
67

Journal of ICT, 8, pp: 67-83

BUILDING DISTRIBUTED HETEROGENEOUS SMART PHONE
JAVA APPLICATIONS AN EVALUATION FROM A DEVELOPMENT

PERSPECTIVE

Ali Kattan, Rosni Abdullah, Rosalina Abdul Salam and
Sureswaran Ramedas

School of Computer Science
 Universiti Sains Malaysia

kattan@cs.usm.my,
rosni@cs.usm.my,

rosalina@cs.usm.my
sures@nav6.org

ABSTRACT

The advances in mobile phone technology have enabled such
devices to be programmed to run general-purpose applications
using a special edition of the Java programming language. Java is
designed to be a heterogeneous programming language targeting
different platforms. Such ability when coupled with the provision
of high-speed mobile Internet access would open the door for
a new breed of distributed mobile applications. This paper
explores the capabilities and limitations of this technology and
addresses the considerations that must be taken when designing
and developing such distributed applications. Our fi ndings are
verifi ed by building a test client-server system where the clients
in this system are mobile phones behaving as active processing
elements not just mere service requesters.

Keywords: Smart phone, Java ME, MIDlet, Distributed applications, Client
server.

INTRODUCTION

The impact of the wide spread of mobile phones with relatively decreasing
costs has been the focus of many studies (Bagchi, Kirs, & Lopez, 2008). This
diffusion is far more ubiquitous when compared to the spread of PCs. 2007 was
a crossover year where smart phone sales exceeded laptop computers sales.

Journal of ICT, 8, pp: 67-83

68

Mobile phone customers represent a staggering 3.3 billion in the subscriber
market in total (Want, 2009).

Mobile phone processing power, as well as their storage capacity, have
increased dramatically during the past few years (Knyziak & Winiecki, 2003).
Architecturally, a mobile phone can be divided into two basic processing
components: the communication processor and the application processor.
In smart mobile phones, the latter becomes a computationally powerful
computer in its own right, capable of running general-purpose applications
(Want, 2009). Buying a PDA no longer makes sense since smart phones have
absorbed the functionality of such devices causing a noticeable decline in the
PDA market (Kozel & Slaby, 2008). From now on, the term “mobile phone”
will be used to refer to the smart mobile phone.

A special edition of the well-known Java programming language, known as
Java ME (Java Micro Edition) became the common ground for developing
applications for such phones (Xu, 2006). It provides relatively easy opportunity
to make mobile phone applications including data communication access
utilising either some common protocols such as HTTP/HTTPS or socket-
based communication (Kozel & Slaby, 2008).

Fast Internet access via UMTS (3G), EDGE, or WiFi technologies would
become a standard low cost service provided to any mobile phone network
subscriber. The relatively slow response time for the mobile phone applications
that used to utilise the former CSD and GPRS technologies is something of
the past (Knyziak & Winiecki, 2003). This would open the door for a new
breed of phone-based distributed applications that are to be integrated into
larger existing computing infrastructures (Mock & Couturier, 2005).

RELATED WORK

In general, mobile phone technology is relatively young and has yet to expand.
There have been numerous analysis and evaluation studies targeting different
aspects of this technology. One of the main goals of such studies is to help
mobile phone designers, manufacturers, as well as mobile software developers
to identify limitations and constraints in order to produce better solutions.

Heo, Hamb, Park, Song, and Yoon (2009) conducted a study on mobile phone
usability evaluation methods and heuristics. By deriving some desirable
mobile phone features that served as a reference point, they proposed a
framework for evaluating the usability of a mobile phone based on a multi-

69

Journal of ICT, 8, pp: 67-83

level, hierarchical model of usability factors. Other studies were more specifi c
in studying the usability of mobile phones in more specifi c areas like mobile
commerce. Chang and Chen (2005) presented a theoretical foundation to
qualify the use of the mobile phone as a client platform for mobile commerce.
Desirable mobile phone system features were listed assuming an ideal client
platform and then these discussed in terms of the shortcomings of mobile
phones available at the time.

