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Abstract 

In the current study we examine the effects of interest rate changes on common stock returns of Greek banking sector. We examine the 
Generalized Autoregressive Heteroskedasticity (GARCH) process and an Adaptive Neuro-Fuzzy Inference System (ANFIS). The 
conclusions of our findings are that the changes of interest rates, based on GARCH model, are insignificant on common stock returns during 
the period we examine. On the other hand, with ANFIS we can get the rules and in each case we can have positive or negative effects 
depending on the conditions and the firing rules of inputs, which information is not possible to be retrieved with the traditional econometric 
modelling. Furthermore we examine the forecasting performance of both models and we conclude that ANFIS outperforms GARCH model 
in both in-sample and out-of-sample periods. 
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1. Introduction 

 

The issue of interest rate sensitivity remains empirically unresolved.  Most of the studies use a variety of short-
term and long-term bond returns as the interest rate factor without providing any rationale for their use. Yet, 
there is no consensus on the choice of the interest rate factor that should be used in testing the two-factor model. 
There is a broad consensus among the practitioners and academics that interest rates have a significant effect on 
share prices, but also there is a little agreement as to whether or not interest rates affect the stock returns. The 
problem with econometrics is that are based on probabilities and statistics and not on possibilities and 
membership. To be specific it impossible to find insignificant estimated coefficients over a specific period we 
examine and therefore we conclude that the phenomenon we examine is rejected, in our cases the effects of 
interest rates changes on stock returns.  This is not absolute logical and correct because traditional econometrics 
are not able to capture imprecision and non linearities. With fuzzy logic we can retrieve the rules when a 
specific condition is fired, so there will be always positive and negative effects, in our case, based on specific 
rules and behaviour of inputs. For example with conventional econometric modelling we can find that there are 
not significant effects in a specific period, but there are in a sub-period. And the question is how can we find this 
period? Even if we apply rolling regressions this is not very helpful for financial practical purposes.  
 
Additionally, conventional econometric modelling is based on statistical properties, where a long sample is 
needed. Also, misspecification errors, heteroskedasticity, ARCH effects and autocorrelation in residuals are 
some problems of econometric estimations. With fuzzy logic and neural networks we can take all the inputs and 
examine their importance weight in the determination of the output with short or long sample as long as fuzzy 
rules have been defined. Furthermore, neuro-fuzzy modelling, because it is not based on statistical and 
econometric properties, autocorrelation and heteroskedasticity in residuals, among other problems, are not 
examined as the disturbance term is not included in fuzzy regressions and neuro-fuzzy system therefore these 
problems have no meaning.  A proposal for further research study and applications is to introduce the 
disturbance term in fuzzy and neuro-fuzzy modelling. Additionally, neural networks have been criticized that 
are black boxes but are able to describe very well the nonlinearities. On the other hand fuzzy logic is not always 
able to describe nonlinearities appropriately, but is the most efficient method to approach imprecision, and 
especially in finance, because is determined by human behaviour and this is exactly the true imprecision. More 
specifically, econometric methodology treats human behavior as a computer based on binary logic with only 
two possible values, true or false, yes or no, expansive or recessive. To be correct the real values that a human 
expresses are maybe true, maybe false, or true if and false if. For this reason we use Neuro-Fuzzy system and we 
believe that is the future in economics and econometrics, as artificial intelligence procedures are already used in 
finance. 
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The structure of the paper has as follows: In section 2 we present a short literature review, in section 3 we 
present the methodology for the GARCH process and the two-index factor model, as also the methodology of 
ANFIS is described. In section 4 we present the period examined and we describe the data frequency, while in 
section 5 we present the empirical results and we discuss about them. Finally, in the final section we report our 
concluding remarks of our findings.   
 
 
2. Literature Review 
 
 
There is a great number of research studies examining the effects of interest rate changes on stock prices and not 
returns. Fama [1981] documents a strong positive correlation between common stock returns and real economic 
variables like capital expenditures, industrial production, real GNP, money supply, lagged inflation and interest 
rates. Hardouvelis [1987] points out that an inverse relationship between stock prices and changes of interest 
rate exists and this can be rationalized in terms of money supply surprises. Chen et al. [1999] examine the effect 
of discount rate changes on the volatility of stock prices and on trading volume and they found that unexpected 
discount rate changes contributed to higher, though short-lived, volatility and trading volume.  
 
