Journal of ICT, 1(1), pp: 31-50

OBJECT ORIENTED ANALYSIS AND THE DESIGN
OF LARGE CLIENT SERVER APPLICATIONS IN A
WINDOWS ENVIRONMENT: AN EXPERIENCE

*K.Z Zamli, **W_.A Wan-Hassan, ***N.M Mohd-Zainuddin

*Pusat Pengajian Elektrik Elekironik,
Universiti Sains Malaysia, Nibong Tebal, 14300 Pulau Pinang

**Consolidated Cable (M) Sdn Bhd, Lot 32, Lebuh Sultan Mohamed 1,

Bandar Sultan Suleiman,
42000 Port Klang, Selangor

¥ Program Pengajian Diploma, Universiti Teknologi Malaysia,
Jalan Semarak, 54100 Kuala Lumpur
K.Z Zamli@ncl.ac.uk, zelanx@hotmail.com, norziha@utmkl.utm.my

ABSTRACT

A Unified Modeling Language (UML) is probably the most
popular language and notations for Object Oriented Analysis and
Design (OOAD) in the industry. In fact, the UML, a unification of
James Rumbaugh’s Object Modeling Techniques (OMT), Grady
Booch’s Booch Techniques, and Ivar Jacobson’s Object Oriented
Software Engineering (OOSE), is fast becoming a lingua franca for
software engineers, developers and designers alike. Being a lingua
franca, the UML helps software engineers “speak™ in the same
language. In effect, the UML facilitates reuse of not only codes,
but also software architectural designs. In some cases, these
architectural designs are also documented as reusable designs or
patterns.

This paper, derived from our previous work (Idris et al., 2000;
Zamli et al., 1999a; Zamli ef al., 1999b; Zamli et al., 1999c; Zamli
etal., 1999d; Zamli et al., 1999¢), describes our experience using a
UML to design large scale object oriented client server database
applications in a Windows environment. In doing so, we have
developed some reusable designs and conventions in terms of
UML class diagrams along with class relationships, cardinality and

31

https://core.ac.uk/display/12116209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of ICT, 1(1), pp: 31-50

stereotypes, as well as in terms of component diagrams and their
dependencies. Using such designs and conventions, we have
incrementally developed a Financial Analysis Module as part of a
larger Enterprise Resource Planning Systems using the Borland
C++ Builder 4.0, Microsoft SQL Server 7.0 and Rational Rose 98i,
in a Windows NT platform with an average of 16,600 lines of
codes (LOC) and 98 objects.

While some aspects of the designs and conventions used in the
Financial Analysis Module are project specific (e.g. using case
diagrams, collaboration diagrams, and sequence diagrams), our
experiences indicate that some aspects of the designs can be
applicable in other development projects in a similar context (i.e.
involving large scale database applications). This paper
summarizes some of the lessons learned.

Key words: Unified Modeling Language, Reusable Object Oriented Design

1.0 INTRODUCTION

for developing software have gained a lot of momentum (Liberty, 1998).
OOAD raises some hope of alleviating some of the problems (e.g. design
patterns, and code reuse) attributed to ever increasing software complexities.

In the last decade, Object Oriented Analysis and Design (OOAD) techniques

A Unified Modeling Language (UML) (Rumbaugh et al.,1999) is probably the
most popular language and notations for OOAD in the industry. In fact, the
UML, a unification of James Rumbaugh’s Object Modeling Techniques (OMT),
Grady Booch’s Booch Techniques, and Ivar Jacobson’s Object Oriented
Software Engineering (OOSE), is fast becoming a lingua franca for software
engineers, developers and designers alike (Liberty, 1998; Muller, 1997). Being
a lingua franca, the UML helps software engineers “speak” in the same
language. In effect, a UML facilitates reuse of not only codes, but also the
software architectural designs. In some cases, these architectural designs are
also documented as patterns.