The development of distributed mobile phone applications was made possible
owing to the increased processing power, programmability and high-speed
communication capability of such devices. Knyziak and Winiecki (2005)
studied the suitability of Java 2 Micro Edition or J2ME (lately known as
Java ME) in distributed measurement systems. The client mobile phone
was programmed to behave as a control and data presentation device in a
distributed client-sever measurement system. Their study addressed diverse
client-server issues like communication delays and transmission time. They
indicated that Java-enabled mobile phone’s cross-platform interpretability, i.e.
device heterogeneity, and the client-side computation ability are amongst the
strongest features that make such devices the most powerful and promising
for use in this fi eld. Mobile phone applications are no longer restricted of
being mere web-server clients (Hasegawa, Nakamura, Higushima, Kawasaki,
Nakashima & Sato., 2008). Mobile phone distributed applications are gaining
potential in diverse areas with Java ME as the most important programming
language that can facilitate the development of such applications (Yan &
Liang, 2009).

The literature reviewed here forms the reasons behind our study. With the
application developer in mind, the building of such distributed mobile phone
Java applications is studied in order to indicate the capabilities and limitations
that are involved in such task.

PROGRAMMING MOBILE PHONE DEVICES

It is essential to have an idea about the Java mobile phone framework
environment in order to understand the nature of mobile phone application
development. Writing applications for mobile phone devices is totally different
from writing applications for PCs (Mazlan, 2006).

Sun Micro Systems Java programming language is one of the most popular
languages used to program mobile phone devices. Java promotes a unifi ed
development and execution platform regardless of the underlying hardware.

Journal of ICT, 8, pp: 67-83

70

The different Java frameworks are shown in Figure 1. The mobile phone Java
edition, namely J2ME is basically a cut-down version of the Java 2 Platform
Standard Edition (J2SE) that is tailored to suit mobile phone devices. In spite of
being a cut-down version, the language seems to be adequate enough to enable
the building of some interesting applications in vital areas like biomedicine
(Takeuchi, NoritakaMamorita, FumihikoSakai, & Ikeda, 2009).

Sun Micro Systems divides mobile phone devices into two categories: high-
end representing PDAs and low-end representing mobile phones and entry-
level PDAs. However, we believe that such terminology is no longer valid
since many of the latest smart phones fall under the second low-end category.
The processing power of the former is usually 32-bit while the latter is limited
to 16-bit which is the interest of this paper since they are more ubiquitous. The
framework is composed of a set of basic classes that are built into the mobile
phone’s fi rmware in addition to a set of optional packages that can be loaded
dynamically into the phone memory based on the application’s needs.

Fig. 1. The Different Java Frameworks

Java Community Process (JCP) represents an alliance of participating members
(JCP, 2009b) with most of the major mobile phone manufacturers and mobile
phone service providers being involved (JCP, 2009a). JCP is responsible for
laying out the specifi cations for mobile Java. These are introduced in the form
of JSRs (Java Specifi cation Requests) to provide common implementation
guidelines for mobile phone device manufacturers and service vendors to
undertake. Such specifi cations are fl exible to allow extension and promote

71

Journal of ICT, 8, pp: 67-83

compatibility. Despite this, some manufactures have followed custom trends
to add more functionality to their line of mobile phone devices. Unfortunately
this would sometimes violate the promoted compatibility between different
phone brands and might result in some unanticipated Java application bugs
(Klingsheim, Moen, & Hole, 2007).

Connected Limited Device Confi guration

The confi guration that defi nes small, mobile phone devices is known as the
Connected, Limited Device Confi guration (CLDC) (Sun Microsystems,
2009a). These devices will have a system memory between 160 and 512
Kbytes and use the Kilobyte Virtual Machine (KVM) (Helal, 2002a) though
such a memory based distinction is no longer valid. CLDC 1.1 (JSR 139) is
the current version and provides two basic packages for network support:

• java.io package, provides classes for input and output through data
streams, which includes reading primitive data type streams and byte
array streams, and

• javax.microedition.io, provides classes for the Generic Connection
framework, which includes creating connections (TCP based) and
datagrams (UDP based).

