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ABSTRACT

Ordinary differential equations are commonly used for mathematical modeling
in many diverse fields such as engineering, industrial mathematics, operation
research, artificial intelligence, management, sociology and behavioural
sciences. Numerous problems encountered in these fields require lengthy
computation and immediate solution. In this paper, a new method called
parallel 3-point implicit block method for solving second order ODEs is
developed. This method takes full advantage of parallel computers because the
numerical solution can be computed at three points simultaneously. As a
result, the solution can be obtained faster if compared to the conventional
methods where the numerical solution is computed at one point at a time.
Computational advantages are presented comparing the results obtained by
the new method with that of 1-point and 2-point implicit block methods. The
numerical results show that parallel 3-point implicit block method reduces
the total number of steps and execution time without sacrificing the accuracy.

ABSTRAK

Persaman pembezaan biasa sering digunakan untuk membentuk model
matematik dalam pelbagai bidang seperti kejuruteraan, matematik industri,
operasi penyelidikan, kepintaran buatan, pengurusan, sains sosial dan gelagat.
Pelbagai masalah yang terdapat dalam bidang-bidang tersebut memerlukan
pengiraan yang panjang dan penyelesaian segera. Dalam kertas ini, satu
kaedah baru blok selari 3-titik tersirat dihasilkan bagi menyelesaikan
persamaan pembezaan biasa peringkat dua. Kaedah ini memanfaatkan
keupayaan komputer selari sepenuhnya kerana ianya menghitung penyelesaian
berangka pada tiga titik serentak. Justeru, penyelesaian dapat diperoleh dengan
lebih cepat jika dibandingkan dengan kaedah-kaedah konvensional di mana



penyelesaian berangka dihitung pada satu titik pada satu masa. Kelebihan
kaedah baru ini dipersembahkan dengan membandingkannya dengan
keputusan yang dicapai bila kaedah baru blok selari 1-titik dan 2-titik tersirat
digunakan. Keputusan menunjukkan kaedah baru blok selari 3-titik tersirat
dapat mengurangkan jumlah langkah dan tempoh pengiraan tanpa
mengorbankan kejituan.

INTRODUCTION

Mathematical modeling is the art of translating problems from an
application area into tractable mathematical formulations whose
theoretical and numerical analysis provides insight, answer, and
guidance useful for the originating application. For instance, Edward
(2001) developed a differential equation model of North American
cinematic box-office dynamics based on 442 new feature films released
in 1999 on 37185 screens. He discovered that the gross for each film is
really a sum of small contributions from a large number of units, which
consist of either tens of thousands of screens or, tens of millions of
individual filmgoers. His challenge and goal was to mathematically
describe and understand the time-dependent behaviour of each unit
by developing a mathematical model. His model has a great promise
to describe and predict the box-offices grosses. We can also apply
mathematical modeling in other areas as well, including management.

The building blocks of mathematical modeling are differential
equations. In this paper, we focus on solving second order ordinary
differential equation (ODE) of the following form:

Yy =fxy,y) y@) =y, y@=y,asx<b M

Equation [1] can be solved by either using direct method as proposed
by Gear (1966, 1971, 1978), Hall and Suleiman (1981) and Suleiman
(1979, 1989) or reducing it to the equivalent system of first order
equations and then solve it using first order ordinary differential
equations (ODEs) methods. These methods, however, compute the
numerical solution at one point at a time.

Birta and Abou-Rabia (1987), Chu and Hamilton (1987), Shampine and
Watts (1969) and Tam (1989) introduced parallel block methods for
numerical solutions of first order ODEs. In a block method, a set of
new values that are obtained by each application of the formula is
referred to as “block”. For instance, in a r-point block method, r new
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equally spaced solution values, i.e. 'y, ., y, .- Y,,, are obtained .
simultaneously at each iteration of the algorithm. The computation
which proceeds in blocks is based on the computed values at the earlier
blocks. If the computed values at the previous k blocks are used to
compute the current block containing r points, then the method is called
r-point k-block method.

The computational tasks at each point within a block are assigned to a
single processor. Thus, the computations can be performed
simultaneously.