This paper, derived from our previous work (Idris et al., 2000; Zamli et al.,
1999a; Zamii et al., 1999b; Zamli ef al., 1999c; Zamli et al., 1999d; Zamli et
al., 1999e), describes our experience in designing large scale object oriented
client server database applications in a Windows environment using UML. In
doing so, we have developed some reusable designs and conventions in terms of
UML class diagrams along with class relationships, cardinality and stereotypes,

32

Journal of ICT, I(1), pp: 31-50
M“

as well as in terms of component diagrams and their dependencies. Using such
designs and conventions, we have incrementally developed a Financial Analysis
Module as part of a larger Enterprise Resource Planning Systems using the
Borland C++ Builder 4.0, Microsoft SQL Server 7.0 and Rational Rose 98i, in a

Windows NT platform with an average of 16,600 lines of codes (LOC) and 98
objects.

While some aspects of the designs and conventions used in the Financial
Analysis Module are project specific (e.g. using case diagrams, collaboration
diagrams, and sequence diagrams), our experiences indicate that some aspects
of the designs can be applicable in other developrnent projects in a similar
context (i.e. involving large scale database applications). This paper summarizes
some of the lessons learned.

In the next section, this paper describes the important issues related to our
approach. Section 2.0 describes the rationale behind our work. Section 3.0
discusses the UML and reusable design in general. Section 4.0 describes our
vision, design constraints and conventions. Section 5.0 outlines our reusable
designs. Section 6.0 describes the prototype which uses our proposed designs.
Section 7.0 discusses lesson learned and issues arising from our approach.
Section 8.0 outlines our future work. Section 9.0 concludes the paper.

2.0 RATIONALE

In everyday life, we are accustomed to patterns. Christopher Alexander, the
author of such famous books as “Timeless Way of Building” (Alexander, 1979)
and “A Pattern Language” (Alexander ez al., 1977) once said:

Each pattern describes a problem that occurs over and over again in
our environment and then describes the core of the solution to that
problem in such a way that you can use this solution a million over
times without ever doing the same way twice (Rising, 1996).

In computer science, people are interested in applying patterns when developing
software. Like hardware, software is becoming complex and expensive to
develop and manage. Table 1, adapted from Royce (1998), shows a typical
expenditure by activity for a conventional large scale software project.

33

Journal of ICT, I(1), pp: 31-50

Table 1: Typical Expenditure by Activity

Management 5%
Requirement 5%
Design 10%
Coding and Unit 30%
Testing

Integration and Test 40%
Deployment 5%
Environment 5%
Total 100%

Developing large scale software can be laborious and notoriously difficult, with
the ever present risk of errors creeping in unknowingly. The nature of such
developments can also be influential, for example, on the results, costs and
controllability that can potentially be achieved.

As can be seen in Table 1, Requirement, Design, Coding and Unit Testing, and
Integration and Test activities make up 85% of the total expenditure. Given
infinite monetary resources, we will not face any problems. But in the real
world, monetary resources are finite. In fact, in most cases, we will want to
minimize monetary resources for higher profits and lower costs. We believe that
the 85% expenditure on Requirement, Design, Coding and Unit Testing, and
Integration and Test activities as shown in Table 1, can be minimized if one can
reuse some of the designs in the form of patterns, often termed design patterns.

Design patterns can sometimes be viewed as reusable architectures analogous to
the architecture of a building. Like the structure of a building, software patterns

are abstract and generic solutions to problems that recur perhaps in different
contexts.

Because design patterns are abstract and generic, they are not ready made
“plug-and-play” solutions. In object oriented terms, software patterns are most
often represented in the object by commonly recurring arrangements of classes,
and the structural and dynamic connections between them. Patterns are most
valuable because they provide a baseline for designers to communicate in.
Rather than having to discuss a complex idea from scratch, the designer has to
just mention a pattern by name and everyone will know, at least roughly, what
is being referred to. In this way, designers can easily communicate their design
1deas.

34

Journal of ICT, 1(1), pp: 31-50
““

Furthermore, the use of design patterns also reduces the need to reinvent the
wheel. The main advantage of design patterns stems from their ability to

provide generic solutions to recurrent problems that are peculiar to particular
situations (Bosch, 1998).

