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Abstract: In this paper we propose an alternative and modified Generalized Regression Neural Networks Autoregressive model (GRNN-AR) in 

S&P 500 and FTSE 100 index returns, as also in Gross domestic product growth rate of Italy, USA and UK. We compare the forecasts with 

Generalized Autoregressive conditional Heteroskedasticity (GARCH) and Autoregressive Integrated Moving Average (ARIMA) models. The 

results indicate that GRNN outperform significant the conventional econometric models and can be an efficient alternative tool for forecasting. 

The MATLAB algorithm we propose is provided in appendix for further applications, suggestions, modifications and improvements. 
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I. INTRODUCTION  

Empirical analysis in macroeconomics as well as in 
financial economics is largely based on times series. The 
existence of unexpected shocks or innovations to the economy 
plus measurement errors, strongly suggest that economic 
variables are stochastic. The last two decades new approaches 
are applied in economics and finance. Most of them support 
the artificial intelligence procedures Aryal and Yao-Wu [1] 
applied a MLP network with 3 hidden layers to forecast the 
Chinese construction industry and they compare the 
forecasting performance of the MLP networks with that of 
ARIMA and they found that the RMSE of the MLP estimation 
is 49 percent lower than the ARIMA counterpart. Swanson 
and White [2]-[3] applied neural networks to forecast nine 
seasonally adjusted US macroeconomic time series and they 
found generally neural networks outperform the linear models. 
Keles et al. [4] developed Adaptive Neuro-Fuzzy Inference 
System for the prediction of domestic debt presenting very 
good results 

II. METHODOLOGY 

A. Autoregressive (AR) model 

 

We consider a series y1, y2, . . . , yn. An autoregressive 

model of order p denoted  AR(p), states that yt is the linear 

function of the previous p values of the series plus an error 

term: 
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, where �1, �2 . . . ,�p are weights that we have to define or 

determine, and �t denotes the residuals which are normally 

distributed with zero mean and variance �2 [5]. Conditioned on 

the full set of information available up to time i and on 

forecasts of the exogenous variables, the one-period-ahead 

forecast of yt would be 
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B. Moving Average (MA) 

 

We consider the q order moving average MA(q) 

specification [5]: 
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, where the �1, ..., �q are the parameters of the model, � is 

the constant and �1, ..., �q are again the white noise error terms. 

The forecasts are given by Eq. (4) 
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C. Autoregressive Moving Average (ARMA) models 

 

From the previous two sections we combine 

Autoregressive (AR) Moving Average (MA) Models and the 

Autoregressive Moving Average (ARMA) which encompasses 

(1) and (3) is defined as: 
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ARMA(p, q) process has p autoregressive, lagged 

dependent-variable, terms and q lagged moving-average terms. 

The series Rt is said to be integrated of order one, denoted I 

(1), because taking a first difference produces a stationary 

process. A nonstationary series is integrated of order d, 

denoted I (d), if it becomes stationary after being first 

differenced d times autoregressive integrated moving-average 

model, or ARIMA (p, d, q) and will be [5]: 
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The forecasts for ARMA (p, q) model is given by Eq. (7) 
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In all case we choose the lag order based on Akaike 

criterion.  
 

D. Generalized Autoregressive conditional Heteroskedasticity 
(GARCH) 

 
We estimate with symmetric GARCH (1,1) model [6]. The 

general GARCH (p,q) model is 
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We do not bother to examine other GARCH models as the 

asymmetric, because the forecasts are not significant.  
 

E. Generalized regression Neural Networks 
 
The GRNN [7] is defined as: 
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,where E[y | x] is the expected value of y given x and g(x,y) is 
the Parzen probability density estimator . If the value of g(x,y) 
is unknown , then it can be estimated from a sample of 
observations of x and y. The predicted output obtained by 
GRNN is: 
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Usually the GRNN consists of four layers. The first layer, 
which are the input data, the synaptic and the activation 
functions are linear. In the second layer, the pattern layer, the 
synaptic function is the radial and the activation function is the 
negative exponential. The third layer, the summation layer, has 
as the first layer, linear synaptic and activation functions. The 
output layer has a synaptic function a division and linear 
activation function. More specifically input layer receives the 
input vector X and distributes the data to the pattern layer. 
Each neuron in the pattern layer generates an output �, which 
is: 
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In this layer the numerator and denominator neuron 
compute the weighted and simple sums based on the values of 
w and � , which is wij�j , the numerator is   
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and denominator is  
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In the output layer output y is computed as  
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We examine an GRNN Autoregressive models, which is 

nothing else by taking as inputs the dependent or output 
variable with lags.  

