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IMPROVING GENERALIZATION OF
NEURAL NETWORKS USING LENGTH
AS DISCRIMINANT

FADZILAH SIRAJ & DEREK PARTRIDGE

ABSTRACT

This paper discusses the empirical evaluation of improving generalization performance of
neural networks by systematic treatment of training and test failures. As a result of sys-
tematic treatment of failures, a discrimination technique using LENGTH was developed.
The experiments presented in this paper illustrate the application of discrimination
technique using LENGTH to neural networks trained to solve supervised learning tasks
such as the Launch Interceptor Condition 1 problem. The discriminant LENGTH is used
to discriminate between the predicted “hard-to-learn” and predicted “easy-to-learn”
patterns before these patterns are fed into the networks. The experimental results reveal
that the utilization of LENGTH as discriminant has improved the average generalization
of the networks increased.

ABSTRAK

Kertas ini membincangkan penilaian empirik dalam meningkatkan pencapaian rangkaian
buatan dengan memberi rawatan kepada corak yang gagal selepas pembelajaran dan
pengujianan. Hasilnya, teknik pembeza layan dengan menggunakan LENGTH telah
dihasilkan. Eksperimen yang dibincangkan dalam kertas kerja ini mengilustrasikan aplikasi
teknik pembeza layan menggunakan LENGTH bagi melatih rangkaian neural dalam
menyelesaikan tugas pembelajaran berbantu seperti masalah “Launch I nterceptor Condi-
tion 1”. Pembeza layan LENGTH digunakan untuk membezakan antara corak ramalan
“hard-to-learn” dan “easy-to-learn” sebelum corak tersebut dilatih oleh rangkaian.
Dapatan kajian menunjukkan bahawa penggunaan pembeza layan LENGTH telah
meningkatkan purata pencapaian rangkaian neural.



INTRODUCTION

The goal of network training is not to learn an exact representation of the training
data itself, but rather to build a statistical model of the process which generated
the data. This is important if the network is to exhibit good generalization, that is,
to make a good prediction for the new inputs. Multilayer perceptrons (MLP) are
now widely used for problem recognition, although the training remains a time
consuming procedure and often converging toward a local minimum. Moreover,
as the optimum network size and topology are usually unknown, the search of
this optimum requires a lot of networks to be trained.

Webb and Lowe (1990) illustrated that a nonlinear adaptive feed-forward layered
network with linear output units can perform well as a pattern classification de-
vice. They have also shown that the discriminatory ability stems from the first
half of the feed-forward network performing a specific nonlinear transformation
of the input data into a space in which the discrimination should be easier. Agood
discrimination between classes in the space of the hidden units is obtained by
requiring a minimization of the output error.

Backpropagation networks with feedforward connections have by now been es-
tablished as highly competent classifiers (Waibel et al., 1989; Burr, 1988; Barnard &
Casasent, 1989) but much remains to be discovered concerning the optimal de-
sign of such networks for particular applications. Issues such as the appropriate
choice of features for input to the network Barnard et al., 1991, the training meth-
odology to be used (Jacobs, 1988) and the best network topology (Obradovic &
Yan, 1990; Chester, 1990) has all been identified, but complete satisfactory solu-
tions have not been offered for any of these problems.

The accuracy (and hence reliability) of neural net implementations can be im-
proved through a systematic treatment of the two failure cases: training failures
and test failures. The paper addresses the basic problem of improving MLP neu-
ral net implementations, i.e. increasing the generalization performance of the net-
works by developing methods for dealing with training and testing failure pat-
terns.

One of the approaches to be explored is using the parameter LENGTH. In Launch
Intercepor Problem 1, LENGTH is one of the parameters provided as the input
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pattern. The parameter LENGTH acts as discriminant that will be used to iden-
tify whether a particular pattern is considered as the learnable (easy to learn or
ETL) or hard to learn (HTL) pattern. The HTL pattern is then treated before train-

ing.