Nevertheless, there is no silver bullet in software engineering (Brooks Jr., 1987;
Voas, 1999). Any design patterns should, therefore, be evaluated (i.c.
successfully applied to design real world software) before they can be
considered as patterns. This can be seen in the work by the so-called Gang of
Four (GoF), consisting of Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides (Gamma et al., 1994). They have provided some ground work in
identifying common design patterns for software systems.

In terms of our current work, it may be a little too early and too ambitious to
consider our reusable designs and conventions (i.e. in terms of UML class
diagrams along with class relationships, cardinality and stereotypes, as well as
in terms of component diagrams and their dependencies) as design patterns.
This is because further experimentations are needed to use the designs in many
other different contexts. Nonetheless, we believe that this is a step in the right
direction.

3.0 UMIL AND REUSABLE SOFTWARE DESIGNS

There are a number of ways in which reusable designs may be described (such
as reusable designs communicated in a natural language narrative (Amnon et
al., 1997)). In terms of our work, it seems natural to adopt the UML because of
its popularity. Furthermore, it is a widely accepted modeling language that
supports object oriented analysis and the design of software systems.

The UML is a language and notation for specification, construction,
visualization and documentation of models of software systems (Rumbaugh et
al., 1999). 1t is fast becoming an industrial standard (i.e. version 1.3) since its
adoption by the Object Management Group (OMG) in 1994 (Liberty, 1998;
Muller, 1997). Historically, the UML is the result of work done by the
following three amigos; James Rumbaugh, Grady Booch and Ivar Jacobson.

The UML provides nine types of diagrams to represent object oriented software
designs. These diagrams consist of Use Case Diagram, Sequence Diagram,
Class Diagram, Collaboration Diagram, Object Diagram, State Chart Diagram,
Component Diagram, Activity Diagram and Deployment Diagram. Each of
these diagrams makes up the so-called 4+1 View.

35

Journal of ICT, 1(1), pp: 31-50

L e

The 4+1 Views consists of Use Case View, Logical View, Implementation
View, Process View, and Deployment View provides a cohesive binding among
different phases of the software lifecycles (i.e. specification, analysis and
design).

The Use Case View specifies the behavior and surroundings of the system in
terms of use cases and actors. The Logical View, on the other hand, describes
the logical structure of the system, that is, the classes and their relationships.
The Implementation and Process View describe the physical structure of the
system in terms of how the system is divided into executable files (e.g. exe
files) and how the dynamic link libraries (DLL) are structured (e.g. source
codes). The Deployment View shows the interconnections between the system’s
processors and devices, and the allocation of process to processors in its
designated environments.

Rarely does one see similarities (or patterns) in the Use Case View. This is due
to the fact that requirements and specifications tend to be different for different
projects. Unlike Use Case View, Logical, Implementation and Process Views,
can have reusable designs (e.g. as design patterns), in particular, class diagrams
and component diagrams (Idris et al., 2000). Nonetheless, one must be aware of
the contexts that these designs were constructed and their constraints.

4.0 VISION, DESIGN CONSTRAINTS AND CONVENTIONS

Our long term objective is to develop a client-server database application for a
Windows environment that employs conventional graphical user interfaces (e.g.
windows, icons, menus and pointers) developed from reusable designs and
conventions. The application must allow both human to computer interactions
and computer to database interactions. The interaction between computers to
database is done through the Open Database Connectivity (ODBC).

To facilitate design readability, it seems reasonable to adopt a predefined set of
design conventions. Design conventions include specifying variable names,
source file names, class names and their relationships. For our class designs, we
adhere to the following convention. We stereotype a class that implements the
human to computer interaction, a boundary class. A control class is a class that
implements computer to database interaction. A utility class is a class which
implements useful miscellaneous subroutines. An entity class is a class which
abstracts the actual database table. It should be noted, however, that these
stereotypes do not carry any special meaning. In addition, we have also used the
common Hungarian notation for our class names (i.e. our class names will start
with a capital T).