III. DATA 

For the gross domestic product we examine the period 
1991-2009, where the period 1991-2006 is obtained as the in-
sample or training period and 2007-2009 is taken for testing or 
for the out-of-sample forecasts. In the case of stock returns we 
obtain the year 2009 and the last 20 trading days of December 
are taken as testing period. It should be noticed that even if we 
take much longer samples for GARCH and ARMA processes 
the forecasting performance in the out-of-sample period is not 
changed.   

IV. EMPIRICAL RESULTS 

A. Stock Indices 
 
The training in GRNN differs from Feed-Forward Neural 

Networks (FFNN), where in the last models the training 
involves the learning and momentum rates with delta rule for 
the computation of the optimum weights in input-hidden and 
hidden-output layers. In the case of GRNN the training is 
based on the sigma value in Eq. (10)-(11). Furthermore we 
developed a MATLAB routine in appendix, where also the 
GRNN training is based on weight initialization. In table I the 
lag order for the Autoregressive and Moving average models 
are reported. In tables II and III we present the correct 
percentage sign as well as the Root Mean squared Error 
(RMSE) and Mean Absolute Error (MAE). The estimations for 
MA and ARMA in the case of FTSE 100 are not reported 
because we found that the MA process is zero. Furthermore, 
we have an ARMA process and not ARIMA as the stock 
returns are always stationary. We confirmed b applying 
Augmented Dickey-Fuller-ADF [8]-[9].   

Table I. AR, MA and ARMA processes for stock indices 

 

Indices AR MA ARMA 

S&P 500 5 3 5,3 

FTSE 100 2 0 2,0 

 

We take for example the S&P 500. In the initial phase we 
estimate with the programming routine 1 in appendix and 
spread=1 and weight=1 with a and b equal with -0.05 and 0.05 
respectively. We present the following in-sample forecasts in 
Fig. 1. The sigma value is found equal with 0.1556. Then we 
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change the weights and specifically a=-0.05 and b=0.05 to a=-
0.03 and b=0.03 and we present the actual versus the 
forecasting values in Fig. 2. 
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Figure 1. In-sample forecasts for S&P 500 with GRNN-AR(1), 

a =-0.05, b=0.05 
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Figure 2. In-sample forecasts for S&P 500 with GRNN-AR(1), 

a =-0.03,  b=0.03 

 
We estimate GRNN-AR (1) which means that we have an 

autoregressive model of one lag. Finally, for S&P we set up 
sigma value at 0.4 and for the weights initialization we have 
set up a and b at -0.03 and 0.03 respectively. Once again we 
conclude that RMSE and MAE have no role in relation to 
correct percentage sign. To be specific RMSE and MAE 
values of GRNN, in the case of S&P 500, are significant 
higher to conventional econometric models, but the 
forecasting performance based on the correct sign is 
significant higher. On the other hand GRNN presents the 
lowest RMSE and MAE values in the case of FTSE 100 but 
again has the highest correct percentage sign. This can be 
easily explained by the fact that the movements of GRNN in 
S&P 500 are closer to actual values, but there are cases where 
there are extreme deviations. For example GRNN predicts the 
correct sign in eighth or nineteenth observation in Fig. 3.  But 
there is a great deviation. For example the actual value in 
eighth observation is 0.0069 and the forecasting is 0.0269. On 
the other hand GARCH predicts the wrong sign, but its 
forecasting value is -0.00017, which is closer to 0.0069.  

Table II. Forecasting Performance for S&P 500 and FTSE 100 

 
Indices AR MA ARMA 

S&P 500    

Correct Percentage Sign 40.00 55.00 55.00 

RMSE 0.0063 0.0061 0.0065 

MAE 0.0053 0.0052 0.0047 

FTSE 100    

Correct Percentage Sign 45.00   

RMSE 0.0088   

MAE 0.0072   

 

 
Table III. Forecasting Performance for S&P 500 and FTSE 100 

Indices GARCH GRNN-AR 

S&P 500   

Correct Percentage Sign 55.00 75.00 

RMSE 0.0062 0.0122 

MAE 0.0052 0.0095 

FTSE 100   

Correct Percentage Sign 55.00 75.00 

RMSE 0.0088 0.0074 

MAE 0.0072 0.0055 

 

 
We observe also the same situation regarding linear 

procedures. To be specific the RMSE and MAE values of AR 
are lower than the respective values of ARIMA in the case of 
S&P 500, but the correct percentage sign is significant lower. 
This indicates that the studies supporting some models in stock 
returns and exchange rates forecasting is not necessary, because 
the correct sign plays the major role. The financial traders are 
not interested in RMSE and MAE, as also they are not 
interesting at all about the information criteria, Log-Likelihood, 
autocorrelation, heteroskedasticity, residuals tests and many 
others, but they are interesting about the signal. The simplicity 
of neural networks and artificial intelligence procedures in 
finance is that we do not bother for econometric 
misspecification and residuals tests. Furthermore, a practitioner 
or a financial trader tests the models and chooses this one based 
on its forecasting performance and not on various residuals and 
other tests, because it is a waste of time and there is no time on 
this field. Also we observe that GARCH process is not superior 
to ARIMA, concerning the S&P 500. This indicates that even 
GARCH solves about autocorrelation, heteroskedasticity and 
ARCH effects, does not present high forecasting performance. 
But even if we try to forecast the volatility with GARCH 
process the results will be again the same. 
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Figure 3.  Out-of-sample forecasts for S&P 500 with GRNN-AR, 