DERIVATION OF THE 3-POINT IMPLICIT BLOCK METHOD

The method derived in this section is the extension of work done by
Omar and Suleiman (1999a, 1999b). Letx ,=x +th t=1,2,3. Now,
integrating [1] once gives

ZT "y (x)dx = 'f'f(x, y, y))dx )

Define P,,, . (x) as the interpolation polynomial which interpolates

f(x, y, y’) at the set of points (x ) form =0, 1,...,k as follows

n+t-m’ f;1+t—m
pk+l,n+t (X) = i('l)m(-s )vnf’m
m=0 m

where X-x

Replacing fix, y, y') with P, , ., (x) in [2] we now have

y,(xnﬂ y/(xn) Al
y ( n+2 y (xn) A2 (3)
y (xn+3 y (xn) A3

where "

A= mi 1)m(-5)v £ dx.

Subsituting dx = hds and changing the limit of integration in [3] leads
to
y’(xﬂ+1) y,(xn) mg) ymvm n+l

y e |-yl S oy &

n+2
k

y,(xn+3 yl(xn) ,,,Zz() O-mvm

n+3
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where

:JD (1) (S,) ds,
S, ZIl)"'( )ds, and

o, =_3 -1, ) ds.

In order to determine the values of y , 6, and o, let L(t), M(t)and
N(t) be the generating functions defined as follows, respectively,

o o o}
L(t) =m§=)0ymt"‘ =”§O(-t)"‘j(‘f;1) ds =_]fe‘51"3(1")ds (5a)
M(t) = E o tm = Z( t)m f( )ds "f -slog1-) ] (5b)
NO= Lot = o) as = eoeovas 50
Using integration by parts on [5a]-[5¢] leads to
L(t) = 2 e (6a)
-log(1-t)
M(t)=3 8 "= #(t-2) (6b)
log(1-t)
N(t) = Z o t"= 1-(1-4)° = (3-3t + £ (6¢)
-log(1-t) - log(1-t)
ituti -log(1-#) 1 1 ; :
Substituting g( (et ) in [6a]-[6¢] and then
t
expanding and rearranging terms gives the following solutions
=1
m-1
> p— 1_ form=1,2,
8,=2
3
§=-—-1=-2
2

m-1

S,
§ =-% form=2,3,..
m =0 m+l-r
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where

k 5
) x) mzzg_l)m( :rl)v mfn+t dx’ £= 1/ 2/ 3

n+t

Xt
B, =xr(x

Substituting dx = hds and changing the limit of integration in [11] yields

y’(x11+1 y(xn) y/(xn) ,,,20 y*me n+1
k
y,(xn+2 = y(xn) + h 2y’(xn) + h2 ;‘=06*mvm n+2 (12)
k
yl(x11+3) y(xn) 3y,(xn) ;:oo*mvm n+3
where
v,= (0 Jes) (5,)ds (132)
8= (1" J(9) (5,) ds (13b)
. _(1ym [_a\ (S
o' =(-1) _E( s)(m)ds (130)
Let L'(t), M'(t) and N'(t) be defined as follows
L(t) =Syt = 2 I t)’"T () s = ( [spestsds (14a)
M) =5 1t =3 (- t)mJ (5,)ds = I(-s)es'os“ (14b)
N# =Syt = 20(-t>m£ (5,)ds =_3f (-5)e=0-0ds (140)
which leads to the relationships below
L'(t) = (1-1) - L(¥)
log(1-t) (15a)
M(t) = 2(1-t)*- M(t)
log(1-t) ‘ (15b)
N'(t) = 3 (1-t)° -N(t)
log(1-t) (15¢)
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whose solutions are

1
Y,=1+y, =?,

no Y
Tm+1 = Ym+2 - ,Z:‘) m—r+2
8" =22+9,

8*
8 =8,-2-—

2
8* = m+1_2 87

=0 m+1-r
V,=3*+v, ,

1 2 Y0
2
* l V’ ¥
V,=3+Vv,-Y —
=0 3¢
N .
\Y
* — - r =
VL=V, 20 == form=2,3...