Journal of ICT, 1(1), pp: 31-50

h“

There are two common ways which reusable designs or patterns can be
conveyed, namely the Alexandrian form and the GoF form (Appleton, 1997).
The Alexandrian form is based on the form proposed by Christopher Alexander
(Alexander et al., 1977) to describe his pattern. Alexandrian form dictates that
every pattern must provide the following items (Coplien, 1998):

The pattern name

The problem the pattern is trying to solve
Context

Forces or tradeoff

Solution / Examples

Resulting context

Design rationale

The GoF form is based on the work of Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides (Gamma et al., 1994). GoF form patterns dictate
that every pattern must provide the following items:

Pattern name and classification
Intent

Other well known name
Motivation
Applicability

Structure

. Participants

. Collaboration
Consequences
Implementation

Sample Code

Known Uses

Related Pattern

The detailed discussions of each item in both representations (Alexandrian
versus GoI' forms) and their pros and cons is beyond the scope of this paper. In
this paper, we are opting for the Alexandrian form because of reasons described
in Idris et al. (2000). Now that some conventions are in place, our reusable
design patterns can be conveniently described.

37

Journal of ICT, I(1), pp: 31-50

5.0 THE PROPOSED REUSABLE DESIGN

Unlike DOS applications, Window applications tend to have longer source
codes (mainly to accommodate graphical user interfaces). It seems to be a
common practice for Window developers to use the dynamic link library (DLL)
as a way to manage source codes. The main advantage of a DLL is that it can be
loaded dynamically at run time and can be made independent from any
particular applications (i.e. DLLs can be shared amongst many applications).
DLL also simplifies the chores of bug fixes and library updates (i.e. without the
need of reinstalling the application).

The first reusable design is the main program. Table 2 describes the design in
details.

Table 2: Main Program

The problem | Organizing dynamic link library in

the pattern is | a structured manner to assist

trying to solve | traceability of requirements
against source codes

Context No preconditions, applicable to
any situations

Forces None

Solution and | See Figure 1 and Figure 2

Examples

Resulting Applicable only for designing

Context database applications in the
windows environment because it
uses DLLs.

Design See discussions in the next

Rationale paragraph

The main program is made up a class TMainPanel and one or more
TDynamicLinkLibrary classes. TMainPanel class has a boundary stereotype
whilst TDynamicLinkLibrary has a utility stereotype as depicted in Figure 1
below.

38

Journal of ICT, 1(1), pp: 31-50
T ...

: <<Boundary>>
IZZ;ZTTH_ TMainPanel

1.*

— Eansists of
<<Ut11_1ty>? one or more
TDynamicLinkLibrary dynamic link
library.

Fig. 1: Class Diagram of TMainPanel and its dynamic link library
components

The main panel or the main program interacts with one or more DLLs. DLL
instances are implemented as protected fields with restricted aggregation to the
main panel. Such relationship provides a loose coupling between the main and
its corresponding DLLs (Idris et al., 2000). In other words, the lifetime of each
DLL and its main are independent of each other. In effect, this permits the same
DLL to be used by more than one application.

Furthermore, such relationships also encourage polymorphous behavior of the
object via inheritance at a later stage of the development or in the future
upgrades. Figure 2 depicts such a possible polymorphous update.

<<Utility>>
TDynamicLinkLibrary
% mows future
ili update the
TCl '1d0ﬂ<3<Unh*tyakL-b dynamic link
- TemeT e rany library with a
new
Ectionality

Fig.2: Derived dynamic link library

39

Journal of ICT, 1(1), pp: 31-50

Despite its benefit, developing a DLL can be a daunting task. To ease such

difficulties, we have defined a design pattern for a DLL. Table 3 summarizes
the design pattern in details.

Table 3: Dynamic link library design

Pattern Name | Dynamic Link Library Design

The problem | Separation of concern amongst

the pattern is | classes performing different

trying to solve | functionalities.

Context No preconditions, applicable to
any situations

Forces None

Solution and | See Figure 3

Examples

Resulting Applicable only for designing

Context database applications in the
Windows environment because it
uses DLLs.

Design See discussions below.

Rationale

The design for our dynamic link library can be seen in Figure 3. It is only
visible to the TDynamicLinkLibrary. In turn, TDatabaseManager and
TListClass are visible to the TInterfacePanel. The TDatabaseManager is
composed of one or more TDatabaseTables.