a =-0.03, b=0.03 and sigma=0.4 
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Figure 4.  Out-of-sample forecasts for FTSE-100 with GRNN-AR, 

a =-0.01, b=0.01 and sigma=0.05 
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Figure 5. Out-of-sample forecasts for S&P 500 with GARCH process 

 
In Fig. 5 we present the out-of-sample forecasts for S&P 

500 with GARCH during period 2008-2009. The forecasts for 
the in-sample period are similar. We do not bother of 
presenting the forecasts of the other models, because the 
situation is almost the same, indicating that the forecasting 
performance of conventional econometric models is extremely 
poor. Even if we get a longer sample to satisfy the statistical 

properties, the forecasts are not changed at all.  It should be 
noticed that we estimated an autoregressive AR(1) for GRNN 
as one input is enough to get satisfying results.  

 
B. Gross Domestic Product 

 
In the next example we examine the one-step ahead 

forecasts for the gross domestic product of Italy, UK and USA. 
The Autoregressive-AR process is found to be 1, 3 and 3 
respectively for Italy, UK and USA, while the respective values 
for Moving Average-MA process are 3, 5 and 5 respectively.  

In tables IV and V the in-sample and out-of-sample one-
step ahead forecasts are reported. For GRNN we estimated the 
same autoregressive process with the respective lag values we 
mentioned previously for each country. The results among the 
linear models are mixed. To be specific AR presents the lowest 
RMSE and MAE values in Italy and UK, while ARIMA has 
the highest forecasting performance in gross domestic product 
growth rate of USA. In the case of Italy a and b have been set 
up at – 2 and 2 respectively and the sigma value found equal 
with 2.4321. In the case of UK we set up a=-4 and b=4 and the 
sigma found equal with 2.0387. Finally, for USA we set up at -
1 and 1 for a and b respectively and the sigma found equal with 
2.1203. We observe that in all cases GRNN outperforms the 
linear models. Furthermore, if we think that we have not set up 
at the optimum values for sigma and weights, then RMSE and 
MAE values can be reduced further. In a few words, if we set 
up different values for sigma and weights than we can get even 
higher forecasting performance. This is the simplicity and 
flexibility of neural networks and the algorithm that changing 
the settings the forecasts can be significant improved.  

 
Table IV. In-Sample Forecasting performance of AR and GRNN-AR model 

 In sample period 1990-2006 

 AR MA 

 MAE RMSE MAE RMSE 

Italy 2.3555 2.9334 2.8313 3.7331 

UK 2.2230 2.8528 2.2825 2.8361 

USA 2.0581 2.5179 2.1797 2.5440 

 
 

Table V. Out-of-Sample Forecasting performance of AR  

and GRNN-AR model 

 Out-of sample period 2007-2009 

 ARMA GRNN -AR 

 MAE RMSE MAE RMSE 

Italy 2.8679 3.4071 1.8485 2.1193 

UK 2.4255 2.9177 1.8995 2.6360 

USA 1.9961 2.2236 1.5694 1.9416 

 
Finally, we examine again the gross domestic product, but 

this time we apply a four-step ahead period forecast for GDP of 
UK and USA. The estimating or training period is 1991-2008 
and the year 2009 is left as the testing period or for out-of-
sample forecasts.  In Fig. 6 and 7 we present the actual values 
versus the best linear models. More specifically, in the case of  
UK we take the AR and we take ARIMA for USA. 
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Figure 6. Out-of-sample forecasts for GDP of UK 
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Figure 7. Out-of-sample forecasts for GDP of  USA 
From Fig. 6 and 7, we observe that the forecasting 

performance of GRNN is very high, especially in UK. On the 
other hand AR is a straight line. Also if we think that we might 
have not found the optimum values for sigma or weights then 
GRNN can be significant improved.   