However, connections established using the above classes rely on blocking IO
methods to achieve its functionality. It lacks the new IO non-blocking methods
of its desktop counterpart, namely J2SE. In addition, Object Serialisation is
not supported. Thus, with the exception of strings, only primitive data types
can be interchanged through a network connection. Another noticeable
limitation is the lack of Java RMI (Remote Method Invocation) support under
CLDC (Mock & Couturier, 2005). Both Object Serialisation and RMI could
play a fundamental part in facilitating the development of distributed Java
applications (Al-Jaroodi, Mohamed, Jiang, & Swanson, 2003).

Mobile Information Device Profi le

On top of the CLDC lies another set of classes that are referred to as profi le.
These classes are also part of the phone’s fi rmware, known as MIDP (Mobile
Information Device Profi le). MIDP extends CLDC’s functionality further
(Klingsheim, Moen & Hole., 2007). MIDP 2.0 (JSR 118), which is an
enhancement over the former MIDP 1.0. It is currently the most commonly
used profi le in mobile phones.

Most of these enhancements address security and privacy issues due to the
added networking capabilities and the increased functionalities of the device

Journal of ICT, 8, pp: 67-83

72

(Klingsheim, et al., 2007). The profi le does not allow, for security reasons,
dynamic class loading from sources different than its own JAR fi le (Mock
& Couturier, 2005). MIDP lacks a JDBC (Java Database Connectivity)
component so direct access to databases from a mobile phone is not possible.
The recent development in mobile phone hardware made the development of
such JDBC driver possible as part of the MIDP (Hopfner, Schad, Wendland,
& Mansour, 2009).

Optional Packages

Many optional packages can be included with the application based on need
during compilation and they are loaded dynamically during run-time. These
are also specifi ed under JCP as JSRs (Klingsheim, et al., 2007). These optional
packages are usually tied to the provision of certain hardware features within
the mobile phone device itself. For instance, the Location API 2.0 package
contains classes that enable the use of the device’s GPS (Global Positioning
System) circuitry for GPS-enabled mobile phones (Abramov & Rogov, 2009).
Figure 2 shows some of such optional packages.

The mobile phone manufacturer should state clearly which of these are
supported to facilitate application development and testing (Mazlan, 2006).
In addition to the optional packages, we found that vendors sometimes would
achieve extra functionality or boost performance by providing their own
customised versions of these standard packages as will be discussed later.

Fig. 2. J2ME Optional Packages

MIDLETS

A MIDlet is a Java ME mobile application. MIDlets are analogous to Java
Applets known under the J2SE framework. The mobile phone has its own

JAIN
IM

Web
Services

Location SIP
Event

Tracking PIM BTAPI SATSA 3D
JAIN

Presence

WMA

MIDP

PP

PBP

FP

CDCCLDC

MMAPI

JT
W
I

73

Journal of ICT, 8, pp: 67-83

dedicated OS, namely the AMS (Application Management System). AMS
is responsible for the loading, starting, pausing, and destroying of MIDlets
(Marejka, 2005). Most of the recent mobile phones have a more complete and
multi-threading capable OS like Symbian™ (Jode, 2004).

MIDlet Lifecycle

In order to develop distributed Java-based mobile phone applications, it is
essential to understand that MIDlets have different execution states (Marejka,
2005). Once the MIDlet fi les are installed in to the phone’s memory, the user
can usually run the MIDlet by selecting it from a menu. The AMS would
create an instance of this MIDlet and prepare it for execution. The MIDlet has
three different states: Paused, Active, and Destroyed. All of these states are
refl ected by special methods within the MIDlet’s code (Mock & Couturier,
2005; Helal, 2002) and as shown in Figure 3. Developers must override these
methods in order to include their intended code.