In summary, our design for dynamic link library has the following
characteristics:

o Each class is loosely coupled and implements only specific functionality
(e.g. Database access is only done by an instance of TDatabaseManager).
. An instance of database manager class (TDatabaseManager) can be

implemented privately as part of the interface panel (i.e. polymorphous
behavior is not desirable).

. DLL is a standalone class that exports at least one major group of
functionality in a particular Use Case.

o All DLLs instances are considered to be part of the main panel or main
program with restricted navigation.

. All the entity classes are part of their respective control class managers.

40

Journal of ICT, 1(1), pp: 31-59

&h——“__—_———————“
M“

<<Utility>>
TDynamicLinkI ibrary
<<Boundary>> Specifies specific user
TinterfacePanel interface panel or
input area
— LN
<Control>> X -
database access TDatabaseManager <<Boundary>> Displays history
to multiple TListClass data in the database
databases tional
1.*
1.*
<<Entity>> Handles data
TDatabaseTables module of
tables

Fig. 3: Dynamic link library classes and relationships

Table 4: Source Code Dependencies

Pattern Name

Code Dependencies

The problem the
pattern is trying to
solve

Managing large source codes into
well defined modules based on
dynamic link libraries

Context Depend on implementation language.
To adopt this pattern, C++ must be
used.

Forces Related to pattern given in Figure 1.
Must be used together with pattern
described in Figure 1.

Solution and | See Figure 1 and Figure 4

Examples

Resulting Context

Applicable only for designing
database applications in the Windows
environment because it uses DLLs.

Design Rationale

Improves code readability

41

Journal of ICT, 1(1), pp: 31-50

Figure 4 depicts dependencies amongst various components in C++. The
package body and specification for DLLs must be replicated for each of the
DLLs depending on the multiplicity defined in Figure 1.

TMainPanel.cpp TMainPanel.h
= Stk
. process
WcmkmeNmicLhﬂdibmyh
> I

dependencies depend
on multiplicit

Fig. 4. Component diagram dependencies

An aspect which does not form part of our reusable designs is class operations
(i.e. methods) and their attributes. Our experience indicates that operation and
attributes tend to be different amongst classes (except the common set and get
operations) even the ones sharing the same stereotypes. As a result, operations

and their attributes are left out (i.e. to be determined during the actual
implementation).

6.0 PROTOTYPE

Using the reusable designs and conventions described in preceding sections, we
have developed a prototype Window based client server database application,
called the Financial Analysis Module, in a Windows NT environment. The
development was done as part of our 9-month long MSc industrial attachment at
Consolidated Cable Malaysia, Sendirian Berhad and the Centre For Advanced
Software Engineering, Universiti Teknologi Malaysia. Essentially, the Financial
Analysis Module deals with day to day accounting and management in an
industrial setting.

We have chosen Borland C++ 4.0 for our development partly because of our
customer requirements. In addition, Borland C++ 4.0 also offers Rapid
Application Development (RAD) capabilities. As far as the database is
concerned, our prototype Financial Analysis Module uses Microsoft SQL 7.0. It
should be noted that while we have used Microsoft SQL 7.0, our database

Journal of ICT, I1(1), pp: 31-50
—_——
\

design is actually open. Any relational database can be used as long as the
chosen relational database supports the Open Database Connectivity (ODBC)
alias through TCP/IP. In terms of supporting the UML tool, we have opted for
Rational Rose 98i because it supports round trip engineering from inception to

transition phase; we also use the iterative and incremental software development
lifecycle.

