinatorial interior point
method for network flow problems. Mathematical Programming, 56, 321—
335.

Wiyne, K. D. (2002). A polynomial combinatorial algorithm for generalized
minimum cost flow. Mathematics of Operations Research, 27(3), 445-459.