The constant step size formulation [12] can be written as

k
y(xn+1 y(xn) y,(xn) mz=0 ﬂ*k,mf;wl-m
k
v, D)= e + | 25| + 12| 2, foa (16)

k

y(xn+3) y(xn) 3y,(xn) m2=0 T*k,mfn+3-m

where
k
ﬁk,m= ('l)mr;m :n)y: (17a)
k
o, = (_1)"21( ;)5', (17b)
Ten= (7Z (7 )0, (17¢)
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TEST PROBLEMS

The following problems were solved numerically using the 1-Point, 2-
point and 3-point implicit block methods:

Problem 1:

Problem 2:

Problem 3:

y'=-y+2cosx, y0)=1, y(0)=0 0=<x<1
Solution: y(x) = cos x + x sin x
y’ =4y -4y +e¥, y(0)=0, y'(0)=0, 0<x<1

Solution: y(x) =1 x%*
2

y'=y, y0=1, y(@0)=1 0<x<1

Solution: y(x) =€

NUMERICAL RESULTS

The following notations are used in the tables:

h

k
STEPS
MTD
MAXE

TIME

I1P

S2PIB

P2PIB

S3PIB

P3PIB

Step size used

The number of back values used

Total number of steps taken to obtain the solution
Method employed

Magnitude of the maximum error of the computed
solution

The execution time in microseconds needed to complete
the integration in a given range using the parallel
computer Sequent 527.

Implicit 1-point method

Sequential implementation of the 2-point implicit block
method

Parallel implementation of the 2-point implicit block
method

Sequential implementation of the 3-point implicit block
method

Parallel implementation of the 3-point implicit block
method
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The maximum error, ratio step and ratio time are defined as follows:
MAXE = max (|y, - y(x)|)

number of steps taken by 1 - Point method
RATIO STEP =

number of steps taken by parallel block method

time taken by 1 - Point method
RATIO TIME =

time taken by parallel block method

The numerical results of the three problems of second order ODE are
given in the following tables. Tables 1-3 show the performance
comparison between the I1P, 2PIB and 3PIB methods in terms of the
total number of steps taken, maximum error and the execution times
(in microseconds). The results of the ratio steps and times are tabulated
in Table 4.

Table 1
Comparison between the I1P, 2PIB and 3PIB Methods for Solving
Problem 1 of Second Order ODE when k=5

h MTD STEPS MAXE TIME
1P 100 1.43154(-3) 133055
S2PIB 53 1.43153(-3) 125804
102 P2PIB 53 1.43153(-3) 267669
S3PIB 36 1.43153(-3) 139970
P3PIB 36 1.43153(-3) 297222
I1P 1000 1.43166(-4) 1188010
S2PIB 503 1.43166(-4) 1075821
10° P2PIB 503 1.43166(-4) 1052437
S3PIB 336 1.43166(-4) 1163381
P3PIB 336 1.43166(-4) 888219
I1P 10000 1.43167(-5) 11862787
S2PIB 5003 1.43167(-5) 10699069
10+ P2PIB 5003 1.43167(-5) 9984578
S3PIB 3336 1.43167(-5) 11526844
P3PIB 3336 1.43167(-5) 8353568
I1P 100000 1.43167(-6) 118502578
S2PIB 50003 1.43167(-6) 106828469
105 P2PIB 50003 1.43167(-6) 101130883
S3PIB 33336 1.43167(-6) 115010473
P3PIB 33336 1.43167(-6) 83393111
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Table 2
Comparison between the I1P, 2PIB and 3PIB Methods for Solving
Problem 2 of Second Order ODE when k=5

h MTD STEPS MAXE TIME
1P 100 1.25292(-2) 150265
S2PIB 53 1.25811(-2) 145487
102 P2PIB 53 1.25811(-2) 277465
S3PIB 36 1.30459(-2) 133296
P3PIB 36 1.30459(-2) 262630
I11P 1000 1.25675(-3) 1355877
S2PIB 503 1.25636(-3) 1260639
103 P2PIB 503 1.25636(-3) 1114347
S3PIB 336 1.25699(-3) 111339
P3PIB 336 1.25699(-3) 943335
I1P 10000 1.25712(-4) 13542405
S2PIB 5003 1.25707(-4) 12542291
10# P2PIB 5003 1.25707(-4) 10785314
S3PIB 3336 1.25709(-4) 11036813
P3PIB 3336 1.25709(-4) 8779314
I1P 100000 1.25716(-5) 135160215
S2PIB 50003 1.25716(-5) 125133470
10% P2PIB 50003 1.25716(-5) 104717695
S3PIB 33336 1.25716(-5) 110132382
P3PIB 33336 1.25716(-5) 87244821
Table 3