The problem with GRNN, as with any other kind of neural 
network model, is that the process is not straightforward. To 
be specific in the case of GRNN we have to set up the 
appropriate sigma value. For example with even larger sigma 
the predicted curve will get flatter more smooth as well. In 
some cases this can be desirable. But the value of � depends 
on the time-series we examine each time. For example in stock 
returns we need a significant lower sigma value than we need 
in GDP. Furthermore, even the times-series concern the same 
field, for example the stock returns, the sigma value is varied 
among the different stock returns we examine each time. The 
last crisis is a proof that conventional econometric modeling, 
in economic institutions and financial industry, has tragically 
failed and there is a great need of adopting new approaches in 
economic academic departments and institutions, as also the 
introduction of new courses in the economic university 
departments  

V. CONCLUSIONS 

We examined and presented a simple Generalized 
Regression Neural Network Autoregressive (GRNN-AR) 
Model and we compared its forecasting performance with the 
respective of AR, MA, ARMA and GARCH models. Our 
findings support GRNN approach because of its flexibility to 
be adjusted in the actual values by changing the sigma value as 
also the values for the weights initialization. Furthermore, we 
propose additional GRNN models as GRNN Moving Average, 
or Autoregressive Moving Average GRNN. Also we propose 
genetic algorithms optimization in order to compute the 
optimum sigma value 
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Appendix  

MATLAB script file 

clear all; 

        load file.mat 

nforecast=12 

spread=1         % set up the sigma value. 1 for computing 2 for 

setting up manually          

weights=1;        % Set the weight initialization. 1 and 2 for 

random and 3 for random   

                          %and  Nguyen - Widrow initialization 

     default_sigma=2;  %The default spread-sigma value 

u=1;                    % Set the AR process for autoregresive models 

for jj=nforecast:-1:1 

y=data(1:end-jj,:) 

d=length(y) 
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t=length(y) 

clear x 

for p=1:u 

x(:,p)=lagmatrix(y,p) 

end 

i1  =  find(isnan(x)); 

i2  =  find(isnan(diff([x ; zeros(1,size(x,2))]) .* x)); 

if (length(i1) ~= length(i2)) || any(i1 - i2) 

   error('Series cannot contain NaN).') 

end 

if any(sum(isnan(x)) == size(x,1)) 

   error('A realization of ''x'' is completely missing (all NaN''s).') 

end 

first_Row  =  max(sum(isnan(x))) + 1; 

x             =  x(first_Row:end , :); 

y=y(first_Row:end,:) 

[nh,nj]=size(y); 

[nk,ni]=size(x); 

t=length(y) 

center_matrix=x - ones(nk,1)*mean(x); 

% Compute sigma 

if spread==1; 

maxmin= [max(center_matrix),min(center_matrix)] 

distance=abs(2*max(maxmin)) 

sigma=distance/(sqrt(2*ni)) 

elseif spread==2; 

   sigma =default_sigma 

end 

% Set up the weight matrix 

if weights==1; 

    rand('state',0)   

a=-1                

b=1 

W=a + (b-a) *rand(nk,ni); 

 

elseif weights==2; 

gamma = 0.7*nj^(1/ni);  

a=-0.01 

b=0.01 

%rand('state',sum(100*clock))           % Resets it to a different 

state each time. 

rand('state',0)                       % Resets the generator to its initial 

state.  

W=a + (b-a) *rand(nk,ni); 

W = gamma*W/sqrt(sum(sum(W.^2)));  

end 

%--------------------------------------------% 

%------------------ Training-----------------% 

 

       % compute summation neuron output 

s=0 

       for ii=1:ni 

           for kkk=1:nk 

            norm_Input = x(kkk,ii) - center_matrix(ii,:); 

            norm_Res= (sqrt(norm_Input*norm_Input')) 

            exp_Par = (-norm_Res / sigma^2) 

            exp_Res(ii) = -exp(exp_Par) 

            s=-s+exp_Res(ii) 

        end 

    end 

       sum_Neuron = -exp_Res* W'; 

       yf = sum_Neuron'/s; 

%---------------------------------------------------% 

%--------------------Testing------------------------% 

         p_test=y(end,:)      

  for ii=1:ni 

            norm_Input_test = p_test - center_matrix(end,:); 

            norm_Res_test= 

(sqrt(norm_Input_test*norm_Input_test')) 

            exp_Par_test = (-norm_Res_test / sigma^2) 

            exp_Res_test(ii) = -exp(exp_Par_test) 

            s_test(ii)=-s+exp_Res_test(ii) 

        end 

       sum_Neuron_test = exp_Res_test* W(end-u+1:end,:); 

       yhat(jj,:) = sum_Neuron_test/s_test; 

end  

test_y=data(end-nforecast+1:end,:) 

for iii=1:nforecast 

yfore(iii,:)=yhat(end-iii+1,:) 

iii=iii+1 

end 

figure, plot(y,'r-'); hold on;plot(yf,'b-'); 

xlabel('Periods') 

ylabel('Values') 

h1 = legend('Actual','forecasts',1); 

%title('In_sample forecasts') 

figure, plot(test_y,'-r'); hold on; plot(yfore,'-b'); 

xlabel('Periods') 

ylabel('Values') 

h1 = legend('Actual','forecasts',1); 

%title('Out_of_sample forecasts') 

 

 

 

 

 

 

   