Fig. 3. MIDlet Lifecycle

The Active state is where the MIDlet is doing its intended functionality. The
paused state is the state where the MIDlet would be in the event of an incoming
call or other high priority event that requires the MIDlet to pause. The MIDlet
in such case would release its resources and wait untill the high priority event
is completed, where by then it can ask the AMS to resume its functionality.
Finally the destroyed state is the state where the fi nal housekeeping is done
to release any used resources and save any data prior to MIDlet termination.
MIDlets can save persistent data on the phone memory using a system known
as RMS (Record Management System) (Jode, 2004). Once the MIDlet
instance is terminated, it ceases to exist from the working memory of the
device. However it may keep the RMS saved data for use in the next run.

Journal of ICT, 8, pp: 67-83

74

MIDlet Development

Sun Micro Systems have provided a special SDK (Software Development
Kit) that makes use of the existing J2SE compiler to develop MIDlets. Java
Wireless Toolkit for CLDC can be used to develop, test and debug mobile
phone applications. It has a special set of emulators that will mimic a mobile
phone environment on a PC. The developer would use his/her preferred text-
editor or integrate the toolkit with an IDE (Helal, 2002b) to edit the program
code since it is not provided along with the toolkit.

Sun’s toolkit represents a generic platform to develop mobile phone
applications without targeting a specifi c mobile phone brand. Java promotes
the concept of “write once run any were”. Unfortunately, this is not totally true
when it comes to mobile Java applications. To be able to access the device’s
specifi c features and avoid compatibility issues that might exist between
different mobile phone brands, special tailored versions of this toolkit are being
offered by the device vendors (Klingsheim, et al., 2007; Helal, 2002). These
customised toolkits would include special packages that augment the original
set. In addition, the emulators are extended to emulate actual commercial
phone sets and not just generic virtual emulators like those provided with
Sun’s toolkit. The developed MIDlets must be re-compiled and tested using
those customised toolkits to avoid possible bugs (Klingsheim, et al., 2007).

MIDlet Signing and Installation

MIDP 2.0 has introduced a new security model. In order to have a trusted
MIDlet suite, the origin and integrity of the MIDlet must somehow be
authenticated. This is accomplished by having the MIDlet suite signed using
a public key infrastructure (PKI). It uses the X.509 PKI, an ITU-T standard
(Klingsheim, et al., 2007).

Trusted MIDlet suites will be associated with a root certifi cate, which in turn
is associated with a protection domain. The device vendor installs many of
such root certifi cates on the device itself. The MIDlet suite should explicitly
declare what permissions are needed. Such permissions must be a subset of the
permissions given to the associated protection domain, otherwise the MIDlet
suite installation will fail. The signing process is subjected to a fee by the root
certifi cate party. Steps for requesting and using a code-signing certifi cate are
depicted in Figure 4.

75

Journal of ICT, 8, pp: 67-83

Fig. 4. MIDlet Signing Process

The MIDP 2.0 security model also provides the concept of protected API
where access to those APIs is controlled by permissions. A protection domain
is used to defi ne a set of interaction modes and permissions, which grants
access to an associated set of protected APIs. An installed MIDlet suite is
bound to one protection domain. MIDP 2.0 supports at least one protection
domain; the untrusted domain. A set of protection domains supported by an
implementation defi nes the security policy.

Signed MIDlets could acquire special privileges. Such privileges are not
granted to untrusted MIDlets and user intervention may be needed to grant
them access explicitly. This could become an inconvenient process and
the MIDlet’s functionality could be crippled if it is not granted the right
permissions since user intervention is not always possible.

The MIDlet suite is composed into two basic fi les: a JAR fi le and a JAD fi le.
The JAR fi le is a Java standard JAR fi le including all the MIDlet classes,
optional packages, and data fi les if any. The JAD fi le is a text-based fi le used
to store MIDlet properties. The latter would also include the MIDlet signature.
This is to be read by the mobile phone system upon MIDlet installation and
running to determine which protection domain to use.