Stock returns sensitivity to interest rates was theoretically advocated by Merton [1973], Long [1974] and Stone 
[1974]. Essentially, risk averse investors demand higher compensation for exposure to factors, other than the 
market portfolio, that are correlated with intertemporal changes in the investment opportunity set. Stone [1974] 
has offered another means of expanding the market model. He has proposed a two-index model consisting of the 
traditional equity market index and a debt market index and he justified the model by arguing that individual 
equity securities exhibit varying degrees of sensitivity to interest rates and that the opportunity to invest in risky 
debt securities may represent an attractive alternative to riskless assets and risky equity securities. Booth and 
Officer [1985] and Bae [1990] test the effect of current and unanticipated changes in interest rate. Fraser et al., 
[2002[ examine the effect of unanticipated rate changes. All these studies, as also other research empirical 
evidences [Fama and Schwert (1977); Christie, (1981)], found strong support for a negative effect of both 
current and unanticipated interest changes on bank stock returns. While some studies have found the interest rate 
factor to be an important determinant of common stock returns of banks, on the contrast Chance and Lane 
[1980] have found the returns to be insensitive or other supporting that stock returns only marginally explained 
by the interest rate factor, so these studies find no incremental explanatory power for interest rate changes 
[Lloyd and Shick, 1977)]. Research studies employing fuzzy logic, ANFIS and generally artificial intelligence 
procedures have not yet been made. 
 
 
3. Methodology  
 
3.1 Two factor model 
 
The proposed generalized formulation of the two-factor model [Stone, (1974)] is as follows: 

                                      

                                                         ittimtiipit RR   ΔI210                                                         (1)                             

 
, where  
 

0i  is the constant 

 

pitR  denotes the weekly returns of an equally weighted portfolio i of stock in week t, 

 

mtR  is the weekly return on the market portfolio in week t, 

 

tΔI  is a default free debt index as proxy of interest rates in period t, 

 

it  is a stationary y stochastic process with zero mean for each portfolio i, 
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The one month , three, six and twelve months Treasury bill rates have been tested as the interest rate variable in 
equation (1), but we present randomly only the results for three months Treasury bill rates because the 
conclusions are the same in all cases and there is no difference using short-term or longer-term interest rates. 
Because with ordinary least squares we found autocorrelation and ARCH effects we estimate with symmetric 
GARCH (p,q) process, which is mainly used in financial econometric literature. GARCH model was proposed 
by Bollerslev [1986]. The mean equation remains the same as in equation (1) but GARCH (1,1) process is: 
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Additionally we have tested asymmetric GARCH models [Nelson, (1991); Glosten et al., (1993)] but the results 
are not presented, as are exactly the same with those of symmetric GARCH process. 
 
3.2 Adaptive Neuro-Fuzzy Iinference System (ANFIS) 

 
We follow a simple ANFIS system in order to improve its forecasting performance and to make it much more 
useful. We incorporate two linguistic terms {positive, negative}. More linguistic terms can be introduced, as 
very positive and very negative, but the forecasting performance is almost the same, indicating that we can 
simplify the procedure by taking less linguistic terms and less rules. On the other hand more linguistic terms 
might be more useful, but in the case we examine financial professionals and traders are interesting mainly on 
positive and negative returns. The rules are 4 because we have two inputs with two linguistic terms and it is 
2*2=4. These rules are: 
 
IF RET is negative AND  IR  is negative THEN  f1=p1x1 + q1x2 + r1   
 
IF RET is negative AND  IR  is positive THEN  f2=p2x1 + q2x2 + r2   
 
IF RET is positive AND  IR  is negative THEN  f3=p3x1 + q3x2 + r3   
 
IF RET is positive AND  IR  is positive THEN  f4=p4x1 + q4x2 + r4   
 
, where RET denotes the General stock index returns and IR denotes the interest rate changes. We choose the 
AND operator so we will take the product instead to min operator to avoid monotonic results. Also each rule has 
2 parameters plus the constant hence there will be 3*4=12 parameters. 
 
Jang [1993] and Jang and Sun [1995] introduced the adaptive network-based fuzzy inference system (ANFIS). 
This system makes use of a hybrid learning rule to optimize the fuzzy system parameters of a first order Sugeno 
system. An example of a two input with two rules first order Sugeno system can be graphically represented by 
Fig. 1.  