. | <<Utility>> | M";%Utility>";”
r <<Uli]jty>>_§ ! TFAMisc.dli TFASetupl.dil
| TPCVEntry dll | [== f—rmeme i
e ! T T | TFASewp3.dil

| =<utitiy>>
. TFASetup2.dll
1=

f | <<Utility>> .
NE \ e 1
e —— \"\,\ 1 \ N] B // e - | e 7__J
. \~ 1 1 .»] _______ —
. A = —Lﬁ 1 T o e e
) S <<Boundary>><"" 1 { <<Utility>> |
<> TMainPanel <>--1 = |
L e ——— —— AN ‘1
T — P 1 I/ YA i T~ ——
| <<Utility>> |z // SO ™ T <<Utility>>
- 1 1 . W1 1\\\ . 1 |_TFASetup5.di !
b e <<Utility>> | <<Utility>> l <<Utility>> Lo —f—v——»«-~»-»———————~-~-J

TAREntry.dll TGLJoumal2.dll ; TGLJoumall.dll
! g
J

Fig. 5: Financial Analysis Module and its dynamic link libraries

Figure 5 depicts our main program utilizing our reusable designs and
conventions, called Main Program in Table 2. In this case, we have decided that
the Financial Analysis Module is to be composed of 12 main dynamic link
libraries. As illustration, figure 5 depicts our prototype Financial Analysis
Module and its dynamic link libraries.

As a rule of thumb, each of the dynamic link libraries is only allowed to
elaborate and implement at most two use cases, which are related to each other.
We believe that such efforts should encourage improved source code
management.

43

Journal of ICT, I(1), pp: 31-50

D

«Utility»
TGLJoumal2
- N
JRe S~
A - T~ ~A
«Boundary» «Boundary»
TGLPaymentVoucherMasterPane! TGLUpdateVoucherMasterPanel|
I T
, / | \ / | \
7 | \ / | \

/ | N / i \
> i X | . |
«Control» | «Entity» «Control» | «Entity»
IFGLFaymentVoucherDBMgr | TDBGLPaymentVoucherList [TGLUpdateVoucherDBMgr|) TDBGI.UpdateVoucherLis

| l
| |
! I
| |
| |
v |
«Entity» AN, A A
TGLPaymentVoucherDBEntit «Entityn
Y TGLUpdateVoucherDBEntity

Figure 6: TGL Journal2 dynamic link library and its dependency classes

TMainPanclh .
ey TMainPanel.cpp

TFASetuplh .~

J 7
Jé
- /e

TFASetupl.cpp””

S i L ,
. [y N / TFAMisc.cpp
f— /‘ . ! \' \ N T
7 AR A R \ Y4 TPCVEnuyh
TFASetup2.pp A Y N =y {
S ! : \ \ /
/ / i | (RN N / - TPCVEntry.cpp
B y ' . \ . 7 — T
e ’ L / :) TAPEnuy.h —
TFASetup3.cpp o N L / -
! H \ 3 TAPEntry.cpp
i / ' S e
- -7 - 14 R —
N

TARNotes.cpp

P ; ” v : .
TFASetup5.cpp - - / 7 !
H—
1 4 | ‘- ‘ |

TFAMisc.h

.

TAREntry cpp

TGLJouma/ll .cpp

) ~GLJournal2.cpp

Figure 7: Component dependencies in terms of source codes

44

Journal of ICT, (1), pp: 31-50
M“
Statistically, the Financial Analysis module implements 23 Use Cases (with 98

collaborating objects, 16607 average lines of codes (LOC) and 40 database
tables as shown in Table 5.

Table 5: Various implementation statistics

TmainPanel 1 1 620
TFASetup1.dll 2 10 1375
TFASetup2.dil 2 10 1265
TFASetup3.dll 2 10 1370
TFASetup4.dil 2 10 1272
TFASetup5.dll 1 5 605 40
TGLJournall.d1l 1 5 990
TGLJournal2.d11 2 10 1870
TAREntry.dll 2 10 1570
TAPEntry.dll 2 10 1600
TARNotes.dll 2 10 1790
TPCVEntry.dil 2 10 1830

TFAMisc.dll 2 2 450

TOTAL 23 98 16607 40

To demonstrate our implementation of a dynamic link library (using the
reusable design called Dynamic Link Library Design in Table 3.0), Figure 6 in
the previous page depicts sample classes involved in the dynamic link library
called TGLJournal2.dll. It is worth noting that all other dynamic link libraries
are implemented in the same way.

In terms of code generation, Figure 7 in the previous page represents our overall
program structure in terms of component dependencies. This is derived from
component diagram dependencies (called Code Dependencies in Table 4.0).