Journal of ICT, 8, pp: 67-83

76

DISTRIBUTED MOBILE PHONE APPLICATION MODEL

A client-server model is basically a distributed system where processes in
the distributed system are divided into two (possibly overlapping) groups.
The request-reply behaviour is when the client requests a service from a
server by sending it a request and subsequently waiting for the server’s reply
(Tanenbaum & Steen, 2002).

This model was adopted to develop a basic system that would promote testing
the distribution and network functionality in the mobile phone devices and as
seen in Figure 5. Though the model we had adopted looks like a traditional
service-oriented architecture, the goal here is to let the clients do the actual
processing and not the server. This is in contrast with some models where
the clients request service from a web-based server and tasks in this case are
completely performed on the server-side (Kozel & Slaby, 2008).

The client application, the mobile phone device in this case, would ask the
server to provide a random (double) number. Upon receiving this number the
client is to calculate the square of it and then send it back to the server for
acknowledgment. Then the whole process is repeated again until terminated
by the user.

Fig. 5. Test Application

The server would receive incoming connections and dedicate a thread to each
successful connection. Then a double number ranging between 0.0 and 100.0
is sent to the requesting client for processing. The server would wait for the
client to send back the squared number for checking and acknowledgment.
The connection is then terminated upon success or after a certain time-out
period pending for client’s response. The server will also monitor response
times as well as connection outcomes.

77

Journal of ICT, 8, pp: 67-83

BUILDING THE MODEL AND CONDUCTING TESTS

Seven different models of 3G/EDGE Java-enabled mobile phones from Nokia
and SonyEricsson with line subscription from three different service providers
were available for testing. All the clients were Java ME enabled mobile phones
based on CLDC 1.1 and MIDP 2.0. The server code was written using J2SE 6
and the server application was hosted in a Windows 2003 server connected to
the Internet system via global IP address.

The MIDlet development process is shown in Figure 6. Such process is
analogous to that of building a Java client Applet using J2SE. Thus, and in
comparison to building a Java client Applet, our fi rst goal was to see how
convenient it was to build the mobile phone client MIDlet for the system
discussed section 4 in terms of the software development tools used, the
debugging process, and the overall time/effort needed to complete the task.
Since the environment lacks RMI, we had to rely on building basic client-
server sockets to achieve the mentioned functionality. The connection code
within the MIDlet was written as a thread to avoid application lock-ups
since Java ME relies on blocking I/O methods. Other than that the Java ME
framework supports a wealth of classes and methods that are comparable to
what is being provided on the desktop version J2SE. A short summary of
(J2SE) features versus Java ME features is shown in Table. 1.

Fig. 6. MIDlet Development Process

Our MIDlet’s code was written using standard CLDC 1.1 and MIDP 2.0, while
avoiding any custom vendor packages. Compiling it using standard Sun SDK,
Nokia’s SDK, and SonyEricsson’s SDK produced three versions of the same
MIDlet. The development process on the three aforementioned SDKs was
straightforward and shown in Figure 6.

Journal of ICT, 8, pp: 67-83

78

We tested the client application using one of the included emulators with each
SDK as well as an actual on-device testing. The on-device testing is an extra
necessary debugging process in which the MIDlet is installed on an actual
mobile device using a link cable, Bluetooth connection, or Infrared connection
depending on the device type. Although there are some considerable differences
in terms of GUI appearance between the three emulators from each SDK and
the actual device, the basic functionality is still the same.