 

 
Fig. 1 Example of ANFIS architecture for a two-input, two-rule first-order Sugeno model 

Eleftherios Giovanis / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 2 No. 1 126



 
, where the consequence parameters p, q, and r of the nth rule contribute through a first order polynomial of the 
form: 

                                                                       nnnn rxqxpf  21                                                           (4) 

 
The ANFIS architecture is consisted of two trainable parameter sets, the antecedent membership function 
parameters and the polynomial consequent parameters p,q,r. The ANFIS training paradigm uses a gradient 
descent algorithm to optimize the antecedent parameters and a least squares algorithm to solve for the 
consequent parameters. Because it uses two very different algorithms to reduce the error, the training rule is 
called a hybrid. The consequent parameters are updated first using a least squares algorithm and the antecedent 
parameters are then updated by backpropagating the errors that still exist. The ANFIS architecture consists of 
five layers with the output of the nodes in each respective layer represented by Oi

l, where i is the ith node of 
layer l. Because we have four rules and two inputs in the case we examine the steps for ANFIS system 
computation are: 
 
In the first layer we generate the membership grades 

                                                                   )(),( 21
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, where x1 and x2 are the inputs.  In layer 2 we generate the firing strengths or weights 
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In layer 2 we use the AND relation, as it was mentioned previously, so we take the product operator.  In layer 3 
we normalize the firing strengths and it will be: 
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, where i is for i=1,2,3,4. In layer 4 we calculate rule outputs based on the consequent parameters. 
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In layer 5 we take  
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In the last layer the consequent parameters can be solved for using a least square algorithm as: 

                                                                            XY                                                                (10) 
, where X is the matrix  

                                                   ]...[ 992211 wxwwxwwxwX                                       (11) 

and θ is a vector of  unknown parameters as: 
                                       

                                                   Trqprqprqp 999222111 ,,,...,,,,,,,                                     (12) 

 
, where T indicates the transpose.  Because the normal least square method leads to singular inverted matrix we 
use the Singular Value Decomposition (SVD) with Moore-Penrose pseudoinverse of matrix [Moore, (1920); 
Penrose, (1955); Petrou and Bosdogianni, (2000)]. Other methods that can be used to eliminate the particular 
problem is Lower Triangular, Upper Triangular and Orthogonal decomposition (QR) among others. More 
specifically the Singular Value Decomposition (SVD) procedure is: 

                                                

                                                                                        
TUSVX                                                        (13) 
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The singular values in S are positive and arranged in decreasing order. Their magnitude is related to the 
information content of the columns of U -principle components- that span X. Therefore, to remove the noise 
effects on the solution of the weight matrix, we simply remove the columns of U that correspond to small 
diagonal values in S. The weight matrix is then solved for using the following: 

 

                                                                          YUVS T1                                                      (14) 
 
For the first layer and relation (5) we use the Triangular, Gaussian and sigmoidal shape membership functions. 
We have described the computation procedure for the consequent parameters by using least squares algorithm 
with Moore-Penrose pseudoinverse matrix. The next step is to describe the training procedure for the antecedent 
parameters with the error backpropagation algorithm and the simple steepest descent method [Tsoukalas and 
Uhrig, (1996); Denai et al., (2004); Khan et al., (2010)]. The triangular function is defined as:  
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, where αij is the peak or center parameter and bij is the spread or support parameter. The symmetrical Gaussian 
membership function is defined as:  
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, where cij is the center parameter and σij is the spread parameter.  The last membership function we examine is 
the Sigmoid shape function such as: 
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, where cij locates the center of the curve and aij is the spread parameter.  The antecedent parameter c update is:  
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,where ηc is the learning rate for the parameter cij, p is the number of patterns and E is the error function which 
is: 
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, where yt is the target-actual and y is ANFIS output variable. The chain rule in order to calculate the derivatives 
used to update the membership function parameters are: 
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The partial derivatives for two inputs are derived below: 

                                                                    eyy
y

E t

ij





                                                     (21) 