Comparison between the I1P, 2PIB and 3PIB Methods for Solving
Problem 3 of Second Order ODE when k=5

h MTD STEPS MAXE TIME
I1P 100 1.98934(-3) 107377
S2PIB 53 1.98935(-3) 113613

102 P2PIB 53 1.98935(-3) 224044
S3PIB 36 1.98935(-3) 104714
P3PIB 36 1.98935(-3) 248289
I1P 1000 1.99846(-4) 926221
S2PIB 503 1.99846(-4) 928675

10° P2PIB 503 1.99846(-4) 788534
S3PIB 336 1.99846(-4) 814743
P3PIB 336 1.99846(-4) 687531
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(continued)

1P 10000 1.99937(-5) 9244317
S2P1B 5003 1.99937(-5) 9224021

10+ P2PIB 5003 1.99937(-5) 7530493
S3PIB 3336 1.99937(-5) 8055093
P3PIB 3336 1.99937(-5) 6256069
1P 100000 1.99947(-6) 92317214
S2PIB 50003 1.99947(-6) 91981686

10° P2PIB 50003 1.99947(-6) 73131842
S3PIB 33336 1.99947(-6) 80320062
P3PIB 33336 1.99947(-6) 62859845

Table 4

The Ratio Steps and Execution Times of the 2PIB and 3PIB Methods
to the I1P Method for Solving Second Order ODEs when k=5

h MTD RATIO RATIO TIME
STEP PROB 1 PROB2 PROB3
S2PIB 1.88679 1.05764 1.03284  0.94511
10 P2PIB 1.88679 0.49709 0.54156  0.47927
S3PIB 2.70270 0.95060 112730  1.02543
P3PIB 2.70270 0.44766 0.57216  0.43247
S2PIB 1.98807 1.10428 1.07555  0.99736
103 P2PIB 1.98807 1.12882 1.21675  1.17461
S3PIB 2.96736 1.02117 1.21779  1.13683
P3PIB 2.96736 1.33752 143732 1.34717
S2PIB 1.99880 1.10877 1.07974  1.00220
10* P2PIB 1.99880 1.18811 1.25563  1.22759
S3PIB 2.99670 1.02914 1.22702  1.14764
P3PIB 2.99670 1.42009 1.54254 147765
S2PIB 1.99988 1.10928 1.08013  1.00365
10% P2PIB 1.99988 117177 129071  1.26234
S3PIB 2.99967 1.03036 1.22725  1.14937
P3PIB 2.99967 1.42101 1.54921  1.46862

COMMENTS ON THE RESULTS
The results indicate that the 2PIB method reduces the total number of

steps to almost one half. In the case of the 3PIB method, the decrease
in the total number of steps is more obvious, reducing the total number
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of steps by two-thirds. The accuracy of all the methods used are
comparable and of the same order.

It can be observed that the execution times of the sequential
implementation of 2PIB and 3PIB methods in all problems are better
than the I1P despite the extra computations required in the former
methods. The gains could have been contributed by the fact that the
approximations at two and three points were calculated simultaneously
in the 2PIB and 3PIB methods respectively and this made up for the
time spent on the extra work.

The parallel implementation of both methods, as expected, required
more time to perform the task at h=10? due to parallel overheads.
However, the timing gains in the parallel block methods began to show
for h<10? as the inherent parallelism within the block methods is fully
exploited. The advantage of the parallel methods over the sequential
methods became more obvious as the workload increased. It is also
clear that the parallel implementation of 3PIB method is relatively the
fastest among the other methods when the step size becomes smaller
as shown in Table 4. This suggests that the strategy of using three
processors to approximate numerical solutions at three different points
simultaneously is the best choice especially for heavy workloads.

It can be concluded from the results that for a larger number of steps,
it is recommended to employ parallel block methods as the given task
can be completed faster. In addition, the reduction in the number of
steps also provides great benefits for using the 2PIB and 3PIB methods
instead of the I1P method.
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