Table 1. Desktop Java 6 (J2SE) versus Mobile Java (Java ME)
Feature J2SE Java ME Notes (Java ME)
Support for RMI Yes No
Support for streamed connections Yes Yes
Support for Object Serialization Yes No Only strings are allowed
Support for full TCP/UDP Yes Yes
Support for unblocked connections
(NIO)

Yes No Threading can solve this problem

Support for multithreading Yes Yes Total number of threads is limited by
mobile device processing power

Apart from the on-device testing, the whole development process used a
familiar set of software development tools in comparison to those used to
build Java Applets using J2SE. However, testing has revealed that care must be
taken to handle the mobile phone application Paused state, such that the device
would be able to store and retrieve its current connection status. This was done
in order to compare how the development of this application would go when
targeting a specifi c vendor mobile phone. The Pause state was completely
ignored by Nokia mobile phones and we had to modify the code substatially
a bit in order to handle interruptions differently. Some vendors follow this
trend since the application is actually still running in the background and there
would be no need to pause it. This might have a negative effect on how the
code is handled across a range of different devices.

Since our MIDlet uses many networking classes that fall under protected
APIs, our MIDlet must use a protection domain that allows the use of those
APIs. Eventually this would mean that the MIDlet must be signed to obtain
the proper permissions. Obtaining a proper certifi cate to sign our MIDlet was
costly since such certifi cates are usually subject to annual fees. Lacking a
MIDlet-signing certifi cate we decided to upload the three unsigned MIDlet
versions to a web-server and make them available for download via the mobile
phone Internet browser.

At fi rst we decided to install Sun’s compiled version of our MIDlet on all of
the seven test mobile phones we had. We faced issues in the application’s
installation process on all of them since an explicit user interaction was

79

Journal of ICT, 8, pp: 67-83

required to grant the right for installing our unsigned MIDlet. Upon running
the installed MIDlet, another user interaction was required once the MIDlet
tries to establish an actual internet connection for the fi rst time.

Table 2. Experimental Results for Seven Java ME Enabled Mobile Phonesa

#
Internet
Line Location3

Establish
Connection (ms)

Average
Response (ms)

Establish
Connection (ms)

Average
Response (ms)

Sun’s SDK Vendor’s SDK
1 3G City A 414 21 388 16
2 EDGE City A 523 43 497 39
3 3G City A 494 34 479 32
4 EDGE City B 447 28 421 25
5 3G City B 376 24 459 23
6 3G City C 389 21 364 19
7 EDGE City C 431 38 387 24
a Permission was not granted to publish the exact mobile phone brand/model number
b Our server is located in City C.

During the running of the mobile phone application, we would simulate
interruption by calling or texting the client mobile phones. The performance of
each of the devices tested, in comparison to each other, was relatively similar
in terms of connection time, response time, and the ability of recovering from
network disconnections. Connection time is the time needed by the device
to establish or re-establish, an internet connection. The response time is the
overall time taken for a client to request a number from our server, calculate
the square of it, and send it back to the server. A summary of our results is
listed in Table 2.

With the development process in focus, this table provides merely a sample
picture of the performance of our simple distributed application. Further
analysis of this data is beyond the scope of this work.

Our tests have also revealed how the behaviour of the mobile phone Java
application would differ from one device vendor to another due to the
different ways of handling MIDlet’s states and security measures by different
vendors. A summary of such behaviours is listed in Table 3. For instance,
since our MIDlet was unsigned, user permission was explicitly needed upon
each Internet reconnection. This would occur once internet disconnection was
encountered due to low signal coverage or once the phone’s screensaver starts
on some models causing an Internet disconnection. Disabling the phone’s
screensaver or setting it to start after a longer period of time solved the latter
problem.

Journal of ICT, 8, pp: 67-83

80

Table 3. Summary of Problems and Solutions
System Behavior Cause Solution Total Affected

Phones
Explicit user
permission required
to install

Unsigned MIDlet Sign the MIDlet
using CA certifi cate
supported by the
device

7

MIDlet installation
failure

Using specifi c
vendor’s compiler on
non-vendor machine.

Use either vendor’s
compatible SDK or
Sun’s Java ME SDK

7

Explicit user
permission for
internet connection

Unsigned MIDlet Sign the MIDlet
using CA certifi cate
supported by the
device

7

MIDlet Pause State
handled incorrectly

Nokia Multi-tasking
OS ignores the Pause
State.