METHODOLOGY

The Launch Interceptor problem has been used in a number of software engineer-
ing experiments concerning correctness and reliability (see Knight & Leveson,
1986; Adams & Taha, 1992). Partridge and Sharkey (1994), and Yates and Partridge
(1995) have applied the problem to neural networks. This is a well-defined, abstract
problem that has been chosen as a case study for testing the relevant procedures
since it offers a distinct advantage of supplying numerous training and test patterns
with unambiguous outcomes. The problem involves an anti-missile system, which
is used to classify radar images as indicative of a hostile missile, or not. The input
for the system represents radar images (specified as a sequence of x,y coordinate
points) together with 19 real-valued parameters and several small matrices which
are used to control the interpretation of the radar images. The output is simply a
decision Launch (when all 15 launch criteria are satisfied according to certain
conditions) or No-Launch (when one or more of the 15 launch criteria is not satisfied
by the input data). The various criteria upon which the decision depends are
referred to as “launch interceptor conditions” (LIC’s). LIC1, the acronym from
Launch Interceptor Condition 1, is a boolean function that is true if the Euclidean
distance between two points is greater than the value of another parameter
LENGTH, and false otherwise. The points are given as two pairs of x and y
coordinates (each in the interval [0,1] to six decimal places) LENGTH is as single
value in the same interval to the same precision. Therefore LIC1 takes five input
values i.e. (x; y;) (¥, ¥,), LENGTH and returns the value true or false.

To create training and test sets, LIDV the acronym from Launch Interceptor Data
Vector is used to generate either rational or random patterns. Random sets are
constructed by using a random number generator to construct each of the five
parameters. For rational sets LIDV constructs the decision-boundary patterns by
approximately setting the LENGTH parameter after randomly setting x,, y,, x,
and y, LIDV determines the value of the LENGTH by calculating the actual dis-
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tance between two coordinates [(x, }/1) and (x,y,)] and adding or subtracting a
certain percentage of this distance, a parameter whose bounds (i.e. minimum and
maximum percentage distances) are determined by the user. For the purpose of
the study, the lower bound for the rational training set is set to 0% and the upper
bound is 20%, and for the rational test sets the upper bound is set to 100%. For the
random patterns, no specification of the bound is required.

The main objectives of the experiments are firstly to determine whether the dis-
criminant was a good predictor, and secondly to find out whether good predic-
tion of HTL/ETL can be used to improve generalization performance. Having de-
termined the HTL/ETL patterns, the next step is to perform experiments which
should give some insight to the following plausible objectives:

1)  To determine whether separating and modifying HTL patterns makes the
patterns more learnable.

2)  To determine whether learning improvement based on LENGTH as dis-
criminant leads to better computational reliability (i.e. a reduction in the
number of wrongly computed results).

Once the HTL patterns were identified by the discriminant, further treatments
were applied to these patterns. For modification purposes, normalization meth-
ods were employed. The first normalization method is to sum the squares of each
parameter (i.e. x,, y,, X,, ¥, and LENGTH), take the square root of the sum, and
then divide each element by the norm (Bigus, 1996; Cohn, 1994; Cohn, 1974). This
method is known as the Euclidean norm. A second method of normalization is
simply by dividing each parameter by the parameter that has the largest value for
a particular pattern (Bigus, 1996). The second normalization method is referred to
as the new normalization technique (new-norm).