For the output is:  
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, hence it will be : 
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The last partial derivative, Eq. 27 depends on the membership function we examine. The update equations for 
antecedent cij, and σij parameters of Gaussian function are: 
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The update equations for aij are, bij  are respectively 
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In a similar fashion the update equations for sigmoidal shape fuzzy membership function can be derived. The 
next step is to define the initial values for antecedent parameters. In all cases we get as initial values for enter 
and bases parameters the mean and standard deviation. To be specific we get one sample where the returns on 
assets are negative and one sample where the returns are positive. The same procedure is followed for cash flow. 
So for center parameters a, c and c of triangle, Gaussian and sigmoid respectively we take the average for 
negative and positive samples. On the other hand for the base parameters, b, σ and a we take the standard 
deviations of the respective samples. For the center and consequent RHS parameters we set up the value 0.05 as 
the learning rate and for base parameters we set up the learning rates at 0.01.  
 
4. Data  
 
The sample period we examine in the current study is 2003-2009. We examine 15 Greek banks and the data are 
on weekly frequency. Additionally, the period 2003-2008 is used as the in-sample or training data period and the 
remaining period 2009 is used as the out-of-sample or testing data period. The notion of portfolio theory and 
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systematic risk was not developed at that time, and it was until later when Stone [1972] extended the market 
model by incorporating the effects of debt indices. To assess the effect of the market yield so we have 
constructed equally weighted stock portfolios for the following sectors the Greek 
 
The General index of Athens stock market is used as proxy for the Greek banks, while the Libor of one and 
three months is used as the interest variable in equation (1). Additionally, we examine if the equally weighted 
portfolios returns, the General index of Athens stock exchange market returns and interest rate changes are 
stationary. To be specific we confirm this assumption by applying Augmented Dickey-Fuller-ADF [Dickey and 
Fuller, (1979)] unit root test and KPSS stationary test [Kwiatkowski et al., (1992)]. The ADF test is defined 
from the following relation: 
 

                                              tptpttt tyyyy    ....γ 111                         (32) 

 
, where yt is the variable we examine each time. In the right hand of regression (32) the lags of the dependent 
variable are added with order of lags equal with p. Additionally, regression (32) includes the constant or drift μ 
and trend parameter β. The disturbance term is defined as εt. In the next step we test the hypotheses: 
 
H0: φ=1, β=0  against the alternative hypothesis H1: |φ|<1      
 
We accept that a variable is stationary if we reject the null hypothesis of unit root test. On the other hand in 
KPSS test series is assumed to be stationary under the null hypothesis. The series is detrended by regressing y 
on a random walk process xt i.e., xt = xt-1 + ut and a deterministic term βt 
 

                                                                               ttt xy   t                                                            (33) 

KPSS statistic is based on the residuals for the ordinary least squares regression (33). Let the partial sum series 
of εt be st . It is: 
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The KPSS statistic is then defined as: 
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, where p is the truncation lag, wj( p) is an optional weighting function that corresponds to the choice of a special 
window. Under the null hypothesis of level stationary,  
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, where V1(x) is a standard Brownian bridge: V1(r) = B(r) – rB(1) and B(r) is a Brownian motion (Wiener 
process) on r  [0, 1]. Because relation (37) is refereed in testing only on the intercept and not in the trend and 
as we are testing with both intercept and trend we have the second-level Brownian bridge V2(x) and it is: 
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, where V2(x) is given by: 

                                                   dssWrrWrrrWrV s )()66()32()()(
1

0

2
1

2
2                       (39) 

In table 1 the results of unit root and stationary tests are reported. We conclude that all the variables are 
stationary, I(0), based on ADF test, as we reject the null hypothesis in all levels of statistical significance. On the 
other hand we observe that the equally weighted stock portfolio returns and the General index returns are 
stationary in all levels of statistical significance, but the interest rate changes are stationary in α=0.05 and 
α=0.10.  

 
Table 1.   ADF unit root and KPSS stationary tests 

 

Variables ADF 
t-stat. 

KPSS 
LM-stat. 