Modify the code to
handle the Pause State
differently

4

Explicit user
permission to
reconnect after
connection failure
(grant again)

Phone OS design/
Provider restriction.

Sign the MIDlet
using CA certifi cate
supported by the
device

3

MIDlet crashed upon
connection failure

Phone OS issue
(certain model)

No solution found
(most probably a
system bug)

1

Internet disconnection
once screensaver
starts

Phone OS design Disable screensaver
or set to a longer
period

4

Finally, we experimented with the other two versions of our MIDlet. We were
not able to install Nokia MIDlet version on a SonyEricsson mobile phone or
vice versa. Each vendor SDK compiled MIDlet ran only on the respective
vendor devices. In general, the MIDlet ran somewhat faster than the standard
Sun’s version and as shown in Table 2. In addition, the behaviour was also a
bit different upon interruptions. It was apparent that the vendor’s SDK was
optimised to run faster on the vendor’s mobile phone hardware. In addition,
these SDKs include extra packages that address platform specifi c features
to gain extra performance or provide extra functionalities via additional
proprietary methods.

CONCLUSIONS

Java enabled mobile phones defi nitely have the potential for running
diverse distributed applications. There are many programming limitations
in the mobile Java version when compared to its desktop counterpart. These

81

Journal of ICT, 8, pp: 67-83

limitations include the lack of RMI support, lack of Object Serialisation, and
the support of only blocking I/O connections. Yet, and due to the increasing
processing power and memory capacity of such mobile phone devices, those
limitations can be compensated to a certain extent, making mobile phones
eligible candidates in any distributed computation that is part of larger
computer infrastructures. However, it should be mentioned that this would
require some extra effort from the developer.

The software development tools that are used to develop such mobile Java
applications are analogous to those used to develop an Applet application on
the desktop Java counterpart. With exception of a special on-device testing
process, the same development cycle with similar tasks was required to build
the mobile Java application.

The structure of a Java mobile phone application, namely a MIDlet, is affected
by three main transition states during run-time that would consequently affect
how the Java application is designed. However, not all mobile device vendors
adhere to the same standards of run-time behavior and care must be taken to
address this problem properly. Ensuring compatibility or at least portability
across a wide range of the “said to be” compatible Java-enabled mobile
phone devices would require some extra effort due to different manufacturer
implementations of Java ME. This would defi nitely decrease the sought
compatibility since such MIDlets compiled with vendor SDKs ran only on
their respective vendor devices. In this case only actual on-device testing can
confi rm such compatibility.

MIDlets are to be signed with a special key obtained from a certifi cation
authority for a fee that is usually annual. This would grant the MIDlet special
access permissions that otherwise must be granted explicitly by the user.
MIDlet installation or MIDlet internet/network connection establishment is
subject to such permissions. This is a bit of stringent security requirement that
cripples the MIDlet functionality. These issues must be well considered when
designing and developing mobile phone based distributed applications.

REFERENCES

Abramov, E. S., & Rogov, S. V. (2009). New opportunities for Java ME
developers with location API 2.0. IEEE Eurocon 2009. Saint Petersburg,
Russia, 438-443.3.

Al-Jaroodi, J., Mohamed, N., Jiang, H., & Swanson, D. (2003, April).
Modeling parallel applications performance on heterogeneous systems.
Paper presented at the Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’03), Nice, France.

Journal of ICT, 8, pp: 67-83

82

Bagchi, K., Kirs, P., & Lopez, F. (2008). The impact of price decreases on
telephone and cell phone diffusion. Information & Management, 45,
183-193.

Chang, Y.-F., & Chen, C. S. (2005). Smart phone - the choice of client platform
for mobile commerce. Computer Standards & Interfaces, 27, 329-336.

Hasegawa, M., Nakamura, K., Higashijima, A., Kawasaki, S., Nakashima,
H., Sato, & K. N. (2008). High accessible experimental information on
CPD experiment. Fusion Engineering and Design, 83, 402-405.