The approach has been stimulated from the empirical studies conducted by
Littlewood and Miller (1989) for software engineering research and Partridge and
Sharkey (1992), Partridge (1990), Partridge and Griffith (1994), and Partridge and
Yates (1995a,1995b) from neural networks experimental research. In conjunction
with these studies, MLP networks (Rumelhart and McClelland,1986) with five
Input units, eight to 10 hidden units and one output unit (i.e. 5-8-1 to 5-10-1) are
utilized in the experiments. Six training sets (three rational ones i.e. R1, R2 and
R3, and three random ones T1, T2 and T3) are used to investigate the effect of
normalizing on the training and test patterns. Each training set is composed of
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1000 rational (or random) patterns trained using an online backpropagation
algorithm with a learning rate of 0.05 and momentum of 0.5. Sarle (1995) suggested
that sample size of 1000 is large enough that overfitting is not a concern, so the
results for 1000 training cases will provide a standard comparison for generalization
results from small sample sizes. The weight seed number is varied from 1, 2 and
3. Each MLP network is trained to convergence (i.e. every pattern learned to a
tolerance of 0.5 or 50,000 epochs for all training sets) whichever is first.

The experiments were carried out in the same order as the objectives listed in the
previous section. To improve the generalization for testing, the boundary pat-
terns (i.e. rational training sets) were used. These patterns should have a higher
probability of being a good separator of the input space. These boundary patterns
are most likely to help the network generalize correctly (Sabutai & Tesauro, 1988;
Huyser & Horowitz, 1988; Collins, 1994; Partridge & Collins, 1995). Hence, both
rational and random training, and test sets are considered. In order to produce
general results, ones with statistical validity, the component experiments were
each repeated a number of times. The number of hidden unit is varied from
eight to 10; training set from R1 to R3 (or from T1 to T3) and the weight seed from
W1 to W3. Hence, the total number of networks generated was 27 (i.e. 3* that
represents three weight seeds x three training sets x 3 hidden unit number) for
random and another 27 for rational. The performance of the networks was tested
on rational and random test patterns (each containing 10,000 test patterns).

DISCRIMINATION STRATEGIES

It is hypothesized that patterns with LENGTH < 0.02 and the distance between
two pairs of coordinates do not learn after training. Preliminary studies show that
the unlearnt patterns lie close to the origin or along the boundary decision line.
The experiment performed in this section is to determine whether LENGTH is a
good discriminant in such a way that it is able to discriminate patterns that may
be difficult to learn from the ones that are easy to learn.

Three rational (R1, R2 and R3) and three random (T1, T2 and T3) sets are used in

the following experiments. These training sets will be trained as simple MLPs
using different number of weight seeds (1, 2 and 3) and different number of hid-
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den units (8, 9 and 10). As a result, a multiversion system with nine networks was
obtained for each training set. Each pattern is considered as HTL if its parameter
LENGTH < 0.02, otherwise it will be considered as an ETL pattern. Having de-
fined the HTL and ETL patterns, the evaluation of the discriminant is summarized
in the following ways:

1. The results obtained by training R1, R2 and R3 (or T1, T2 and T3) are used
as a baseline for comparison. In effect, the actual HTL and ETL patterns
are identified. The procedure is illustrated in Figure 1.

Figure 1
The Procedure for Identifying the Actual HTL and ETL Patterns

HTL (actual)

.Input Patterns Train

—
(e.g. R1, R2, R3) MLP \
ETL (actual)

2. The LENGTH is used as the discriminant to predict whether each input
pattern of R1, R2 and R3 is HTL or ETL pattern. A pattern is considered
as the predicted HTL if the parameter LENGTH of this pattern is less or
equal to 0.02, otherwise it will be considered as the predicted ETL. The

procedure is illustrated in Figure 2.

Figure 2
The Procedure for Identifying the Predicted HTL and ETL Patterns Using the
R LENGTH as the Discriminant ’

HTL (predicted)

Yes

Input Patterns LENGTH
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Having obtained the HTL/ETL patterns, several training and testing methods were
explored, namely:

(1)" The patterns are trained as MLPs without applying any treatments to the
HTL patterns. This method is labelled as SR _,.

(2)  Split and Recombine (SR)
The HTL (or HTC) patterns are treated by normalization methods. Both HTL
and ETL were recombined prior to training or testing. This method is la-
belledas SR and SR

(3)  Split and Separate (SS)
The HTL and ETL patterns are trained separately. The HTL are normalized
before training or testing. This method is labelled asSS _ and SS_,

(4) The HTL and ETL patterns are trained separately but the HTL patterns are
not treated before training or testing. This method is labell

(6) edasSS_,

The experiments will be carried out in the same order as the objectives listed in
section 2.0.