Critical values for 
ADF test1 

Critical values for 
KPSS test2 

3 month interest rate 
changes 

-7.257 0.1970  
 

α= 0.01, -3.983 
 

α= 0.05, -3.422 
 

α= 0.10, -3.134 

 
 

α= 0.01, 0.216 
 

α= 0.05, 0.146 
 

α= 0.10, 0.119 

General index returns -14.342 0.0699 
Equally weighted 

portfolio returns of 
Greek Banks 

-13.938 0.0552 

                             1. MacKinnon, (1996),  2. Kwiatkowski et al., (1992) 

 
4. Empirical Results  
 
In table 2 we present the correlation coefficients and their associated t-statistics between interest rate changes 
and General Index returns of Athens stock market. We observe that the correlation coefficients are low except 
from some sub-periods, as in 2005 and 2008, and statistically significant, but still not even close to 1 or -1. Also 
the correlation in the overall period 2003-2009 we examine is very close to zero and in the case of 1 month 
interest rate changes the correlation coefficient is statistically significant.  
 
Multicollinearity can still be a problem even when pair-wise correlations are small.  Another way to detect 
multicollinearity in such situations is to calculate the variance inflationary factors (VIF’s).  There is a different 
VIF for each independent variable.  Each independent variable’s VIF measures how much the variance of its 
coefficient estimate has been inflated by multicollinearity.  The ideal VIF for a variable is 1, and values higher 
than 10, or 4-5 proposed by other researchers, indicate the existence of multicollinearity. Another measure is the 
tolerance which is defined as 1/ VIF, so the closer is the tolerance to zero the greater the degree of collinearity 
of that variable with the other regressors and the closer tolerance is to 1, the greater the evidence that the 
variable  is not collinear with the other regressors. The VIF is simply computed by finding the inverse of the 
correlation matrix and taking the diagonal elements. It becomes clear that from the results of tables 2 and 3 the 
VIF values are almost 1 or very close to 1, indicating the rejection of multicollinearity. Furthermore, tolerance is 
very close to 1 so there is evidence that the variables are not correlated.  So there is no reason to take any 
additional procedure to solve for multicollinearity.  
 
In table 3 the estimation results with GARCH (1,1) and three month interest rates are reported. We do not 
present the results with other interest rates as one, six or twelve months as the results are similar and the 
conclusions are exactly the same. From the results of table 3 we observe that only coefficient β1 is positive and 
statistically significant. So if the General markets returns are increased then the common bank stock returns are 
increased too. Based on the diagnostic tests we reject the autocorrelation and ARCH effects.  
 
Our results are consistent with those of Chance and Lane [1980] who found that fewer than 2 per cent of the 
banks exhibited significant interest rate sensitivity to a short-, medium- or long-term treasury index and with 
those of Lloyd and Shick [1977] who support that stock returns only marginally explained by the interest rate 
factor and they find no incremental explanatory power for interest rate changes. Additionally our findings 
confirm the arguments of  other authors [Choi and Elyasiani, (1996); Allen and Jagtiani, (1997); Benink and 
Wolff, (2000)], who conclude that interest rate sensitivity has decreased in the late 1980's and early 1990's due 
to the availability of interest rate derivatives contracts that can be used for hedging purposes. Also our empirical 
findings are consistent with the results of Beirne et al. [2009] who examine 13 European countries, including 
Greece and Germany, as also examine USA and Japan and find that interest rate changes have insignificant 
effects on stock returns, while find significant effects, only Sweden with both short-term and long-term interest 
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rates, in Ireland and Netherlands, only with long-term interest rates and finally in Italy only with short-term 
interest rates.  
 
In table 4 the estimated fuzzy antecedent and consequent parameters for ANFIS with triangle and Gaussian 
membership functions are reported, while the estimated coefficients for ANFIS with sigmoidal shaped function 
are provided in table 5. 
 

Table 2.  Correlation and VIF between interest rates changes and General index 

 

Period Correlation 
coefficients 

3-month interest 
rate change 

  

VIF 
3-month 
interest 

rate change 
  

2003 -0.071 
(-3.584) 

10.041 

2004 -0.085 
(-4.277) 

10.063 

2005 0.137 
-6.949 

10.173 

2006 0.251 
-12.971 

10.672 

2007 0.146 
-7.396 

10.218 

2008 -0.240 
(-12.364) 

10.611 

2003-2008 0.0189 
-7.322 

10.005 

                                                   * t-statistics in parentheses 

 
Table 3.  GARCH modeling for the two-factor index model and three months interest rates 

 

Mean 
equation 

β0 β1 β2 
-0.00135 
[-0.784] 