Helal, S. (2002a). Pervasive Java. Pervasive computing, 1(1), 82 - 85.

Helal, S. (2002b). Pervasive Java, Part II. Pervasive computing, 1(2), 85-89.

Heo, J., Hamb, D.-H., Park, S., Song, C., & Yoon, W. C. (2009). A framework
for evaluating the usability of mobile phones based on multi-level,
hierarchical model of usability factors. Interacting with Computers, 21,
263-275.

Hopfner, H., Schad, J., Wendland, S., & Mansour, E. (2009). MyMIDP:
An JDBC Driver for accessing MySQL from mobile devices. Paper
presented at the First International Conference on Advances in
Databases, Knowledge, and Data Applications

JCP (2009a). Participation - Executive Committe info. Retrieved October 10,
2009, from http://jcp.org/en/participation/committee

JCP (2009b). Participation - Overview: Getting involved. Retrieved October
10, 2009, from http://jcp.org/en/participation/overview

Jode, M. d. (2004). Programming Java 2 Micro Edition for Symbian OS: A
developer’s guide to MIDP 2.0. Chichester, West Sussex: Wiley.

Klingsheim, A. N., Moen, V., & Hole, K. J. (2007). Challenges in securing
networked J2ME applications. Computer, 40(2), 24-30.

Knyziak, T., & Winiecki, W. (2003, Sept.). The new prospects of distributed
measurement systems using Java™ 2 Micro Edition mobile phone.
Paper presented at the Proceedings of the Second IEEE International
Workshop on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, Lviv, Ukraine.

Knyziaka, T., & Winiecki, W. (2005). The new prospects of distributed
measurement systems using Java 2 Micro Edition mobile phone.
Computer Standards and Interfaces, 28, 183-193.

83

Journal of ICT, 8, pp: 67-83

Kozel, T., & Slaby, A. (2008, June). Mobile access into information systems.
Paper presented at the 30th International Conference on Information
Technology Interfaces, Cavtat/Dubrovnik, Croatia.

Marejka, R. (2005). MIDlet life cycle. Retrieved December 15, 2008, from
http://developers.sun.com/mobility/learn/midp/lifecycle/

Mazlan, M. A. (2006). Stress test on J2ME compatible mobile device. Paper
presented at The Innovations in Information Technology.

Mock, M., & Couturier, S. (2005). Middleware - integration of small devices.
Paper presented at the Proceedings of the 10th IEEE Conference on
Emerging Technologies and Factory Automation.

Sun Microsystems. (2009a). Connected limited device confi guration (CLDC).
Retrieved January 10, 2009, from http://java.sun.com/products/cldc/

Sun Microsystems. (2009b). Mobile Information Device Profi le (MIDP).
Retrieved January 10, 2009, from http://java.sun.com/products/midp/

Sun Microsystems. (2009c). Sun Java wireless toolkit for CLDC. Retrieved
January 10, 2009, from http://java.sun.com/products/sjwtoolkit/

Takeuchi, A., NoritakaMamorita, FumihikoSakai, & Ikeda, N. (in press).
Development of a Comprehensive Medical Recorder on a Cellphone.
Computer Methods and Programs in Biomedicine.

Tanenbaum, A. S., & Steen, M. v. (2002). Distributed systems principles and
paradigms. Singapore: Pearson Education.

Want, R. (2009). When cell phones become computers. Pervasive computing,
IEEE, 8(2), 2-5.

Xu, C.-w. (2006). A framework for developing wireless mobile online
applications. Paper presented at the 5th IEEE/ACIS International
Conference on Computer and Information Science, 2006 and 2006 1st
IEEE/ACIS International Workshop on Component-Based Software
Engineering, Software Architecture and Reuse. ICIS-COMSAR.

Yan, L., & Liang, Z. (2009). An accelerator design for speedup of Java
execution in consumer mobile devices. Computers and Electrical
Engineering, 35(6), 904-919.