RESULTS

The results exhibited in Table 1 indicate that the effect of SR training methods on
the training performance is highly significant (p=0.00). At 5% significance level,
the mean success of SR __and SR have significantly improved the training
results of SR (p = 0.02 and p = 0.00 respectively). When SS training methods
were employed, the effect of these methods on the training is very significant
(p=0.00). In particular, mean success of S and SS  are very significant
when compared to SR, (p = 0.01 and p = 0.01).

The unlearnt patterns which lie in the range of LENGTH between 0.0 and 0.02 (20
patterns) have become learnt when trained using other training methodologies
(see also Table 2). Therefore, the training methodologies SR and SR, have
made all unlearnt patterns whose LENGTH < 0.02 and some patterns with
LENGTH > 0.02 become learnt after training. The test results exhibited in Table 2

indicate that all SR techniques for rational patterns achieve at least 0.38% higher
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Table 1
Tha Training and Test Results for Rational Patterns Using
LENGTH as the Discriminant

Training (in %) Testing (in %)

Method R4 R5 R6 Av. Min Max | Average
SR, 98.53 | 97.86 | 97.08 | 97.82 | 83.28 99.26 | 98.29
SR .. 98.86 | 99.23 | 98.83 | 98.97 | 98.60 99.35 | 98.99
SR com 99.43 | 9952 | 9943 | 9946 | 99.35 98.59 { 99.07
SS,.... 98.96 | 99.29 | 99.20 | 99.15 | 93.53 99.19 | 97.16
58, rv-norm 98.96 | 99.29 | 99.20 | 99.15 | 93.41 98.14 | 95.87
SS... 98.96 | 9829 | 99.19 | 98.68 | 94.70 99.06 | 96.97

Table 2

The Rational Patterns that Do Not Learn After Training

No. of patterns whose
LENGTH < 0.02

The patterns whose Total

LENGTH < 0.02 that Unique

do not learn after Unlearnt
Training Methodology Rl R2 R3 training
SR, — 78 68 71 20 234
SR 26 25 28 0 184
SR, om 25 25 27 0 166
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thanSR_ . The effects of the weight seed numbers, number of hidden units, train-
ing sets and the testing methods on the generalization performance are not sig-
nificant (p = 0.25, p = 0.51, p = 0.547, p = 0.236) at 5% significance level. The only
SR method that has significantly improved the generalization performance at 10%

significance level is the SR (p = 0.094).

After testing, all techniques have decreased the number of pattern failures i.e.
10.50% by rescaling, 44.59% by normalizing and 51.77% by new normalizing tech-
niques. Highly significant differences were found in mean test failures between
testing methodologies when rational test sets were tested on rational weights
(p<0.0001). Furthermore, in both normalizing techniques none of the patterns
whose LENGTH < 0.02 failed after testing (see Table 3). On the other hand, when
the SS methods were employed the generalization of the network decrease. This
may be due to two possibilities, namely the overtraining problem, and the way
the patterns were discriminated into HTC and ETC subsets. These factors will be
considered further by employing different discriminant procedures in further ex-
periments.

For random patterns, the effect of SR training methods is not significant. None of
the patterns whose LENGTH < 0.02 did not learn after training. The distribution
of unlearnt patterns lie close to the decision boundary line especially between
0.04 < LENGTH < 0.08. After rescaling, most of the unlearnt patterns after train-
ing lie between 0.04 < LENGTH < 0.06. The normalizing technique, however,
introduced more unlearnt patterns at LENGTH between 0.04 and 0.08. Using the
new normalizing technique, most of the unlearnt patterns at LENGTH between
0.04 and 0.08 learnt after training. Hence, the rescaling and new normalizing tech-
niques have corrected some failed patterns whose value of LENGTH > 0.02.