0.76046 
[18.943]* 

0.01230 
[1.194]* 

Variance 
equation 

γ0 γ1 γ2 
0.00030 
[3.799]* 

0.00030 
[3.726]* 

1.35e-05 
[3.829]* 

Diagnostic 
tests 

 

Log-Likelihood LBQ2 (8)1 ARCH-LM (5)2 

 
659.475 

 

0.8973 
(0.999) 

0.1215 
(0.9875) 

                        * denotes statistical significant in α=0.01, t-statistics in brackets, p-values in parentheses,  
                          1. ARCH-LM is for Autoregressive conditional heteroskedasticity test of residuals with 5 lags,  
                          2. LBQ2 is the Ljung-Box test on squared standardized residuals with 8 lags.  
 

Table 4.  Final fuzzy antecedent and consequent parameters after the training process for ANFIS with triangle and Gaussian membership 
functions 

 
ANFIS with triangle membership function ANFIS with Gaussian membership function 

Antecedent parameters 
for General index 

returns 

Antecedent parameters 
for interest rate changes 

Antecedent parameters 
for General index 

returns 

Antecedent  
parameters 

for interest rate  
changes 

α1 α2 α1 α2 α1 α2 α1 α2 
-0.0197 -0.0554 -0.0732 0.0412 -0.0753 0.0493 -0.0087 -0.0044 

b1 b2 b1 b2 b1 b2 b1 b2 
-0.0238 0.1086 0.1861 0.0708 0.1187 0.0889 0.0502 -0.0073 

Consequent parameters Consequent parameters 

p1 p2 p3 p4 p1 p2 p3 p4 
0.1592 -0.0116 -3.467 -0.2206 -0.3438 0.3683 0.7805 -0.8949 

q1 q2 q3 q4 q1 q2 q3 q4 
-0.6032 0.6208 -1.355 0.3406 -0.0378 1.7632 1.9005 -0.0854 

r1 r2 r3 r4 r1 r2 r3 r4 
-0.0347 0.0014 0.0508 0.0021 -0.0025 -0.0085 0.1603 -0.1596 

 
 

Table 5. Final fuzzy antecedent and consequent parameters after the training process for ANFIS with sigmoidally shaped membership 
function 
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ANFIS with sigmoidally shaped membership function 

Antecedent parameters for 
General index returns 

Antecedent parameters  
for interest rate changes 

α1  α2 α1  α2 

-0.0197 -0.0554 -0.0732 0.0412 

b1 b2 b1 b2 

-0.0238 0.1086 0.1861 0.0708 

Consequent parameters 

p1 p2 p3 p4 

-12.448 14.322 10.925 -12.756 

q1 q2 q3 q4 

21.433 -11.896 -35.813 40.972 

r1 r2 r3 r4 

0.3264 -0.3513 -0.0453 0.0244 

 
From tables 4 and 5 we can derive various rules, which can help us to draw the effects of interest rate changes 
and General Index returns on Greek bank  stock returns and therefore to investigate the behavior of stock 
returns. For example with ANFIS and triangle function we have the following: 
 
If the General index returns are negative and interest rate changes are negative then we have 

 
f1= 0.1592x1 -0.6032 x2 – 0.0347 

 
If the General index returns are negative and interest rate changes are positive then  

 
  f2= -0.0116x1 + 0.6208 x2 + 0.0014 
 

If the General index returns are positive and interest rate changes are negative then  
 
  f3= -3.467x1 – 1.355x2 + 0.0508 

 
If the General index returns are positive and interest rate changes are positive then  

 
  f4= -0.2206x1 + 0.3406x2 + 0.0021 
 

Let suppose for example that both General index returns and interest rate changes are positive with values 
0.0024 and 0.0410 respectively, and then we will have: 

 
f4= -0.2206x1 + 0.3406x2 + 0.0021=-0.000529 + 0.0139 + 0.0021=0.0155 
 

So, when both inputs are positive and with the specific values we can have positive stock returns. Because there 
are different values then the positive returns can be made negative. For example we consider General index 
returns and interest rate changes are positive with values 0.0240 and 0.0010 respectively then it will be: 
 

f4= -0.2206x1 + 0.3406x2 + 0.0021=-0.00529 + 0.00034 + 0.0021=-0.00285 
 

So based on the new values the positive interest rate changes and stock index returns have a negative impact on 
common bank stock returns. Let us take another example, where we consider positive General index returns 
negative interest rate changes, with values 0.0024 and -0.0078 respectively.  
 