Figure 8 depicts sample snapshots of our Financial Analysis Module. As for

application functionality, our prototype Financial Analysis Module has the
following features:

45

7.0

Journal of ICT, 1(1), pp: 31-50

Figure. 8 Sample Snapshots of our Financial Analysis Module

Support multiple Charts of Accounts

Support generation of Trial Balance

Support unlimited no of closing of accounts per financial year
Support transaction in multiple currencies.

Support database cache features in the client terminal.
Support database cache features in client terminal.

Support multiple parts accounting and part numbering.
Support multiple access level, which is centrally controlled.
Support customizable help display.

Support local as well as Client-Server database access.
Support tracking of partial repayment,

Support retrievable history of transactions

DISCUSSION AND LESSON LEARNED

Firstly, the main lesson learned from this work is that not all UML diagrams are
reusable, in particular, use case diagrams, sequence diagrams and collaboration
diagrams tend to be requirement specific. This is expected as requirements for
different projects tend to be different.

46

Journal of ICT, 1(1), pp: 31-50

M“

Secondly, the Financial Analysis Module suggests that our reusable designs and
conventions may be used in other large client server Windows applications
although with different methods and message flows. This is because our designs
and conventions are developed with reusability in mind. Thus, we delegate
many of the software functionalities to different modules mainly using DLLs.
The modules, in turn, can also be expanded via polymorphism. This is
demonstrated by our implementation of DLLs for the Financial Analysis
Module.

In fact, any applications built in this way can have as many DLLs as possible,
provided that garbage collection is handled properly. DLLs must be unloaded
once it is not used so that no memory leak can occur. The flexibility of DLLs
allows application to be developed by many developers independently and there
is almost no limit with respect to software lines of codes (LOCQ).

Thirdly, one issue which may be raised is the level of granularity of our designs.
While it may be useful to present the designs at the very fine grained level of
granularity, a counter argument suggests that such level of granularity may
affect generality of the designs. As a result, such designs may only be
applicable only to certain similar software development projects.

Lastly, the main limitation of our work is the fact that we extensively assume
that the operating systems would support the modularization and sharing of
codes using dynamic link libraries. This can be somewhat limiting because the
concepts of dynamic link libraries are only applicable in the Windows
environment. However, this is not to say that the reusable designs and
conventions described here are unusable in other operating systems. This reason
is that in other operating systems, we can always make some intelligent work,
for instance, by converting these dynamic link libraries into accumulated object
codes which can then be accessible as conventional software libraries.

8.0 FUTURE WORK

The Financial Analysis Module presents our first successful attempt to use
reusable designs and conventions; it is perhaps too ambitious to consider them
as design patterns.

Currently, our prototype is undergoing on line testing with real data at our

industrial partner's site. The general feedback from the users has been
encouraging.

47

Journal of ICT, 1(1), pp: 31-50

b e]

Our ongoing work is to adopt our designs and conventions to assist other in-
house development projects for our industrial partner; in particular, we would
like to adopt the design patterns for developing Human Resource Management
Modules and Enterprise Resource Planning (ERP) Modules. The second co-
author of this paper is currently involved in the project.

9.0 CONCLUSION

In conclusion, we have proposed reusable object oriented designs and
conventions for developing large client server database application in a
Windows environment. This is done in terms of the logical, implementation,
and process views. The designs actually consists of UML class diagrams along
with class relationships, cardinality and stereotypes, as well as component
diagrams and their dependencies.

While some aspects of the designs and conventions used for example, use case
diagrams, collaboration diagrams, and sequence diagrams, our experiences
indicate that some aspects of the designs can be applicable in other development
projects in a similar context (i.e. involving large scale database applications),
even ones which require more lines of codes.

ACKNOWLEDGEMENT

We would like to thank all staff of the Centre For Advanced Software
Engineering, Universiti Teknologi Malaysia for their help particularly Professor
Dr Norbik Idris and all staff of Consolidated Cable Malaysia Sendirian Berhad
particularly En Idris Puteh, En Abdul Rahim Jaffri, and En Mohd Yusmin
Mohd Yusuf for making this project possible.