The total number of SR, pattern whose LENGTH < 0.02 in random training sets
T1, T2, T3 are 27, 13 and 11 respectively, but these patterns learnt after training.
After treatments, two patterns were affected by normalizing and nine by new
normalizing techniques. One interesting point to note is that for all training meth-
odologies, all patterns whose LENGTH < 0.02 for training sets T1, T2 and T3 learnt
after training. This implies that all unlearnt patterns after training lie in the range
of 0.02 > LENGTH < 1.0. We perceived that the treatments make the unlearnt
pattern whose LENGTH < 0.02 become learnt after training, however in the case
of random training, the treatments using SR have reduced the number of

new-norm
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Table 3
The Number of Failures After Testing Using Rational Patterns

Testing No. of patterns whose Patterns whose Total
Methodology LENGTH < 0.02 LENGTH < 0.02 that fail failures
after testing
SR, 5095 353 933
SR 2452 0 517
SR o 2441 0 450
Table 4
The Training and Test Results for Random Patterns Using
LENGTH as Discriminant
Training (in %) Testing (in %)
Method T4 T5 | T6 Av. Min Max Average
SR,. 9796 |99.92 | 99.81 | 99.24 | 83.28 99.26 96.86
SR 99.96 |199.98 | 99.81 | 99.91 | 95.73 98.30 97.57
SR.....nom 99.81 |99.81 | 99.81 | 99.81 | 96.13 97.86 97.16
SS, o 99.90 | 9993 | 99.68 | 99.84 | 95.76 98.40 97.52
S5 evnorm 99.90 | 99.93 | 99.68 | 99.84 | 95.76 98.40 97.52
Ss,,. 99.90 | 99.93 | 99.68 | 99.84 | 95.76 98.40 97.52
Table 5
The Number of Failures After Testing Using Random Patterns
Testing No. of patterns whose Patterns whose Total failures
Methodology LENGTH < 0.02 LENGTH < 0.02
that fail after testing
SR, 194 1 1432
SR . 185 0 1452
SR ., norm 159 1 1313

84 ANALISIS 6 (1&2), 77-89 (1999)




unlearnt patterns whose values of LENGTH > 0.02. The results presented in Table
4 show that the effects of weight seed numbers, the number of hidden units, the
training sets and the testing methods on the generalization performance of random
patterns are not significant. All other SR and SS techniques achieved at least 0.30%
higher than SR . However, all of these methods have not achieved a significant
improvement on the generalization of networks at 5% significance level.

Inrandom testing, the total number of raw patterns whose LENGTH < 0.02 is 194.
Only one out of these patterns failed after testing. After applying normalizing
and new normalizing techniques, the total number of modified patterns with
LENGTH < 0.02 has reduced (see Table 5). The total number of failures has also
decreased by 8.31% using new normalizing technique. However, SR _ does not
decrease the number of unique failure after testing. When random test sets were
tested on random weights the mean test failures between each methodology was
not significant at all (p < 0.618). Nevertheless, the mean test failures for SR__
(mean = 306.11) has reduced to 298.56 when treated with SR

new-norm.

CONCLUSION

The results presented in the previous sections indicate that normalizing and new
normalizing techniques have improved the average generalization of the networks
which consists of rational patterns tested on rational weights. For random pat-
terns, only normalizing technique shows a slight decrease in the average perfor-
mance. Since the testing methodologies introduced in the experiments show some
positive results, a more rigorous statistical tool could be introduced to discrimi-
nate the patterns to be modified in both training and test sets. One possible ap-
proach is to introduce the use of discrimination analysis technique (Hand, 1981;
Ripley, 1993; Bishop, 1995; Krzanowski & Marriot, 1995) or MLP networks trained
to perform the discrimination (Webb & Lowe, 1990). These two techniques will be
explored in future experiments.
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