  f3= -3.467x1 – 1.355x2 + 0.0508= -0.00832 + 0.0105 + 0.0508=0.053 
 
Now let’s take new values where General index returns are positive, but interest rate changes are negative, with 
values 0.024 and -0.0158 
 

f3= -3.467x1 – 1.355x2 + 0.0508= -0.0832 + 0.0214 + 0.0508=-0.011 
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Hence, in this case we get negative stock returns instead of positive we found previously. The ANFIS 
technology is much more useful for the practitioners because they are able to determine more efficiently their 
portfolio as also they can be more flexible. For example based on the regression we estimated we find that there 
are not significant effects. Furthermore, if for example we had found significant and negative effects, this is not 
useful for the financial managers and traders, because the sign is changed in each period, at least on high 
frequency, as daily or weekly, based on the behavior and rules we have defined for the inputs. Additionally, if 
the sign remains constant for the long term as yearly, this is not again useful or practitioners and traders in 
financial industry, because they work and trade in daily frequency and short term periods.  So in this case the 
conventional econometric modeling is not very helpful for practicing purposes. In tables 6 and 7 the Root Means 
Squared Error (RMSE), Mean Absolute Error (MAE) and the correct percentage sign of stock returns are 
reported. We observe that in ANFIS RMSE and MAE are lower to the respective values of GARCH process in 
both in-sample and out-of-sample periods. Furthermore, in tables 6 and 7 we present the percentage of the 
correct sign of stock returns. The last one is preferred because researchers have argued that the sole use of mean 
squared error and mean absolute error may be inappropriate for financial data and particularly for market 
practitioners and financial traders who may be more interest in the sign of forecasts rather than the magnitude of 
forecast errors, as the former provides information with respect to buy and sell signals. Besides the fact that if it 
is not impossible, it is very difficult to predict the actual value, in practice the agents and traders in financial 
markets are interesting more in the ability of models to give the correct signaling.   
 
More specifically, based on the prediction of the correct sign on stock returns ANFIS outperforms significant 
GARCH modeling, as for in –sample period we predict correctly the sign at 93.33, 90.00 and 86.67 per cent 
with  sigmoidal shape, Gaussian and triangle membership functions respectively,  while the respective 
percentage is 76.67 with GARCH process. Additionally, in the out-of-sample period, which is of greatest 
interest and importance for the financial risk managers and traders, we predict in the best and worst cases 82.69 
and 80.76 per cent respectively with ANFIS, while with GARCH model we predict the correct stock returns sign 
at 71.15 per cent. 
 

Table 6. Forecasting performance for GARCH and ANFIS with triangle function 

 GARCH ANFIS with triangle function 

 In-sample Out-of-sample In-sample Out-of-sample 

RMSE 0.03179 0.03971 0.02940 0.03853 

MAE 0.02044 0.03261 0.01886 0.03038 

Correct Percentage 

Sign 

76.67 71.15 90.00 80.76 

 

Table 7.  Forecasting performance for ANFIS with Gaussian and Sigmoidal function 

 ANFIS with Gaussian function ANFIS with Sigmoidal function 

 In-sample Out-of-sample In-sample Out-of-sample 

RMSE 0.02968 0.03743 0.02871 0.03841 

MAE 0.01895 0.02925 0.01810 0.03032 

Correct Percentage 

Sign 

86.67 82.69 93.33 82.69 

Conclusions 

We examined the current effects of interest rate changes in stock returns of the banking sector in Athens stock 
exchange market. We concluded that we reject the effects of interest rate changes based on GARCH model as 
we found them to be statistically insignificant. Additionally, we proposed ANFIS technology with three 
membership functions, the triangle, the Gaussian and the sigmoidal shaped function. We propose ANFIS in 
order to overcome the problems and the restrictions of econometric approaches. This is because there is not 
always a unique sign or effects of independent variables on the dependent because there is not a straight forward 
way to identify the effects of inputs to outputs. To be specific it is not necessary that there will be constant signs 
or effects during a specific period we examine but these are changed in each observation and in each period. So 
in the case we examine, where we have weekly data, in each week, different effects will be reported based on 
the values and the rules of the system 
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