48

Journal of ICT, 1(1), pp: 31-50
hﬁ_w“
REFERENCES

Alexander, C. (1979). The Timeless Way of Building. Oxford: Oxford
University Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., King, LF. and

Angel, S. (1977). A Pattern Language: Towns, Buildings, Construction.
Oxford:Oxford University Press.

Amnon, H.E., Amiram, Y. and Joseph (Yossi), G. (1997). Precise Specification
and Automatic Application of Design Pattern, in Proceedings of the 12th
IEEE International Automated Software Engineering Conference (ASE)
1997, Nov-2-5, Lake Tahoe, CA, USA, IEE KS Press.

Appleton, B. (1997). Patterns and Software: Essential Concepts and
Terminology, Object Magazine Online Vol. 3 No 5 , pp 20-25. ’

Bosch, J. (1998). Design Patterns as Language Constructs. Journal of Object-
Oriented Programming, Vol. 11 No. 2, pp. 18-32.

Brooks Jr., F.P. (1987). No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, Vol. 20 No. 4, pp. 10-19.

Coplien, J.O. (1998). Software Design Patterns: Common Questions and
Answers, in Rising L. (Ed.), The Patterns Handbook: Techniques,

Strategies, and Applications. Cambridge: Cambridge University Press.
pp. 311-320.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company.

Idris, N., Zamli, K.Z., Wan Hassan, W.A. and Mohd Zamuddin, N.M. (2000).
UML Design Patterns for Developing Large Client Server Windows
Applications, in Proceedings of the International Wireless
Telecommunication Symposium (IWTS 2000). Shah Alam: Universiti
Teknologi Mara.

Liberty, J. (1998). Beginning Object Oriented Analysis and Design With C++.
Birmingham, UK: Wrox Press Ltd.

Muller, P.A. (1997). Instant UML. Brimingham, UK: Wrox Press Ltd.

49

Journal of ICT, 1(1), pp: 31-50

e e

Rising, L. (1996). Design Patterns: Elements of Reusable Architectures. Annual
Review of Communications, vol. 49. pp. 907-909

Royce, W. (1998). Software Project Management- A Unified Framework.
Boston, MA, USA: Addison-Wesley, 1998.

Rumbaugh, J., Jacobson, 1. and Booch, G. (1999). The UML Reference Manual.
Boston, MA, USA: Addison Wesley.

Voas, J. (1999). Software Quality's Eight Greatest Myths. IEEE Software
September/October 199.9 pp. 118-120.

Zamli, K.Z, Wan Hassan, W.A. and Mohd Zainuddin, N.M. (1999a). Software
Development Plan (SDP) for Financial Analysis Module, Technical
Report produced for Consolidated Cable (M) Sdn. Bhd and CASE,
Universiti Teknologi Malaysia, January 1999.

Zamli, K.Z., Wan Hassan, W.A. and Mohd Zainuddin, N.M. (1999b). Interface
Requirement Specification (IRS) for Financial Analysis Module,
Technical Report produced for Consolidated Cable (M) Sdn. Bhd and
CASE, Universiti Teknologi Malaysia, February 1999.

Zamli, K.Z., Wan Hassan, W.A. and Mohd Zainuddin, N.M (1999c¢). Software
Requirement Specification (SRS) for Financial Analysis Module,
Technical Report produced for Consolidated Cable (M) Sdn. Bhd and
CASE, Universiti Teknologi Malaysia, April 1999

Zamli, K.Z., Wan Hassan, W.A. and Mohd Zainuddin, N.M. (1999d). Software
Design Documents (SDD) for Financial Analysis Module, Technical
Report produced for Consolidated Cable (M) Sdn. Bhd and CASE,
Universiti Teknologi Malaysia, October 1999.

Zamli, K.Z., Wan Hassan, W.A. and Mohd Zainuddin, N.M. (1999¢)
Development of Financial Analysis Module for ERP Application,
Technical Report for Consolidated Cable (M) Sdn. Bhd and CASE,
Universiti Teknologi Malaysia, December 1999.

